首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dietary fish must be assessed for benefits and risks to formulate risk management strategies. This article demonstrates that Laurentian Great Lakes (GL) freshwater species are good sources of omega-3 fatty acids using new data from a small sample (n = 7) of Lake Superior siscowet lake trout (Salvelinus namaycush siscowet) and five other GL fish species’ data. For Lake Superior (LS) siscowets, the saturates, mono-unsaturates, and poly-unsaturates composed 20.1, 40.7, and 39.1% of total lipid weight, respectively. Omega-3 poly-unsaturates (PUFAs) in these fish were more than twice the omega-6 (omega 3/6 ratio = 2.4). The LS lake trout data were combined with earlier LS data collected during the 1980s for eight other species and from five species of Lake Erie fish. All the GL freshwater species were compared with seven other published marine and freshwater fish studies from other global regions. PUFAs were compared based on latitude and marine versus freshwater origin. Differences between marine and freshwater species in omega-3 fatty acid were less at higher latitudes. GL freshwater fish species can be a good source of beneficial fats like marine fish and must be accounted in effective risk communications involving persistent bioaccumulative toxicants in dietary fish.  相似文献   

2.
The presence of toxic substances in the Great Lakes (GL) continues to be a significant concern. Eleven of the most persistent and ubiquitous substances were identified as “critical Great Lakes pollutants” by the International Joint Commission (IJC). In some areas of the GL these toxic substances bioaccumulate in sediment and organisms, biomagnify in food webs, and persist at high levels. The Agency for Toxic Substances and Disease Registry (ATSDR) Great Lakes Human Health Effects Research Program (GLHHERP) characterizes contaminant exposures via GL fish consumption and investigates the potential for short- and long-term adverse health effects. The program has identified a set of eight indicators to determine risk. The GLHHERP findings indicate: (1) vulnerable populations are still being exposed to persistent toxic substances (2) body burden levels are two to four times higher than in the general U.S. population, (3) women and minorities are less knowledgeable about fish advisories than other segments of the population, (4) the presence of neurodevelopmental deficits in newborns, and cognitive deficits in children and adults, and (5) disturbances in reproductive parameters have been demonstrated in adults. The public health implications of these findings and the need for intervention strategies are discussed.  相似文献   

3.
Fish-related consumption advisories have emerged based on the benefits of omega-3 fatty acids (omega-3 FA) intake and risks of Hg exposure from marine fish. However, only a few were based from freshwater fish. We integrated omega-3 FA and Hg data available from commonly eaten freshwater fish in China to provide a new perspective on consumption of these fish and also created a guide on the cost of basic omega-3 FA intake of 1750 mg/week. Results show that freshwater fish exhibited low omega-3 FA and Hg levels. The Hg bioaccumulation of functional feeding groups was significantly different (p <.05). Carnivorous species indicated relatively high Hg levels, whereas planktivorous fish species showed high omega-3 FA levels and extremely low costs for basic omega-3 FA intake. Results indicate that an advisory regarding reasonable fish consumption is necessary to maximize omega-3 FA and to minimize Hg exposure risks to fish consumers. This study provides temporary advisories and guide research for the creation of a proper dietary pattern. The advisory could reduce confusion and enforce benefit and risk communication for freshwater fish consumers. However, additional biomonitoring data in fish are needed to create more appropriate and specific freshwater fish consumption guidelines for the public.  相似文献   

4.
In 1993 and 1994 patrons of the Mid-America Boat Show and the American-Canadian Sport, Travel and Outdoor Show, both held in Cleveland, Ohio were asked to respond to an Ohio Sea Grant survey on Great Lakes issues. In 1993 and 1994, a list of issues, identified from previous surveys and citizen advisory groups, were presented to show patrons at the Ohio Sea Grant exhibit. They were asked to rank the importance of each issue on a scale of 0 to 6. A total of 1,751 and 987 boat show and sport show patrons responded in 1993 and 1994 respectively. The four highest ranked issues and their arithmetic means and standard deviations in 1993 and 1994 respectively, were: Lake Erie water quality (5.60±0.79 and 5.53±0.81); Eliminating persistent toxic substances in the Great Lakes (5.54±0.88 and 5.49±0.89); Protecting the Great Lakes ecosystem (5.49±0.87 and 5.51±0.80); and Toxic contaminants in fish (5.49±0.97 and 5.36±1.00). A t-test was used to compare means of 1993 and 1994 responses. Significant differences (0.05) occurred in mean responses for 9 out of 14 issues common to both the surveys. Factor analysis of 1993 data suggested that patrons of the 1993 shows: (1) have a strong concern for the Great Lakes ecosystem; and (2) recognize that individual actions count. Factor analysis of the 1994 data indicated that show patrons continued to have a concern for the Great Lakes ecosystem. Boat and outdoor show patrons (recreational resource users) are a constituency that can, if politically active, validate and support efforts to protect and preserve the Great Lakes ecosystem.  相似文献   

5.
Piscine novirhabdovirus = Viral Hemorrhagic Septicemia Virus (VHSV) first appeared in the Laurentian Great Lakes with large outbreaks from 2005 to 2006, as a new and novel RNA rhabdovirus subgenogroup (IVb) that killed >30 fish species. Interlude periods punctuated smaller more localized outbreaks in 2007, 2010, and 2017, although some fishes tested positive in the intervals. There have not been reports of outbreaks or positives from 2018, 2019, or 2020. Here, we employ a combined population genetics and phylogenetic approach to evaluate spatial and temporal evolutionary trajectory on its G‐gene sequence variation, in comparison with whole‐genome sequences (11,083 bp) from a subset of 44 individual isolates (including 40 newly sequenced ones). Our results show that IVb (N = 184 individual fish isolates) diversified into 36 G‐gene haplotypes from 2003 to 2017, stemming from two originals (“a” and “b”). G‐gene haplotypes “a” and “b” differed by just one synonymous single‐nucleotide polymorphism (SNP) substitution, remained the most abundant until 2011, then disappeared. Group “a” descendants (14 haplotypes) remained most prevalent in the Upper and Central Great Lakes, with eight (51%) having nonsynonymous substitutions. Group “b” descendants primarily have occurred in the Lower Great Lakes, including 22 haplotypes, of which 15 (68%) contained nonsynonymous changes. Evolutionary patterns of the whole‐genome sequences (which had 34 haplotypes among 44 isolates) appear congruent with those from the G‐gene. Virus populations significantly diverged among the Upper, Central, and Lower Great Lakes, diversifying over time. Spatial divergence was apparent in the overall patterns of nucleotide substitutions, while amino acid changes increased temporally. VHSV‐IVb thus significantly differentiated across its less than two decades in the Great Lakes, accompanied by declining outbreaks and virulence. Continuing diversification likely allowed the virus to persist at low levels in resident fish populations, and may facilitate its potential for further and future spread to new habitats and nonacclimated hosts.  相似文献   

6.
7.
The Laurentian Great Lakes of North America provide valuable ecosystem services, including fisheries, to the surrounding population. Given the prevalence of other anthropogenic stressors that have historically affected the fisheries of the Great Lakes (e.g., eutrophication, invasive species, overfishing), climate change is often viewed as a long-term stressor and, subsequently, may not always be prioritized by managers and researchers. However, climate change has the potential to negatively affect fish and fisheries in the Great Lakes through its influence on habitat. In this paper, we (1) summarize projected changes in climate and fish habitat in the Great Lakes; (2) summarize fish responses to climate change in the Great Lakes; (3) describe key interactions between climate change and other stressors relevant to Great Lakes fish, and (4) summarize how climate change can be incorporated into fisheries management. In general, fish habitat is projected to be characterized by warmer temperatures throughout the water column, less ice cover, longer periods of stratification, and more frequent and widespread periods of bottom hypoxia in productive areas of the Great Lakes. Based solely on thermal habitat, fish populations theoretically could experience prolonged optimal growth environment within a changing climate, however, models that assess physical habitat influences at specific life stages convey a more complex picture. Looking at specific interactions with other stressors, climate change may exacerbate the negative impacts of both eutrophication and invasive species for fish habitat in the Great Lakes. Although expanding monitoring and research to consider climate change interactions with currently studied stressors, may offer managers the best opportunity to keep the valuable Great Lakes fisheries sustainable, this expansion is globally applicable for large lake ecosystem dealing with multiple stressors in the face of continued human-driven changes.  相似文献   

8.
During the past decade, a bottom-dwelling, aggressive, multiple-spawning fish, the round goby (Gobiidae: Neogobius melanostomus), has spread from its native region in the Ponto-Caspian throughout Europe and to the Laurentian Great Lakes in North America. An international workshop, held at the Hel Marine Station, Poland, was organized to summarize population features of the round goby. Common fish predators of round gobies in the Great Lakes and in native regions are obligate and facultative benthic fishes and occasionally, pelagic fishes. In contrast, the main predator of the round goby in the Gulf of Gdansk is the Great Cormorant (Phalacrocorax carbo). In the Great Lakes, round gobies have lead to the decline of mottled sculpin (Cottus bairdi) and logperch (Percina caprodes) and reduced the hatching success of native fishes by feeding on their eggs. In the Gulf of Gdansk, round gobies have increased in abundance, while three-spined sticklebacks (Gasterosteus aculeatus) have declined. Round gobies have a broad diet throughout their range; larger specimens are molluscivores. There are fewer species of parasites and lower infection rates of round gobies in recently colonized areas than in native areas. Overall, newly colonized round gobies in brackish waters and lakes are smaller, mature earlier, have a male biased operational sex ratio and are more short-lived compared with round gobies from marine (native) habitats.  相似文献   

9.
Routine bulk chemical characterization of sediments does not provide useful information on toxicity of sediment bound contaminants. This study reviewed and evaluated the utility of phytoplankton bioassays for evaluation of toxicity of sediment bound contaminants, including state-of-the-art techniques. Several techniques such as Algal Fractionation Bioassays, microcomputer-based toxicity testing and in situ bioassays including plankton cages have been developed and successfully applied in our research at various contaminated sites in the St. Lawrence Great Lakes. These bioassay techniques are sensitive, rapid and inexpensive for screening contaminants. The use and application of such techniques, based on bioavailability and physiological response of micro-organisms, are essential for the detection of environmental perturbations of an ecosystem. Such an early warning system will facilitate the preservation and rehabilitation of the Great Lakes.  相似文献   

10.
The diversity of Laurentian Great Lakes ciscoes (Coregonus artedi, sensu lato) arose via repeated local adaptive divergence including deepwater ciscoes that are now extirpated or threatened. The nigripinnis form, or Blackfin Cisco, is extirpated from the Great Lakes and remains only in Lake Nipigon. Putative nigripinnis populations were recently discovered in sympatry with artedi in a historical drainage system of glacial Lake Algonquin, the precursor of lakes Michigan and Huron. Given the apparent convergence on Great Lakes form, we labeled this form blackfin. Here, we test the hypothesis that nigripinnis may have colonized this area from the Great Lakes as a distinct lineage. It would then represent a relict occurrence of the historical diversity of Great Lakes ciscoes. Alternatively, blackfin could have evolved in situ in several lakes. We captured more than 600 individuals in the benthic or pelagic habitat in 14 lakes in or near Algonquin Provincial Park (Ontario, Canada). Fish were compared based on habitat, morphology, and genetic variation at 6,676 SNPs. Contrary to our expectations, both cisco and blackfin belonged to an Atlantic lineage that colonized the area from the east, not from the Great Lakes. Sympatric cisco and blackfin were closely related while fish from different lakes were genetically differentiated, strongly suggesting the repeated in situ origin of each form. Across lakes, there was a continuum of ecological, morphological, and genetic differentiation that could be associated with alternative resources and lake characteristics. This study uncovers a new component of cisco diversity in inland lakes of Canada that evolved independently from ciscoes of the Laurentian Great lakes. The diversity of cisco revealed in this study and across their Canadian range presents a challenge for designating conservation units at the intraspecific level within the framework of the Committee on the Status of Endangered Wildlife in Canada (COSEWIC).  相似文献   

11.
1. There is much concern that filter‐feeding Asian carp will invade the Laurentian Great Lakes and deplete crucial plankton resources. We developed bioenergetic models, using parameters from Asian carp and other fish species, to explore the possibility that planktonic food resources are insufficient to support the growth of silver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis) in the Great Lakes. 2. The models estimated basic metabolic requirements of silver and bighead carp under various body sizes, swimming speeds and reproductive stages. These requirements were then related to planktonic food resources and environmental temperature to predict when and where silver and bighead carp may survive in the Great Lakes, and how far they may travel. 3. Parameter values for respiration functions were derived experimentally in a coordinated study of silver and bighead carp, while consumption parameters were obtained from the literature on silver carp. Other model parameters lacking for Asian carp, such as those for egestion and excretion, were obtained from the literature on other fish species. 4. We found that full‐sized bighead carp required 61.0 kJ d?1 just to maintain their body mass at 20 °C, approximately equivalent to feeding in a region with 255 μg L?1 macrozooplankton (dry) or 10.43 μg L?1 chlorophyll a. Silver carp energy requirements were slightly higher. 5. When applied to various habitats in the Great Lakes, our results suggest that silver and bighead carp will be unable to colonise most open‐water regions because of limited plankton availability. However, in some circumstances, carp metabolism at lower temperatures may be low enough to permit positive growth even at very low rations. Positive growth is even more likely in productive embayments and wetlands, and the modelled swimming costs in some of these habitats suggest that carp could travel >1 km d?1 without losing biomass. 6. The simulation (and firmly hypothetical) results from this modelling study suggest when and where Asian carp could become established in the Great Lakes. Given the potential consequences to Great Lakes ecosystems if these filter feeders do prove capable of establishing reproducing populations, efforts to keep Asian carp out of the Great Lakes must not be lessened. However, we do encourage the use of bioenergetic modelling in a holistic approach to assessing the risk of Asian carp invasion in the Great Lakes region.  相似文献   

12.
When examining environmental levels of organic contaminants, much of our focus has been placed on fish due to their greater potential to bioaccumulate and their direct linkage with human as a staple of their diet. Contaminant levels in Great Lakes fish communities have been closely monitored over the last few decades, and the resulting information has been indispensable in guiding consumption advisories. In this study, we first conducted an analysis of temporal trends of three organochlorines (hexachlorobenzene, octachlorostyrene, and α-hexachlorocyclohexane) in five Lake Erie fish species using dynamic linear modeling, while explicitly considering fish length and lipid content as covariates. Our results indicate that the levels of the three compounds have been steadily decreasing during the late 1970s to 2007, although there were instances in which the fish organochlorine contents exhibited fluctuations through time. The second part of our analysis focused on the development of a Bayesian framework to update fish consumption advisories. We present a methodology that incorporates the uncertainty in contaminant predictions and the natural variability in fish length and lipid content, while remaining flexible for different human weights and diet patterns. We then illustrate our Bayesian framework for two important contaminants in the Great Lakes region, mercury and PCBs. We established thresholds for each contaminant based on the tolerable daily intake (TDI) values and made predictive statements about the probability of exceedance of these critical levels. Our study also discusses how failure to account for model uncertainty/error can have profound implications for the credibility of the predictive risk assessment statements derived. The proposed Bayesian approach to fish consumption advisories can serve as a valuable framework for year-specific, highly customizable risk assessment statements that also account for the inherent variability in natural systems.  相似文献   

13.
14.
Ewins  P. J.  Weseloh  D. V.  Groom  J. H.  Dobos  R. Z.  Mineau  P. 《Hydrobiologia》1994,(1):39-55
In the Great Lakes, the Herring Gull (Larus argentatus) is a prominent member of the aquatic bird community, and has been used to monitor spatial and temporal trends in contaminant levels. To understand more fully contaminant loading outside the breeding season, we analysed the contents of 1298 freshly regurgitated pellets and 179 fresh faeces, collected in March and early April 1978–83, and between late December and late February 1990–91, from the vicinity of breeding colonies in Lakes Ontario and Erie, the Niagara River, Detroit River, and south-eastern parts of Lake Huron. Most adult Herring Gulls from the Great Lakes population winter in these areas, but there is no published account of their food habits other than during the breeding season. Most pellets from colonies close to large urban centres contained remains of garbage, as well as various fish species. Small mammals, notably Deer Mice (Peromyscus maniculatus) dominated the early spring diet at Lake Huron colonies near agricultural areas. At all other sites fish predominated in pellets and faeces, but garbage items were also recorded regularly. The species of fish consumed varied regionally, probably reflecting local availability. In Lake Ontario, Rainbow Smelt (Osmerus mordax) and Alewife (Alosa pseudoharengus) occurred most frequently in samples, whereas Freshwater Drum (Aplodinotus grunniens) was the main fish prey in Lake Erie and the Detroit River. Dietary differences were apparent between years, within seasons, and amongst areas. While these may have reflected some real differences in food availability, interpretation of these results was confounded by various biases inherent in the sampling of pellets and faeces to determine diet in such an opportunistic species. Therefore, it would be unwise to draw rigid conclusions as to regional or seasonal differences in the diets of piscivorous birds, based upon analyses of diet from only a small sample of sites or years. Herring Gulls appear to feed mainly on fish and garbage in winter and early spring on the lower Great Lakes (much as during the breeding season), but any locally abundant food source is probably exploited opportunistically.  相似文献   

15.
In April through October 1986, we sampled sediments and populations of nymphs of the burrowing mayfly, Hexagenia limbata (Serville), at 11 locations throughout the connecting channels of the upper Great Lakes, to determine if sediment contaminants adversely affected nymph production. Production over this period was high (980 to 9231 mg dry wt m-2) at the five locations where measured sediment levels of oil, cyanide, and six metals were below the threshold criteria of the U.S. Environmental Protection Agency and the Ontario Ministry of Environment for contaminated or polluted sediments, and also where the criterion for visible oil given in the Water Quality Agreement between the U.S.A. and Canada for connecting waters of the Great Lakes was not exceeded. At the other six locations where sediments were polluted, production was markedly lower (359 to 872 mg dry wt m-2). This finding is significant because it indicates that existing sediment quality criteria can be applied to protect H. limbata from oil, cyanide, and metals in the Great Lakes and connecting channels where the species fulfills a major role in secondary production and trophic transfer of energy.Contribution 733, of the National Fisheries Research Center-Great Lakes, U.S. Fish and Wildlife Service, 1451 Green Road, Ann Arbor, MI 48105.  相似文献   

16.
Clostridium botulinum type E in fish from the Great Lakes   总被引:9,自引:1,他引:8  
Bott, Thomas L. (University of Wisconsin, Madison), Janet S. Deffner, Elizabeth McCoy, and E. M. Foster. Clostridium botulinum type E in fish from the Great Lakes. J. Bacteriol. 91:919-924. 1966.-The intestinal contents of more than 3,000 fish from Lakes Erie, Superior, Huron, and Michigan were examined for Clostridium botulinum type E. Demonstration of the organism was accomplished by identifying its toxin in liquid cultures inoculated with material from the alimentary tract. Incidence figures, expressed as per cent of the fish tested, were: Lake Erie, 1%; Lake Superior, 1%; Lake Huron, 4%; the main body of Lake Michigan, 9%; and Green Bay (on Lake Michigan), 57%. Thus, C. botulinum type E appears to be widely but unevenly distributed in the Great Lakes, and fish from all areas are potential carriers of it.  相似文献   

17.
Müller et al. (1998) noted that freshwater collections of the genus Bangia formed a distinct group separate from marine entities in gene sequence analyses. Recently, the species epithet B. atropurpurea has been resurrected to represent this freshwater lineage. This taxon is one of many invasive species within the Laurentian Great Lakes. B. atropurpurea was first observed in Lake Erie in 1964 and by 1982 was observed in all of the Great lakes except Lake Superior. The present study was initiated to examine the further spread of B. atropurpurea and determine the origin of these populations. Hence, a survey of all the Great Lakes was conducted in 1995 (86 sites) and again in 2002 (104 sites). Bangia was observed at 43 sites in 1995 and 39 sites in 2002. For the first time, this alga has been observed to be present in the St. Lawrence River (1995), Georgian Bay on Lake Huron (2002) and Lake Simcoe (eastern shore, 2002) and hence this alga appears to be spreading into new locations. Cluster analyses of morphological data reveal three distinct groupings that do not separate according to location or lake basin. Preliminary analyses of ITS 1 and 2 sequences show differences among samples within Lake Ontario and among all Lakes; however, collections from Lake Simcoe are very similar in sequence. We are continuing to examine the relationship of Great Lakes populations with freshwater collections from Europe.  相似文献   

18.
Aim  Hull fouling is a leading vector for the introduction of marine, non‐indigenous species (NIS) worldwide, yet its importance to freshwater habitats is poorly understood. We aimed to establish the complement of NIS transported via this vector to the Great Lakes and to determine if they pose an invasion risk. Location  Laurentian Great Lakes. Methods  During 2007 and 2008, we collected scrapings from exterior surfaces as well as underwater video‐transects from 20 vessels shortly after their arrival in Great Lakes’ ports. Invertebrates present were sorted and identified in the laboratory. Results  Total estimated abundance averaged > 170,000 invertebrates per ship belonging to 109 taxa. Most (72%) of these taxa were freshwater species already present in the Great Lakes, whereas 11 and 31% were native to estuarine and marine habitats respectively, and would not be expected to survive in this habitat. Abundance was dominated by barnacles (51%), cladocerans (19%), bivalves (12%) and amphipods (11%). Sea‐chest grating and the rudder were hot‐spots for biofouling. Invertebrate diversity and total abundance were positively associated with total time spent in port during the last year and time in Pacific South American ports and negatively related to time in high latitudes and sailing speed. Although we found some live, established invaders such as Gammarus tigrinus and Dreissena rostriformis bugensis, only one individual of a freshwater NIS (Alexandrovia onegensis, Oligochaeta) not yet reported in the Great Lakes was detected. The animal’s poor condition and seemingly low population abundance indicated the risk of live introduction by this vector was likely quite low. Main conclusion  Our results indicate that hull fouling appears to pose a low risk of introductions of new species capable of surviving in the Great Lakes, unlike foreign‐sourced freshwater ballast water that historically was discharged by these transoceanic vessels.  相似文献   

19.
BackgroundIndividuals with Neurofibromatosis Type 1 (NF1) are strongly predisposed to developing pediatric brain tumors (PBTs), especially optic pathway gliomas (OPGs). Although developmental factors have been implicated in the origins of PBTs in both human and animal studies, associations between early-life factors and PBTs have not been evaluated in individuals with NF1. Our objective was to evaluate associations between peri-gestational characteristics and PBTs in this population.MethodsWe conducted a cross-sectional study, ascertaining questionnaire and medical record data for 606 individuals <18 years old who enrolled in the NF1 Patient Registry Initiative (NPRI) from 6/9/2011-6/29/2015. One hundred eighty-four individuals had reported PBT diagnoses, including 65 who were identified with OPG diagnoses. Cox proportional hazards regression was used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs) for associations between PBT and OPG diagnoses and peri-gestational characteristics (prematurity, birth weight, parental age, plurality, family history of NF1, assisted reproductive technology, maternal vitamin supplementation, and parental smoking).ResultsWe observed no significant associations between any of the assessed characteristics and PBTs overall or OPGs with the exception of birth weight. After controlling for potential confounding variables, we observed a significant positive association between birth weight quartile and OPGs with a HR of 3.32 (95% CI 1.39⿿7.94) for the fourth (⿥3915.5 g) compared to the first (⿤3020 g) quartile (p for trend = 0.001).ConclusionsConsistent with results for PBTs in the general population, these results suggest that higher birth weights increase OPG risk in individuals with NF1.  相似文献   

20.
International trade is an important mechanism for global non-indigenous species introductions, which have had profound impacts on the biodiversity of aquatic ecosystems including the Laurentian Great Lakes. The best-documented vector by which non-indigenous species have entered the Great Lakes is ballast water discharged by transoceanic ships. A variety of potential alternative vectors exist, including the intentional release of aquarium or food organisms. To assess whether these vectors pose a significant invasion risk for the Great Lakes, we surveyed fish sold live in markets and fish, mollusks and macrophytes sold in pet and aquarium stores within the Great Lakes watershed. We evaluated invasion risk using information on species’ thermal tolerance, history of invasion elsewhere, and potential propagule loads as indicated by frequency of occurrence in shops. Our research suggests that both the aquarium industry and live fish markets represent potential sources of future invaders to the Great Lakes, including several aquarium fishes and macrophytes, as well as Asian carp species sold in fish markets. Currently, few regulatory mechanisms exist to control these potential vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号