首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The technology to recover natural gas depends on undisclosed types and amounts of toxic chemicals. A list of 944 products containing 632 chemicals used during natural gas operations was compiled. Literature searches were conducted to determine potential health effects of the 353 chemicals identified by Chemical Abstract Service (CAS) numbers. More than 75% of the chemicals could affect the skin, eyes, and other sensory organs, and the respiratory and gastrointestinal systems. Approximately 40–50% could affect the brain/nervous system, immune and cardiovascular systems, and the kidneys; 37% could affect the endocrine system; and 25% could cause cancer and mutations. These results indicate that many chemicals used during the fracturing and drilling stages of gas operations may have long-term health effects that are not immediately expressed. In addition, an example was provided of waste evaporation pit residuals that contained numerous chemicals on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and Emergency Planning and Community Right-to-Know Act (EPCRA) lists of hazardous substances. The discussion highlights the difficulty of developing effective water quality monitoring programs. To protect public health we recommend full disclosure of the contents of all products, extensive air and water monitoring, coordinated environmental/human health studies, and regulation of fracturing under the U.S. Safe Drinking Water Act.  相似文献   

2.
页岩气是一种特殊的天然气聚集,以吸附或游离状态存在于页岩之中。页岩气资源储量丰富,约占全球天然气能源的三分之一,主要分布在中国、北美、俄罗斯等国家和地区。页岩气开采所使用的水力压裂技术会对深地微生物产生显著影响,在水力压裂的不同阶段,微生物群落组成存在明显差异。其中,产甲烷菌能够提高页岩气的产量,而产酸细菌会造成设备腐蚀,降低页岩气的回收效率。本文概述了页岩气的开采现状、开采过程以及微生物种群的变化和潜在影响,以期促进页岩气开采与深地微生物相互影响的研究,最终推动页岩气的绿色、高效开采。  相似文献   

3.
Extraction of oil and natural gas (hydrocarbons) from shale is increasing rapidly in North America, with documented impacts to native species and ecosystems. With shale oil and gas resources on nearly every continent, this development is set to become a major driver of global land‐use change. It is increasingly critical to quantify spatial habitat loss driven by this development to implement effective mitigation strategies and develop habitat offsets. Habitat selection is a fundamental ecological process, influencing both individual fitness and population‐level distribution on the landscape. Examinations of habitat selection provide a natural means for understanding spatial impacts. We examined the impact of natural gas development on habitat selection patterns of mule deer on their winter range in Colorado. We fit resource selection functions in a Bayesian hierarchical framework, with habitat availability defined using a movement‐based modeling approach. Energy development drove considerable alterations to deer habitat selection patterns, with the most substantial impacts manifested as avoidance of well pads with active drilling to a distance of at least 800 m. Deer displayed more nuanced responses to other infrastructure, avoiding pads with active production and roads to a greater degree during the day than night. In aggregate, these responses equate to alteration of behavior by human development in over 50% of the critical winter range in our study area during the day and over 25% at night. Compared to other regions, the topographic and vegetative diversity in the study area appear to provide refugia that allow deer to behaviorally mediate some of the impacts of development. This study, and the methods we employed, provides a template for quantifying spatial take by industrial activities in natural areas and the results offer guidance for policy makers, mangers, and industry when attempting to mitigate habitat loss due to energy development.  相似文献   

4.
Microbial activity in produced water from hydraulic fracturing operations can lead to undesired environmental impacts and increase gas production costs. However, the metabolic profile of these microbial communities is not well understood. Here, for the first time, we present results from a shotgun metagenome of microbial communities in both hydraulic fracturing source water and wastewater produced by hydraulic fracturing. Taxonomic analyses showed an increase in anaerobic/facultative anaerobic classes related to Clostridia, Gammaproteobacteria, Bacteroidia and Epsilonproteobacteria in produced water as compared to predominantly aerobic Alphaproteobacteria in the fracturing source water. The metabolic profile revealed a relative increase in genes responsible for carbohydrate metabolism, respiration, sporulation and dormancy, iron acquisition and metabolism, stress response and sulfur metabolism in the produced water samples. These results suggest that microbial communities in produced water have an increased genetic ability to handle stress, which has significant implications for produced water management, such as disinfection.  相似文献   

5.
The Barnett Shale in north central Texas contains natural gas generated by high temperatures (120 to 150°C) during the Mississippian Period (300 to 350 million years ago). In spite of the thermogenic origin of this gas, biogenic sulfide production and microbiologically induced corrosion have been observed at several natural gas wells in this formation. It was hypothesized that microorganisms in drilling muds were responsible for these deleterious effects. Here we collected drilling water and drilling mud samples from seven wells in the Barnett Shale during the drilling process. Using quantitative real-time PCR and microbial enumerations, we show that the addition of mud components to drilling water increased total bacterial numbers, as well as the numbers of culturable aerobic heterotrophs, acid producers, and sulfate reducers. The addition of sterile drilling muds to microcosms that contained drilling water stimulated sulfide production. Pyrosequencing-based phylogenetic surveys of the microbial communities in drilling waters and drilling muds showed a marked transition from typical freshwater communities to less diverse communities dominated by Firmicutes and Gammaproteobacteria. The community shifts observed reflected changes in temperature, pH, oxygen availability, and concentrations of sulfate, sulfonate, and carbon additives associated with the mud formulation process. Finally, several of the phylotypes observed in drilling muds belonged to lineages that were thought to be indigenous to marine and terrestrial fossil fuel formations. Our results suggest a possible alternative exogenous origin of such phylotypes via enrichment and introduction to oil and natural gas reservoirs during the drilling process.  相似文献   

6.

Purpose

Following the boom of shale gas production in the USA and the decrease in the US gas prices, increasing interest in shale gas is developing in many countries holding shale reserves and exploration is already taking place in some EU countries, including the UK. Any commercial development of shale gas in Europe requires a broad environmental assessment, recognizing the different European conditions and legislations.

Methods

This study focuses on the UK situation and estimates the environmental impacts of shale gas using life-cycle assessment (LCA); the burdens of shale gas production in the UK are compared with the burdens of the current UK natural gas mix. The main focus is on the analysis of water impacts, but a broad range of other impact categories are also considered. A sensitivity analysis is performed on the most environmentally criticized operations in shale gas production, including flowback disposal and emission control, by considering a range of possible process options.

Results and discussion

Improper waste water management and direct disposal or spills of waste water to river can lead to high water and human ecotoxicity. Mining of the sand and withdrawal of the water used in fracking fluids determine the main impacts on water use and degradation. However, the water degradation of the conventional natural gas supply to the UK is shown to be even higher than that of shale gas. For the global warming potential (GWP), the handling methods of the emissions associated with the hydraulic fracturing influence the results only when emissions are vented. Finally, the estimated ultimate recovery of the well has the greatest impact on the results as well as the flowback ratio and flowback disposal method.

Conclusions

This paper provides insights to better understand the future development of shale gas in the UK. Adequate waste water management and emission handling significantly reduce the environmental impacts of shale gas production. Policy makers should consider that shale gas at the same time increases the water consumption and decreases the water degradation when compared with the gas mix supply. Furthermore, the environmental impacts of shale gas should be considered according to the low productivity that force the drilling and exploitation of a high number of wells.
  相似文献   

7.
To determine the response of human cortical bone to projectile impact, 364 projectile impact tests were conducted on the shafts of embalmed human femurs. Chrome steel spherical projectiles in two diameters, 0·250 and 0·406 in., were employed to differentiate the effects of projectiles of varied sizes and masses in impacts at the same velocity. It was found that the larger projectiles expended significantly more energy in fracturing a femur than the smaller projectiles did at an identical impact velocity. Also, when impacts in which larger and smaller spheres possessed identical kinetic energies were compared, it was found that the larger spheres still expended more energy in fracturing the femur. Finally, it was clearly demonstrated by these experiments that impacts to cortical bone of the femoral shaft by either size projectile caused greater energy expenditure than impacts to the distal end of the femur, which is composed almost entirely of cancellous bone.  相似文献   

8.
Recent attention regarding the impacts of oil and gas development and exploitation has focused on the unintentional release of hydrocarbons into the environment, whilst the potential negative effects of other possible avenues of environmental contamination are less well documented. In the hydrocarbon-rich and ecologically sensitive Mackenzie Delta region (NT, Canada), saline wastes associated with hydrocarbon exploration have typically been disposed of in drilling sumps (i.e., large pits excavated into the permafrost) that were believed to be a permanent containment solution. However, failure of permafrost as a waste containment medium may cause impacts to lakes in this sensitive environment. Here, we examine the effects of degrading drilling sumps on water quality by combining paleolimnological approaches with the analysis of an extensive present-day water chemistry dataset. This dataset includes lakes believed to have been impacted by saline drilling fluids leaching from drilling sumps, lakes with no visible disturbances, and lakes impacted by significant, naturally occurring permafrost thaw in the form of retrogressive thaw slumps. We show that lakes impacted by compromised drilling sumps have significantly elevated lakewater conductivity levels compared to control sites. Chloride levels are particularly elevated in sump-impacted lakes relative to all other lakes included in the survey. Paleolimnological analyses showed that invertebrate assemblages appear to have responded to the leaching of drilling wastes by a discernible increase in a taxon known to be tolerant of elevated conductivity coincident with the timing of sump construction. This suggests construction and abandonment techniques at, or soon after, sump establishment may result in impacts to downstream aquatic ecosystems. With hydrocarbon development in the north predicted to expand in the coming decades, the use of sumps must be examined in light of the threat of accelerated permafrost thaw, and the potential for these industrial wastes to impact sensitive Arctic ecosystems.  相似文献   

9.
In the process of shale gas fracturing, long time, high strength, and boring task could trigger psychological or physical operation fatigues, and then lead to downtime, sand blocking, or other accidents, which are the main problems in safety management. However, conventional studies either separately analyze risks without considering the interaction and relationship between humans or teams, or only form a qualitative framework for team analysis. These methods cannot be directly applied for the fracturing operators due to complex operation procedures and diversified human errors. An improved methodology, therefore, is proposed to assess human holistic risk during the whole cycle of fracturing operation. First, D-S evidence theory is introduced to obtain the individual risk, and team performance shaping factor is also presented to establish risk assessment model for fracturing teams. Second, individual and team risks are integrated to calculate the quantitative value of human holistic risk. A scatter diagram of human risk is finally designed, where the high-risk fracturing stages and human types can be clearly revealed. Results from a study of one shale gas well indicate that human holistic risk is more objective and practical, and improves accuracy of human reliability analysis.  相似文献   

10.
The use of wood stoves has increased greatly in the past decade, causing concern in many communities about the health effects of wood smoke. Wood smoke is known to contain such compounds as carbon monoxide, nitrogen oxides, sulfur oxides, aldehydes, polycyclic aromatic hydrocarbons, and fine respirable particulate matter. All of these have been shown to cause deleterious physiologic responses in laboratory studies in humans. Some compounds found in wood smoke--benzo[a]pyrene and formaldehyde--are possible human carcinogens. Fine particulate matter has been associated with decreased pulmonary function in children and with increased chronic lung disease in Nepal, where exposure to very high amounts of wood smoke occurs in residences. Wood smoke fumes, taken from both outdoor and indoor samples, have shown mutagenic activity in short-term bioassay tests. Because of the potential health effects of wood smoke, exposure to this source of air pollution should be minimal.  相似文献   

11.
This study was conducted to evaluate the effects of transported Asian dust and other environmental parameters on the levels and compositions of ambient fungi in the atmosphere of northern Taiwan. We monitored Asian dust events in Taipei County, Taiwan from January 2003 to June 2004. We used duplicate Burkard portable air samplers to collect ambient fungi before, during, and after dust events. Six transported Asian dust events were monitored during the study period. Elevated concentrations of Aspergillus (A. niger, specifically), Coelomycetes, Rhinocladiella, Sporothrix and Verticillium were noted (p < 0.05) during Asian dust periods. Botryosporium and Trichothecium were only recovered during dust event days. Multiple regression analysis showed that fungal levels were positively associated with temperature, wind speed, rainfall, non-methane hydrocarbons and particulates with aerodynamic diameters ≤10 μm (PM10), and negatively correlated with relative humidity and ozone. Our results demonstrated that Asian dust events affected ambient fungal concentrations and compositions in northern Taiwan. Ambient fungi also had complex dynamics with air pollutants and meteorological factors. Future studies should explore the health impacts of ambient fungi during Asian dust events, adjusting for the synergistic/antagonistic effects of weather and air pollutants.  相似文献   

12.
Improvements in chemical analytical technology and non-invasive sampling protocols have made it easier to detect pesticides and their metabolites at very low concentrations in human tissues. Monitoring has revealed that pesticides penetrate both maternal and paternal reproductive tissues and organs, thus providing a pathway for initiating harm to their offspring starting before fertilization throughout gestation and lactation. This article explores the literature that addresses the parental pathway of exposure to pesticides. We use DDT/DDE as a model for chemicals that oftentimes upon exposure have no apparent, immediate health impacts, or cause no obvious birth defects, and are seldom linked with cancer. Their health effects are overlooked because they are invisible and not life threatening—but might have significant health, social, and economic impacts at the individual and population levels. The purpose of this article is to demonstrate the necessity to develop new approaches for determining the safety of pesticides and the need for innovative regulatory policy to protect human and environmental health.  相似文献   

13.
The recent growth of unconventional natural gas development and production (UNGDP) has outpaced research on the potential health impacts associated with the process. The Maryland Marcellus Shale Public Health Study was conducted to inform the Maryland Marcellus Shale Safe Drilling Initiative Advisory Commission, State legislators and the Governor about potential public health impacts associated with UNGDP so they could make an informed decision that considers the health and well-being of Marylanders. In this paper, we describe an impact assessment and hazard ranking methodology we used to assess the potential public health impacts for eight hazards associated with the UNGDP process. The hazard ranking included seven metrics: 1) presence of vulnerable populations (e.g. children under the age of 5, individuals over the age of 65, surface owners), 2) duration of exposure, 3) frequency of exposure, 4) likelihood of health effects, 5) magnitude/severity of health effects, 6) geographic extent, and 7) effectiveness of setbacks. Overall public health concern was determined by a color-coded ranking system (low, moderately high, and high) that was generated based on the overall sum of the scores for each hazard. We provide three illustrative examples of applying our methodology for air quality and health care infrastructure which were ranked as high concern and for water quality which was ranked moderately high concern. The hazard ranking was a valuable tool that allowed us to systematically evaluate each of the hazards and provide recommendations to minimize the hazards.  相似文献   

14.
Summary Several air pollutants in research and micropropagation laboratories originate from the combustion of hydrocarbons and their derivatives. The combustion products of some natural gases (propane-butane, propane, methane) and ethanol were analyzed, and the atmosphere composition was investigated inside the laminar flow box, inside the room where transplanting is performed and inside the culture vessels after transplanting. Large quantities of ethylene and other biologically active compounds are produced when hydrocarbons are partially oxidized or unevenly combusted and when ethanol is used for sterilization of dissecting instruments during transplanting operations. Air pollutants' effects have been tested on Prunus Colt shoot cultures; the toxicity symptoms observed suggest the elimination of gas combustion and alcohols during transplanting operations.  相似文献   

15.
Hydraulic fracturing is used to increase the permeability of shale gas formations and involves pumping large volumes of fluids into these formations. A portion of the frac fluid remains in the formation after the fracturing process is complete, which could potentially contribute to deleterious microbially induced processes in natural gas wells. Here, we report on the geochemical and microbiological properties of frac and flowback waters from two newly drilled natural gas wells in the Barnett Shale in North Central Texas. Most probable number studies showed that biocide treatments did not kill all the bacteria in the fracturing fluids. Pyrosequencing-based 16S rRNA diversity analyses indicated that the microbial communities in the flowback waters were less diverse and completely distinct from the communities in frac waters. These differences in frac and flowback water communities appeared to reflect changes in the geochemistry of fracturing fluids that occurred during the frac process. The flowback communities also appeared well adapted to survive biocide treatments and the anoxic conditions and high temperatures encountered in the Barnett Shale.  相似文献   

16.
Microbial degradation of hydrocarbons in soils polluted by oil-based drilling mud and cuttings has been investigated by static methods such as composting or biopiling. Bioremediation of polluted soils by oil-based drilling cuttings through a slurry bioreactor has not previously been reported. The main aim of this work is to monitor hydrocarbon biodegradation in slurry of drilling cuttings and unpolluted soils and the effects of nutrients on it. Indigenous, bacterial-mixed culture isolated from a polluted soil by drilling cuttings adapted to drilling mud concentrations up to 15% (v/v) was done during a 15-month program. The total petroleum hydrocarbons’ (TPHs) removal efficiency in C/N/P 100/5/1 ratio was 90.5 and 79.85% under experimental and control conditions, respectively. The microbial count on the first day, 15 × 107 CFUg?1, reached 20 × 109 CFUg?1on the twenty-first day at experimental conditions. The TPH removal efficiency in C/N/P 100/10/2 was 92.5 and 82.25% at experiment and control, respectively. Increasing nitrogen and phosphorous amount couldn't increase microbial count in comparison with C/N/P ratio 100/5/1. The measured biomass contents and microbial counts in experiments were significantly higher than the control and confirmed hydrocarbons’ biodegradation during the time. Results showed that slurry bioreactors could accelerate the biodegradation of TPHs and reduce remediation time in soil polluted by oil-based drilling cuttings.  相似文献   

17.
Abstract

This study estimates the cancer and non-cancer health risk among the roadside vendors in Delhi, the capital city of India. Air samples of selected NMHCs and their derivatives were collected from four different sites (one traffic intersection, one industrial, and two residential) in Delhi and were analyzed on Gas Chromatograph (GC) to obtain their atmospheric concentrations. At each site, a survey among the roadside vendors was also conducted to obtain information about their bodyweight and exposure to outdoor ambient air. The study reveals that hazard quotient of 1,3-butadiene is greater than one at all the sites, with its maximum value occurring at the industrial site. The major contributors to the workplace cancer risk (WCR) are found to be 1,3-butadiene and chloroform. The overall WCR is observed to be the highest (9.4?×?10?4) at the traffic intersection site, followed by the industrial site (7.0?×?10?4). Cancer incidence data and the population data are also used to estimate the growth of cancer risk in Delhi from 2009 to 2016. Comparison of the WCR values of the four sites with the cancer risk estimated from the cancer incidence data shows that NMHCs and their derivatives are significant contributors to the overall cancer risk in Delhi. Our results suggest that NMHCs and their derivatives need to be given due consideration in the National Cancer Control Programme of India.  相似文献   

18.
The Minami-Kanto gas field, where gases are dissolved in formation water, is a potential analogue for a marine gas hydrate area because both areas are characterized by the accumulation of microbial methane in marine turbidite sand layers interbedded with mud layers. This study examined the physicochemical impacts associated with natural gas production and well drilling on the methanogenic activity and composition in this gas field. Twenty-four gas-associated formation water samples were collected from confined sand aquifers through production wells. The stable isotopic compositions of methane in the gases indicated their origin to be biogenic via the carbonate reduction pathway. Consistent with this classification, methanogenic activity measurements using radiotracers, culturing experiments and molecular analysis of formation water samples indicated the predominance of hydrogenotrophic methanogenesis. The cultivation of water samples amended only with methanogenic substrates resulted in significant increases in microbial cells along with high-yield methane production, indicating the restricted availability of substrates in the aquifers. Hydrogenotrophic methanogenic activity increased with increasing natural gas production from the corresponding wells, suggesting that the flux of substrates from organic-rich mudstones to adjacent sand aquifers is enhanced by the decrease in fluid pressure in sand layers associated with natural gas/water production. The transient predominance of methylotrophic methanogens, observed for a few years after well drilling, also suggested the stimulation of the methanogens by the exposure of unutilized organic matter through well drilling. These results provide an insight into the physicochemical impacts on the methanogenic activity in biogenic gas deposits including marine gas hydrates.  相似文献   

19.
Despite the proximity of the Sahara, very few studies about dust impact on air quality and human health have been conducted in West Africa. The lack of data is a major constraint on our understanding of the impacts on human health in this area. We analyzed PM10 concentrations and horizontal visibility recorded in four West African stations. The pollution levels often exceed the standards defined by many countries/regulatory authorities and have been associated with serious health risks outside Africa. Over the Sahelian stations, 45.6% of the days between November 2006 and March 2007 were likely to impact human health and the studied Sudanian population was exposed to potential health effects every 5 days.  相似文献   

20.

Purpose

While carbon dioxide capture and storage (CCS) has been widely recognized as a useful technology for mitigating greenhouse gas emissions, it is necessary to evaluate the environmental performance of CCS from a full life cycle perspective to comprehensively understand its environmental impacts. The primary research objective is to conduct a study on life cycle assessment of the post-combustion carbon dioxide capture process based on data from SaskPower’s electricity generation station at the Boundary Dam in Saskatchewan, Canada. A secondary objective of this study is to identify the life cycle impact assessment (LCIA) methodology which is most suitable for the assessment of carbon dioxide capture technology integrated with the power generation system in the Canadian context.

Methods

The study takes a comparative approach by including three scenarios of carbon dioxide capture at the electricity generation station: no carbon dioxide capture (“no capture”), partial capture (“retrofit”), and fully integrated carbon dioxide capture of the entire facility (“capture”). The four LCIA methods of EDIP 97, CML2001, IMPACT2002+, and TRACI are used to convert existing inventory data into environmental impacts. The LCIA results from the four methods are compared and interpreted based on midpoint categories.

Results and discussion

The LCA results showed an increase in the retrofit and capture scenarios compared to the no capture scenario in the impact categories of eutrophication air, ecotoxicity water, ecotoxicity ground surface soil, eutrophication water, human health cancer ground surface soil, human health cancer water, human health noncancer ground surface soil, ozone depletion air, human health noncancer water, and ionizing radiation. The reductions were observed in the retrofit and capture scenarios in the impact categories of acidification, human health criteria air-point source, human health noncancer air, ecotoxicity air, global warming, human health cancer air, and respiratory effects.

Conclusions

Although the four LCIA methodologies significantly differ in terms of reference substances used for individual impact categories, all (TRACI, IMPACT2002+, CML2001, and EDIP 97) showed similar results in all impact categories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号