首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 539 毫秒
1.
A series of DNA-linked RNases H, in which the 15-mer DNA is cross-linked to the Thermus thermophilus RNase HI (TRNH) variants at positions 135, 136, 137 and 138, were constructed and analyzed for their abilities to cleave the complementary 15-mer RNA. Of these, that with the DNA adduct at position 135 most efficiently cleaved the RNA substrate, indicating that position 135 is the most appropriate cross-linking site among those examined. To examine whether DNA-linked RNase H also site-specifically cleaves a highly structured natural RNA, DNA-linked TRNHs with a series of DNA adducts varying in size at position 135 were constructed and analyzed for their abilities to cleave MS2 RNA. These DNA adducts were designed such that DNA-linked enzymes cleave MS2 RNA at a loop around residue 2790. Of the four DNA-linked TRNHs with the 8-, 12-, 16- and 20-mer DNA adducts, only that with the 16-mer DNA adduct efficiently and site-specifically cleaved MS2 RNA. Primer extension revealed that this DNA-linked TRNH cleaved MS2 RNA within the target sequence.  相似文献   

2.
A hybrid enzyme which site-specifically hydrolyzes RNA was created by covalently linking an oligodeoxyribonucleotide to Escherichia coli ribonuclease HI, an enzyme which specifically cleaves RNA moiety of DNA/RNA hybrids. A cysteine residue was substituted for Glu135 by site-directed mutagenesis in the mutant enzyme, in which all 3 free cysteine residues were replaced by alanine (Kanaya, S., Kimura, S., Katsuda, C., and Ikehara, M. (1990) Biochem. J. 271, 59-66), and coupled with a maleimide group, which is attached to the 5' terminus of the nonadeoxyribonucleotide (5'-GTCATCTCC-3') with a flexible tether. The resulting hybrid enzyme, d9-C135/RNase H, cleaved the phosphodiester bond between the fifth and sixth residues of the complementary nonaribonucleotide, without addition of the oligodeoxyribonucleotide. The nonaribonucleotide is cleaved by the wild-type or unmodified mutant enzyme only when the complementary oligodeoxyribonucleotide is present. When the kinetic parameters of the hybrid enzyme for the hydrolysis of the nonaribonucleotide were compared with those of the unmodified mutant enzyme for the hydrolysis of the nonanucleotide duplex, the hybrid enzyme exhibited a 7- and 4-fold decreases in the Km and kcat values, respectively, indicating that it performs multiple turnovers and has a sufficiently high hydrolytic activity. Hybrid ribonucleases H with various oligodeoxyribonucleotides in size and sequence, therefore, might be used as excellent tools for structural and functional studies of RNA.  相似文献   

3.
To clarify the mechanism by which the RNA portion of a DNA/RNA hybrid is specifically hydrolyzed by ribonuclease H (RNase H), the binding of a DNA/RNA hybrid, a DNA/DNA duplex, or an RNA/RNA duplex to RNase HI from Escherichia coli was investigated by 1H-15N heteronuclear NMR. Chemical shift changes of backbone amide resonances were monitored while the substrate, a hybrid 9-mer duplex, a DNA/DNA 12-mer duplex, or an RNA/RNA 12-mer duplex was titrated. The amino acid residues affected by the addition of each 12-mer duplex were almost identical to those affected by the substrate hybrid binding, and resided close to the active site of the enzyme. The results reveal that all the duplexes, hybrid-, DNA-, and RNA-duplex, bind to the enzyme. From the linewidth analysis of the resonance peaks, it was found that the exchange rates for the binding were different between the hybrid and the other duplexes. The NMR and CD data suggest that conformational changes occur in the enzyme and the hybrid duplex upon binding.  相似文献   

4.
Thermus thermophilus ribonuclease H was overexpressed and purified from Escherichia coli. The determination of the complete amino acid sequence allowed modification of that predicted from the DNA sequence, and the enzyme was shown to be composed of 166 amino acid residues with a molecular weight of 18,279. The isoelectric point of the enzyme was 10.5, and the specific absorption coefficient A0.1%(280) was 1.69. The enzymatic and physicochemical properties as well as the thermal and conformational stabilities of the enzyme were compared with those of E. coli RNase HI, which shows 52% amino acid sequence identity. Comparison of the far and near UV circular dichroism spectra suggests that the two enzymes are similar in the main chain folding but different in the spatial environments of tyrosine and tryptophan residues. The enzymatic activities of T. thermophilus RNase H at 37 and 70 degrees C for the hydrolysis of either an M13 DNA/RNA hybrid or a nonanucleotide duplex were approximately 5-fold lower and 3-fold higher, respectively, as compared with E. coli RNase HI at 37 degrees C. The melting temperature, Tm, of T. thermophilus RNase H was 82.1 degrees C in the presence of 1.2 M guanidine hydrochloride, which was 33.9 degrees C higher than that observed for E. coli RNase HI. The free energy changes of unfolding in the absence of denaturant, delta G[H2O], of T. thermophilus RNase H increased by 11.79 kcal/mol at 25 degrees C and 14.07 kcal/mol at 50 degrees C, as compared with E. coli RNase HI.  相似文献   

5.
A reconstitution system that recapitulates the processing of Okazaki-primer RNA was established by the heat-stable recombinant enzymes RNase HII and FEN-1 (termed Pf-RNase HII and Pf-FEN-1, respectively) prepared from a hyperthermophilic archaeon, Pyrococcus furiosus. A 35-mer RNA-DNA/DNA hybrid substrate mimicking an Okazaki fragment was used to investigate the properties of the processing reaction in vitro at 50 degrees C. Pf-RNase HII endonucleolytically cleaves the RNA primer region, but does not cut the junction between RNA and DNA. Removal of the RNA of the RNA-DNA junction was brought about by Pf-FEN-1 after Pf-RNase HII digestion. In the presence of 0.25-5mM MnCl(2), Pf-FEN-1 alone weakly cleaved the junction. The addition of Pf-RNase HII to the reaction mixture increased removal efficiency and optimal Pf-FEN-1 activity was achieved at an equal amount of the two enzymes. These results indicate that there are at least two steps in the degradation of primer RNA requiring a step-specific enzyme. It is likely that Pf-RNase HII and Pf-FEN-1 cooperatively process Okazaki fragment during lagging-strand DNA replication.  相似文献   

6.
Ribonuclease HI (RNase H) is a member of the nucleotidyl-transferase superfamily and endo-nucleolytically cleaves the RNA portion in RNA/DNA hybrids and removes RNA primers from Okazaki fragments. The enzyme also binds RNA and DNA duplexes but is unable to cleave either. Three-dimensional structures of bacterial and human RNase H catalytic domains bound to RNA/DNA hybrids have revealed the basis for substrate recognition and the mechanism of cleavage. In order to visualize the enzyme’s interactions with duplex DNA and to establish the structural differences that afford tighter binding to RNA/DNA hybrids relative to dsDNA, we have determined the crystal structure of Bacillus halodurans RNase H in complex with the B-form DNA duplex [d(CGCGAATTCGCG)]2. The structure demonstrates that the inability of the enzyme to cleave DNA is due to the deviating curvature of the DNA strand relative to the substrate RNA strand and the absence of Mg2+ at the active site. A subset of amino acids engaged in contacts to RNA 2′-hydroxyl groups in the substrate complex instead bind to bridging or non-bridging phosphodiester oxygens in the complex with dsDNA. Qualitative comparison of the enzyme’s interactions with the substrate and inhibitor duplexes is consistent with the reduced binding affinity for the latter and sheds light on determinants of RNase H binding and cleavage specificity.  相似文献   

7.
8.
9.
Ribonucleases H have mostly been implicated in eliminating short RNA primers used for initiation of lagging strand DNA synthesis. Escherichia coli RNase HI cleaves these RNA-DNA hybrids in a distributive manner. We report here that eukaryotic RNases H1 have evolved to be processive enzymes by attaching a duplex RNA-binding domain to the RNase H region. Highly conserved amino acids of the duplex RNA-binding domain are required for processivity and nucleic acid binding, which leads to dimerization of the protein. The need for a processive enzyme underscores the importance in eukaryotic cells of processing long hybrids, most of which remain to be identified. However, long RNA-DNA hybrids formed during immunoglobulin class-switch recombination are potential targets for RNase H1 in the nucleus. In mitochondria, where RNase H1 is essential for DNA formation during embryogenesis, long hybrids may be involved in DNA replication.  相似文献   

10.
Sequence-specific cleavage of RNA using chimeric DNA splints and RNase H   总被引:5,自引:0,他引:5  
To cleave RNA molecules using E. coli RNase H in a site-specific manner, a short oligodeoxyribonucleotide (3-5 mer) linked with oligo(2'-O-methyl)ribonucleotide(s) was designed to be used as a DNA splint. Our model experiments with ribooligomer the splint duplexes (9 mers) and RNase H demonstrated that a tetradeoxynucleotide cluster seems to be sufficient for the enzyme recognition and the short DNA-containing splint directs a unique cleavage of RNA by RNase H. The method could be applied to longer ribooligonucleotide substrates. For example, when 3'm (GA)d(AGAA)m(GGU)5' was used as a hybridization strand, 32pUCUUUCUUCUUCCAGGAU was cleaved specifically between U11 and C12 to yield 32pUCUUUCUUCUU. This method will have a variety of applications for the study of RNA.  相似文献   

11.
Solution structures of DNA/RNA hybrid duplexes, d(GCGCA*AA*ACGCG): r(cgcguuuugcg)d(C) (designated PP57), containing two C8-propynyl 2'-deoxyadenosines (A*) and unmodified hybrid (designated U4A4) are solved. The C8-propynyl groups on 2'-deoxyadenosine perturb the local structure of the hybrid duplex, but overall the structure is similar to that of canonical DNA/RNA hybrid duplex except that Hoogsteen hydrogen bondings between A* and U result in lower thermal stability. RNase H is known to cleave RNA only in DNA/RNA hybrid duplexes. Minor groove widths of hybrid duplexes, sugar puckerings of DNA are reported to be responsible for RNase H mediated cleavage, but structural requirements for RNase H mediated cleavage still remain elusive. Despite the presence of bulky propynyl groups of PP57 in the minor groove and greater flexibility, the PP57 is an RNase H substrate. To provide an insight on the interactions between RNase H and substrates we have modeled Bacillus halodurans RNase H-PP57 complex, our NMR structure and modeling study suggest that the residue Gly(15) and Asn(16) of the loop residues between first beta sheet and second beta sheet of RNase HI of Escherichia coli might participate in substrate binding.  相似文献   

12.
Ohtani N  Saito N  Tomita M  Itaya M  Itoh A 《The FEBS journal》2005,272(11):2828-2837
The SCO2299 gene from Streptomyces coelicolor encodes a single peptide consisting of 497 amino acid residues. Its N-terminal region shows high amino acid sequence similarity to RNase HI, whereas its C-terminal region bears similarity to the CobC protein, which is involved in the synthesis of cobalamin. The SCO2299 gene suppressed a temperature-sensitive growth defect of an Escherichia coli RNase H-deficient strain, and the recombinant SCO2299 protein cleaved an RNA strand of RNA.DNA hybrid in vitro. The N-terminal domain of the SCO2299 protein, when overproduced independently, exhibited RNase H activity at a similar level to the full length protein. On the other hand, the C-terminal domain showed no CobC-like activity but an acid phosphatase activity. The full length protein also exhibited acid phosphatase activity at almost the same level as the C-terminal domain alone. These results indicate that RNase H and acid phosphatase activities of the full length SCO2299 protein depend on its N-terminal and C-terminal domains, respectively. The physiological functions of the SCO2299 gene and the relation between RNase H and acid phosphatase remain to be determined. However, the bifunctional enzyme examined here is a novel style in the Type 1 RNase H family. Additionally, S. coelicolor is the first example of an organism whose genome contains three active RNase H genes.  相似文献   

13.
BACKGROUND: RNases H are present in all organisms and cleave RNAs in RNA/DNA hybrids. There are two major types of RNases H that have little similarity in sequence, size and specificity. The structure of RNase HI, the smaller enzyme and most abundant in bacteria, has been extensively studied. However, no structural information is available for the larger RNase H, which is most abundant in eukaryotes and archaea. Mammalian RNase H participates in DNA replication, removal of the Okazaki fragments and possibly DNA repair. RESULTS: The crystal structure of RNase HII from the hypothermophile Methanococcus jannaschii, which is homologous to mammalian RNase H, was solved using a multiwavelength anomalous dispersion (MAD) phasing method at 2 A resolution. The structure contains two compact domains. Despite the absence of sequence similarity, the large N-terminal domain shares a similar fold with the RNase HI of bacteria. The active site of RNase HII contains three aspartates: Asp7, Asp112 and Asp149. The nucleotide-binding site is located in the cleft between the N-terminal and C-terminal domains. CONCLUSIONS: Despite a lack of any detectable similarity in primary structure, RNase HII shares a similar structural domain with RNase HI, suggesting that the two classes of RNases H have a common catalytic mechanism and possibly a common evolutionary origin. The involvement of the unique C-terminal domain in substrate recognition explains the different reaction specificity observed between the two classes of RNase H.  相似文献   

14.
15.
16.
Tadokoro T  Chon H  Koga Y  Takano K  Kanaya S 《The FEBS journal》2007,274(14):3715-3727
The gene encoding a bacterial type 1 RNase H, termed RBD-RNase HI, was cloned from the psychrotrophic bacterium Shewanella sp. SIB1, overproduced in Escherichia coli, and the recombinant protein was purified and biochemically characterized. SIB1 RBD-RNase HI consists of 262 amino acid residues and shows amino acid sequence identities of 26% to SIB1 RNase HI, 17% to E. coli RNase HI, and 32% to human RNase H1. SIB1 RBD-RNase HI has a double-stranded RNA binding domain (RBD) at the N-terminus, which is commonly present at the N-termini of eukaryotic type 1 RNases H. Gel mobility shift assay indicated that this domain binds to an RNA/DNA hybrid in an isolated form, suggesting that this domain is involved in substrate binding. SIB1 RBD-RNase HI exhibited the enzymatic activity both in vitro and in vivo. Its optimum pH and metal ion requirement were similar to those of SIB1 RNase HI, E. coli RNase HI, and human RNase H1. The specific activity of SIB1 RBD-RNase HI was comparable to that of E. coli RNase HI and was much higher than those of SIB1 RNase HI and human RNase H1. SIB1 RBD-RNase HI showed poor cleavage-site specificity for oligomeric substrates. SIB1 RBD-RNase HI was less stable than E. coli RNase HI but was as stable as human RNase H1. Database searches indicate that several bacteria and archaea contain an RBD-RNase HI. This is the first report on the biochemical characterization of RBD-RNase HI.  相似文献   

17.
Solution structures of DNA/RNA hybrid duplexes, d(GCGCA*AA*ACGCG): r(cgcguuuugcg)d(C) (designated PP57), containing two C8-propynyl 2′-deoxyadenosines (A*) and unmodified hybrid (designated U4A4) are solved. The C8-propynyl groups on 2′-deoxyadenosine perturb the local structure of the hybrid duplex, but overall the structure is similar to that of canonical DNA/RNA hybrid duplex except that Hoogsteen hydrogen bondings between A* and U result in lower thermal stability. RNase H is known to cleave RNA only in DNA/RNA hybrid duplexes. Minor groove widths of hybrid duplexes, sugar puckerings of DNA are reported to be responsible for RNase H mediated cleavage, but structural requirements for RNase H mediated cleavage still remain elusive. Despite the presence of bulky propynyl groups of PP57 in the minor groove and greater flexibility, the PP57 is an RNase H substrate. To provide an insight on the interactions between RNase H and substrates we have modeled Bacillus halodurans RNase H-PP57 complex, our NMR structure and modeling study suggest that the residue Gly(15) and Asn(16) of the loop residues between first β sheet and second β sheet of RNase HI of Escherichia coli might participate in substrate binding.  相似文献   

18.
The rnhA gene encoding RNase HI from a psychrotrophic bacterium, Shewanella sp. SIB1, was cloned, sequenced and overexpressed in an rnh mutant strain of Escherichia coli. SIB1 RNase HI is composed of 157 amino acid residues and shows 63% amino acid sequence identity to E.coli RNase HI. Upon induction, the recombinant protein accumulated in the cells in an insoluble form. This protein was solubilized and purified in the presence of 7 M urea and refolded by removing urea. Determination of the enzymatic activity using M13 DNA-RNA hybrid as a substrate revealed that the enzymatic properties of SIB1 RNase HI, such as divalent cation requirement, pH optimum and cleavage mode of a substrate, are similar to those of E.coli RNase HI. However, SIB1 RNase HI was much less stable than E.coli RNase HI and the temperature (T(1/2)) at which the enzyme loses half of its activity upon incubation for 10 min was approximately 25 degrees C for SIB1 RNase HI and approximately 60 degrees C for E.coli RNase HI. The optimum temperature for the SIB1 RNase HI activity was also shifted downward by 20 degrees C compared with that of E.coli RNase HI. Nevertheless, SIB1 RNase HI was less active than E.coli RNase HI even at low temperatures. The specific activity determined at 10 degrees C was 0.29 units/mg for SIB1 RNase HI and 1.3 units/mg for E.coli RNase HI. Site-directed mutagenesis studies suggest that the amino acid substitution in the middle of the alphaI-helix (Pro52 for SIB1 RNase HI and Ala52 for E.coli RNase HI) partly accounts for the difference in the stability and activity between SIB1 and E.coli RNases HI.  相似文献   

19.
在细菌细胞中,为了维持基因组稳定和正常的生命活动,RNase HI通常以降解RNA/DNA杂合链中RNA的方式来防止复制中引物的积累以及转录中R环的形成。RNase HI对底物的识别主要依赖于DNA与RNA结合槽,对底物的催化主要依赖于DEDD基序和位于活性位点附近柔性环中的一个组氨酸。以Mg2+为代表的金属离子在催化过程中发挥了至关重要的作用。杂交双链中ssDNA突出部分的类型决定了RNase HI的作用模式:在没有突出或在ssDNA的5′端存在突出部分的情况下,RNase HI作为一种非序列特异性核酸内切酶随机地降解RNA;当ssDNA的3′端存在突出部分时,RNase HI依靠5′核酸外切酶活性对RNA进行连续切割。RNase HI、Rep、DinG和UvrD通过与单链DNA结合蛋白(single-stranded DNA-binding protein, SSB)的C端尾部的6个残基相互作用被招募到复制叉附近,并可能以协作的方式解决复制-转录冲突。RNaseHI的缺失或活性降低将引起DNA结构不稳定、基因突变、转录装置回溯和复制不协调等一系列有害后果。RN...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号