首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theoretical calculation was carried out on the primary electron donor P870 of photosynthetic bacteria. The results show that: (i) the bimolecular structure of the primary electron donor is more advantageous in energy than monomolecular structure; (ii) the initial configuration of primary electron donor is no longer stable and changes to the configuration with lower energy and chemical reactivity after the charge separation. In the P870, such structural change is completed through the rotation of C3 acetyl, so the oxygen atom of acetyl interacts with the magnesium atom of another bacterio-chlorophyll molecule, and the total energy and chemical reactivity are reduced evidently. It is suggested that the structural change of the primary electron donor is important in preventing the occurrence of charge recombination during the primary reaction and maintaining the high efficiency of the conversion of sun-light to chemical energy. A new mechanism of primary reaction has been proposed, which can give reasonable explanations to the results of kinetic and site mutation studies.  相似文献   

2.
In reaction centers from Rhodobacter sphaeroides, subjected to continuous illumination in the presence of an inhibitor of the QA to QB electron transfer, the oxidation of P870 consisted of several kinetic phases with a fast initial reaction followed by very slow accumulation of P870+ with a halftime of several minutes. When the light was turned off, a phase of fast charge recombination was followed by an equally slow reduction of P870+. In reaction centers depleted of QB, where forward electron transfer from QA is also prevented, the slow reactions were also observed but with different kinetic properties. The kinetic traces of accumulation and decay of P870+ could be fitted to a simple three-state model where the initial, fast charge separation is followed by a slow reversible conversion to a long-lived, charge-stabilized state. Spectroscopic examination of the charge-separated, semi-stable state, using optical absorbance and EPR spectroscopy, suggests that the unpaired electron on the acceptor side is located in an environment significantly different from normal. The activation parameters and enthalpy and entropy changes, determined from the temperature dependence of the slow conversion reaction, suggest that this might be coupled to changes in the protein structure of the reaction centers, supporting the spectroscopic results. One model that is consistent with the present observations is that reaction centers, after the primary charge separation, undergo a slow, light-induced change in conformation affecting the acceptor side. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Photosynthetic organisms transform the energy of sunlight into chemical potential in a specialized membrane-bound pigment-protein complex called the reaction center. Following light activation, the reaction center produces a charge-separated state consisting of an oxidized electron donor molecule and a reduced electron acceptor molecule. This primary photochemical process, which occurs via a series of rapid electron transfer steps, is complete within a nanosecond of photon absorption. Recent structural data on reaction centers of photosynthetic bacteria, combined with results from a large variety of photochemical measurements have expanded our understanding of how efficient charge separation occurs in the reaction center, and have changed many of the outstanding questions.Abbreviations BChl bacteriochlorophyll - P a dimer of BChl molecules - BPh bacteriopheophytin - QA and QB quinone molecules - L, M and H light, medium and heavy polypeptides of the reaction center  相似文献   

4.
Time-resolved fluorescence studies with a 3-ps temporal resolution were performed in order to: (1) test the recent model of the reversible primary charge separation in Photosystem I (Müller et al., 2003; Holwzwarth et al., 2005, 2006), and (2) to reconcile this model with a mechanism of excitation energy quenching by closed Photosystem I (with P700 pre-oxidized to P700+). For these purposes, we performed experiments using Photosystem I core samples isolated from Chlamydomonas reinhardtii wild type, and two mutants in which the methionine axial ligand to primary electron acceptor, A0, has been change to either histidine or serine. The temporal evolution of fluorescence spectra was recorded for each preparation under conditions where the “primary electron donor,” P700, was either neutral or chemically pre-oxidized to P700+. For all the preparations under study, and under neutral and oxidizing conditions, we observed multiexponential fluorescence decay with the major phases of ∼ 7 ps and ∼ 25 ps. The relative amplitudes and, to a minor extent the lifetimes, of these two phases were modulated by the redox state of P700 and by the mutations near A0: both pre-oxidation of P700 and mutations caused slight deceleration of the excited state decay. These results are consistent with a model in which P700 is not the primary electron donor, but rather a secondary electron donor, with the primary charge separation event occurring between the accessory chlorophyll, A, and A0. We assign the faster phase to the equilibration process between the excited state of the antenna/reaction center ensemble and the primary radical pair, and the slower phase to the secondary electron transfer reaction. The pre-oxidation of P700 shifts the equilibrium between the excited state and the primary radical pair towards the excited state. This shift is proposed to be induced by the presence of the positive charge on P700+. The same charge is proposed to be responsible for the fast A+A0 → AA0 charge recombination to the ground state and, in consequence, excitation quenching in closed reaction centers. Mutations of the A0 axial ligand shift the equilibrium in the same direction as pre-oxidation of P700 due to the up-shift of the free energy level of the state A+A0.  相似文献   

5.
The nature of excitation energy transfer and charge separation in isolated Photosystem II reaction centers is an area of considerable interest and controversy. Excitation energy transfer from accessory chlorophyll a to the primary electron donor P680 takes place in tens of picoseconds, although there is some evidence that thermal equilibration of the excitation between P680 and a subset of the accessory chlorophyll a occurs on a 100-fs timescale. The intrinsic rate for charge separation at low temperature is accepted to be ca. (2 ps)–1, and is based on several measurements using different experimental techniques. This rate is in good agreement with estimates based on larger sized particles, and is similar to the rate observed with bacterial reaction centers. However, near room temperature there is considerable disagreement as to the observed rate for charge separation, with several experiments pointing to a ca. (3 ps)–1 rate, and others to a ca. (20 ps)-1 rate. These processes and the experiments used to measure them will be reviewed.Abbreviations Chl chlorophyll - FWHM full-width at half-maximum - Pheo pheophytin - PS II Photosystem II - P680 primary electron donor of the Photosystem II reaction center - RC reaction center The US Government right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged.  相似文献   

6.
A specific carotenoid associated with reaction centers purified from Rhodopseudomonas sphaeroides shows an optical absorbance change in response to photochemical activity, at temperatures down to 35 K. The change corresponds to a bathochromic shift of 1 nm of each absorption band. The same change is induced by either chemical oxidation or photo-oxidation of reaction center bacteriochlorophyll (P-870). Reduction of the electron acceptor of the reaction center, either chemically or photochemically, does not cause a carotenoid absorbance change or modify a change already induced by oxidation of P-870. The change of the carotenoid spectrum can therefore be correlated with the appearance of positive charge in the reaction center. In these studies we observed that at 35 K the absorption band of reaction center bacteriochlorophyll near 600 nm exhibits a shoulder at 605 nm. The resolution into two components is more pronounced in the light-dark difference spectrum. This observation is consistent with our earlier finding, that the "special pair" of bacteriochlorophyll molecules that acts as photochemical electron donor has a dimer-like absorption spectrum in the near infrared.  相似文献   

7.
P. Heathcote  A. Vermeglio  R.K. Clayton 《BBA》1977,461(3):358-364
A specific carotenoid associated with reaction centers purified from Rhodopseudomonas sphaeroides shows an optical absorbance change in response to photochemical activity, at temperatures down to 35 K. The change corresponds to a bathochromic shift of 1 nm of each absorption band. The same change is induced by either chemical oxidation or photo-oxidation of reaction center bacteriochlorophyll (P-870). Reduction of the electron acceptor of the reaction center, either chemically or photochemically, does not cause a carotenoid absorbance change or modify a change already induced by oxidation of P-870. The change of the carotenoid spectrum can therefore be correlated with the appearance of positive charge in the reaction center. In these studies we observed that at 35 K the absorption band of reaction center bacteriochlorophyll near 600 nm exhibits a shoulder at 605 nm. The resolution into two components is more pronounced in the light-dark difference spectrum. This observation is consistent with our earlier finding, that the “special pair” of bacteriochlorophyll molecules that acts as photochemical electron donor has a dimer-like absorption spectrum in the near infrared.  相似文献   

8.
The mechanism of primary photochemistry has been investigated in purified cytoplasmic membranes and isolated reaction centers of Chloroflexus aurantiacus. Redox titrations on the cytoplasmic membranes indicate that the midpoint redox potential of P870, the primary electron donor bacteriochlorophyll, is +362 mV. An early electron acceptor, presumably menaquinone has Em 8.1 = -50 mV, and a tightly bound photooxidizable cytochrome c554 has Em 8.1 = +245 mV. The isolated reaction center has a bacteriochlorophyll to bacteriopheophytin ratio of 0.94:1. A two-quinone acceptor system is present, and is inhibited by o-phenanthroline. Picosecond transient absorption and kinetic measurements indicate the bacteriopheophytin and bacteriochlorophyll form an earlier electron acceptor complex.  相似文献   

9.
The effect of the light harvesting 1 (LH1) antenna complex on the driving force for light-driven electron transfer in the Rhodobacter sphaeroides reaction center has been examined. Equilibrium redox titrations show that the presence of the LH1 antenna complex influences the free energy change for the primary electron transfer reaction through an effect on the reduction potential of the primary donor. A lowering of the redox potential of the primary donor due to the presence of the core antenna is consistently observed in a series of reaction center mutants in which the reduction potential of the primary donor was varied over a 130 mV range. Estimates of the magnitude of the change in driving force for charge separation from time-resolved delayed fluorescence measurements in the mutant reaction centers suggest that the mutations exert their effect on the driving force largely through an influence on the redox properties of the primary donor. The results demonstrate that the energetics of light-driven electron transfer in reaction centers are sensitive to the environment of the complex, and provide indirect evidence that the kinetics of electron transfer are modulated by the presence of the LH1 antenna complexes that surround the reaction center in the natural membrane.  相似文献   

10.
In the absorption spectrum of Rhodobacter sphaeroides reaction centers, a minor absorption band was found with a maximum at 1053 nm. The amplitude of this band is ~10,000 times less and its half-width is comparable to that of the long-wavelength absorption band of the primary electron donor P870. When the primary electron donor is excited by femtosecond light pulses at 870 nm, the absorption band at 1053 nm is increased manifold during the earliest stages of charge separation. The growth of this absorption band in difference absorption spectra precedes the appearance of stimulated emission at 935 nm and the appearance of the absorption band of anion-radical BA at 1020 nm, reported earlier by several researchers. When reaction centers are illuminated with 1064 nm light, the absorption spectrum undergoes changes indicating reduction of the primary electron acceptor QA, with the primary electron donor P870 remaining neutral. These photoinduced absorption changes reflect the formation of the long-lived radical state PBAHAQA .  相似文献   

11.
Electrostatic control of charge separation in bacterial photosynthesis   总被引:5,自引:0,他引:5  
Electrostatic interaction energies of the electron carriers with their surroundings in a photosynthetic bacterial reaction center are calculated. The calculations are based on the detailed crystal structure of reaction centers from Rhodopseu-domonas viridis, and use an iterative, self-consistent procedure to evaluate the effects of induced dipoles in the protein and the surrounding membrane. To obtain the free energies of radical-pair states, the calculated electrostatic interaction energies are combined with the experimentally measured midpoint redox potentials of the electron carriers and of bacteriochlorophyll (BChl) and bacteriopheophytin (BPh) in vitro. The P+HL- radical-pair, in which an electron has moved from the primary electron donor (P) to a BPh on the 'L' side of the reaction center (HL), is found to lie approx. 2.0 kcal/mol below the lowest excited singlet state (P*), when the radical-pair is formed in the static crystallographic structure. The reorganization energy for the subsequent relaxation of P+HL- is calculated to be 5.0 kcal/mol, so that the relaxed radical-pair lies about 7 kcal/mol below P*. The unrelaxed P+BL- radical-pair, in which the electron acceptor is the accessory BChl located between P and HL, appears to be essentially isoenergetic with P*.P+BM-, in which an electron moves to the BChl on the 'M' side, is calculated to lie about 5.5 kcal/mol above P*. These results have an estimated error range of +/- 2.5 kcal/mol. They are shown to be relatively insensitive to various details of the model, including the charge distribution in P+, the atomic charges used for the amino acid residues, the boundaries of the structural region that is considered microscopically and the treatments of the histidyl ligands of P and of potentially ionizable amino acids. The calculated free energies are consistent with rapid electron transfer from P* to HL by way of BL, and with a much slower electron transfer to the pigments on the M side. Tyrosine M208 appears to play a particularly important role in lowering the energy of P+BL-. Electrostatic interactions with the protein favor localization of the positive charge of P+ on PM, one of the two BChl molecules that make up the electron donor.  相似文献   

12.
A series of mutations have been introduced at residue 168 of the L-subunit of the reaction centre from Rhodobacter sphaeroides. In the wild-type reaction centre, residue His L168 donates a strong hydrogen bond to the acetyl carbonyl group of one of the pair of bacteriochlorophylls (BChl) that constitutes the primary donor of electrons. Mutation of His L168 to Phe or Leu causes a large decrease in the mid-point redox potential of the primary electron donor, consistent with removal of this strong hydrogen bond. Mutations to Lys, Asp and Arg cause smaller decreases in redox potential, indicative of the presence of weak hydrogen bond and/or an electrostatic effect of the polar residue. A spectroscopic analysis of the mutant complexes suggests that replacement of the wild-type His residue causes a decrease in the strength of the coupling between the two primary donor bacteriochlorophylls. The X-ray crystal structure of the mutant in which His L168 has been replaced by Phe (HL168F) was determined to a resolution of 2.5 A, and the structural model of the HL168F mutant was compared with that of the wild-type complex. The mutation causes a shift in the position of the primary donor bacteriochlorophyll that is adjacent to residue L168, and also affects the conformation of the acetyl carbonyl group of this bacteriochlorophyll. This conformational change constitutes an approximately 27 degrees through-plane rotation, rather than the large into-plane rotation that has been widely discussed in the context of the HL168F mutation. The possible structural basis of the altered spectroscopic properties of the HL168F mutant reaction centre is discussed, as is the relevance of the X-ray crystal structure of the HL168F mutant to the possible structures of the remaining mutant complexes.  相似文献   

13.
Photosystem I is one of the key players in the conversion of solar energy into chemical energy. While the chlorophyll dimer P(700) has long been identified as the primary electron donor, the components involved in the primary charge separation process in PSI remain undetermined. Here, we have studied the charge separation dynamics in Photosystem I trimers from Synechococcus elongatus by femtosecond vis-pump/mid-infrared-probe spectroscopy upon excitation at 700, 710, and 715 nm. Because of the high specificity of the infrared region for the redox state and small differences in the molecular structure of pigments, we were able to clearly identify specific marker bands indicating chlorophyll (Chl) oxidation. Magnitudes of chlorophyll cation signals are observed to increase faster than the time resolution of the experiment (~0.2 ps) upon both excitation conditions: 700 nm and selective red excitation. Two models, involving either ultrafast charge separation or charge transfer character of the red pigments in PSI, are discussed to explain this observation. A further increase in the magnitudes of cation signals on a subpicosecond time scale (0.8-1 ps) indicates the formation of the primary radical pair. Evolution in the cation region with time constants of 7 and 40 ps reveals the formation of the secondary radical pair, involving a secondary electron donor. Modeling of the data allows us to extract the spectra of the two radical pairs, which have IR signatures consistent with A+A?- and P???+A?-. We conclude that the cofactor chlorophyll A acts as the primary donor in PSI. The existence of an equilibrium between the two radical pairs we interpret as concerted hole/electron transfer between the pairs of electron donors and acceptors, until after 40 ps, relaxation leads to a full population of the P???+A?. radical pair.  相似文献   

14.
In order to specifically perturb the primary electron acceptor B(A) -- a monomeric bacteriochlorophyll (BChl) a -- involved in bacterial photosynthetic charge separation (CS), the protein environment of B(A) in the reaction center (RC) of Rhodobacter sphaeroides was modified by site-directed mutagenesis. Isolated RCs were characterized by redox titrations, low temperature optical spectroscopy, ENDOR/TRIPLE resonance spectroscopy and femtosecond time-resolved spectroscopy. Two mutations were studied: In the GS(M203) mutant a serine is introduced near the ring E keto group of B(A), while in FY(L146) a phenylalanine near the ring A acetyl group of B(A) is replaced by tyrosine. In all mutations the oxidation potential of the primary electron donor P as well as the electronic structure of both the P(*+) radical cation and the radical anion of the secondary electron acceptor, H(A)(*-), are not significantly altered compared to the wild type (WT), while changes of the optical absorption spectra at 77 K in the BChl Q(X) and Q(Y) regions are observed. The GS(M203) mutation only leads to a minor retardation of the CS reactions at room temperature, whereas for FY(L146) significant deviations from the native electron transfer (ET) rates could be detected: In addition to a faster first (2.9 ps) and a slower second (1 ps) ET step, a new 8-ps time constant was found in the FY(L146) mutant, which can be ascribed to a fraction of RCs with slowed down secondary ET. The results allow us to address the functional role of the acetyl group of B(A) and question the role of the free energy changes as the main determining factor of ET rates in RCs. It is concluded that structural rearrangements alter the electronic coupling between the pigments and thereby influence the rate of fast CS.  相似文献   

15.
Photochemical reaction centers prepared from Rhodopseudomonas spheroides were treated with reduced cytochrome c (cyt c), and in some cases with ubiquinone (UQ), and illuminated. The light-induced oxidation of cy and reduction of UQ were observed, and also the variations in fluorescence of P870. These observations indicated that each reaction center contains a primary photochemical electron acceptor capable of holding just one electron. Depending on the method of preparation, the reaction centers may also contain secondary electron acceptor pools consisting mainly of UQ. The role of native UQ as an electron acceptor could be duplicated by added UQ. The yield of P870 fluorescence increased by a factor of 3-4, at most, during illumination of reaction centers in the presence of an electron donor such as reduced cyt. This suggests that the quantum efficiency for the primary photoact is about 0.7, rather than 0.9-1.0 as concluded in the past from optical absorption measurements. The apparent quantum efficiency for the oxidation of cyt by illuminated reaction centers can be increased by the addition of UQ and is decreased at higher concentrations of the detergent lauryl dimethylamine oxide (LDAO). These treatments do not affect the quantum efficiency of P870 oxidation, measured in the absence of cyt.  相似文献   

16.
Around 1960 experiments of Arnold and Clayton, Chance and Nishimura and Calvin and coworkers demonstrated that the primary photosynthetic electron transfer processes are not abolished by cooling to cryogenic temperatures. After a brief historical introduction, this review discusses some aspects of electron transfer in bacterial reaction centers and of optical spectroscopy of photosynthetic systems with emphasis on low-temperature experiments.Abbreviations (B)Chl (bacterio)chlorophyll - (B)Phe (bacterio)pheophytin - FMO Fenna-Matthews-Olson - LH1, LH2 light harvesting complexes of purple bacteria - LHC II, CP47 light harvesting complexes of Photosystem II - P, P870 primary electron donor - RC reaction center  相似文献   

17.
A comparative study was carried out of temperature dependence of kinetics of dark reduction of bacteriochlorophyll P870 oxidized both by pulsed laser and continuous actinic light in preparations of photosynthetic reaction centres-bacteriochlorophyll-protein complexes from Rhodopseudomonas spheroides, strain 1760-1. Half-time of the recombination of primary products--P870+ and reduced primary electron acceptor A1, which decreases with temperature lowering from 180-240 ms at 120K, is determined. Values of the rate constant of electron transfer from A1 to secondary acceptors at 29,K (2.7.10-1s-1) and the activation energy of this reaction in the range of 298-255K which is 11.8 kcal/mole are calculated.  相似文献   

18.
Primary charge separation dynamics in the reaction center (RC) of purple bacterium Rhodobacter sphaeroides and its P870 heterodimer mutants have been studied using femtosecond time-resolved spectroscopy with 20 and 40fs excitation at 870nm at 293K. Absorbance increase in the 1060-1130nm region that is presumably attributed to P(A)(δ+) cation radical molecule as a part of mixed state with a charge transfer character P*(P(A)(δ+)P(B)(δ-)) was found. This state appears at 120-180fs time delay in the wild type RC and even faster in H(L173)L and H(M202)L heterodimer mutants and precedes electron transfer (ET) to B(A) bacteriochlorophyll with absorption band at 1020nm in WT. The formation of the P(A)(δ+)B(A)(δ-) state is a result of the electron transfer from P*(P(A)(δ+)P(B)(δ-)) to the primary electron acceptor B(A) (still mixed with P*) with the apparent time delay of ~1.1ps. Next step of ET is accompanied by the 3-ps appearance of bacteriopheophytin a(-) (H(A)(-)) band at 960nm. The study of the wave packet formation upon 20-fs illumination has shown that the vibration energy of the wave packet promotes reversible overcoming of an energy barrier between two potential energy surfaces P* and P*(P(A)(δ+)B(A)(δ-)) at ~500fs. For longer excitation pulses (40fs) this promotion is absent and tunneling through an energy barrier takes about 3ps. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

19.
The reorganization energy (lambda) for electron transfer from the primary electron donor (P*) to the adjacent bacteriochlorophyll (B) in photosynthetic bacterial reaction centers is explored by molecular-dynamics simulations. Relatively long (40 ps) molecular-dynamics trajectories are used, rather than free energy perturbation techniques. When the surroundings of the reaction center are modeled as a membrane, lambda for P* B --> P+ B- is found to be approximately 1.6 kcal/mol. The results are not sensitive to the treatment of the protein's ionizable groups, but surrounding the reaction center with water gives higher values of lambda (approximately 6.5 kcal/mol). In light of the evidence that P+ B- lies slightly below P* in energy, the small lambda obtained with the membrane model is consistent with the speed and temperature independence of photochemical charge separation. The calculated reorganization energy is smaller than would be expected if the molecular dynamics trajectories had sampled the full conformational space of the system. Because the system does not relax completely on the time scale of electron transfer, the lambda obtained here probably is more pertinent than the larger value that would be obtained for a fully equilibrated system.  相似文献   

20.
M Polm  K Brettel 《Biophysical journal》1998,74(6):3173-3181
Photoinduced electron transfer in photosystem I (PS I) proceeds from the excited primary electron donor P700 (a chlorophyll a dimer) via the primary acceptor A0 (chlorophyll a) and the secondary acceptor A1 (phylloquinone) to three [4Fe-4S] clusters, Fx, FA, and FB. Prereduction of the iron-sulfur clusters blocks electron transfer beyond A1. It has been shown previously that, under such conditions, the secondary pair P700+A1- decays by charge recombination with t1/2 approximately 250 ns at room temperature, forming the P700 triplet state (3P700) with a yield exceeding 85%. This reaction is unusual, as the secondary pair in other photosynthetic reaction centers recombines much slower and forms directly the singlet ground state rather than the triplet state of the primary donor. Here we studied the temperature dependence of secondary pair recombination in PS I from the cyanobacterium Synechococcus sp. PCC6803, which had been illuminated in the presence of dithionite at pH 10 to reduce all three iron-sulfur clusters. The reaction P700+A1- --> 3P700 was monitored by flash absorption spectroscopy. With decreasing temperature, the recombination slowed down and the yield of 3P700 decreased. In the range between 303 K and 240 K, the recombination rates could be described by the Arrhenius law with an activation energy of approximately 170 meV. Below 240 K, the temperature dependence became much weaker, and recombination to the singlet ground state became the dominating process. To explain the fast activated recombination to the P700 triplet state, we suggest a mechanism involving efficient singlet to triplet spin evolution in the secondary pair, thermally activated repopulation of the more closely spaced primary pair P700+A0- in a triplet spin configuration, and subsequent fast recombination (intrinsic rate on the order of 10(9) s(-1)) forming 3P700.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号