首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
D M Lilley 《FEBS letters》1999,452(1-2):26-30
The hairpin ribozyme undergoes a site-specific transesterification cleavage of the phosphodiester backbone. The natural form of the ribozyme is a four-way helical junction, where two arms contain unpaired loops. This folds by pairwise coaxial stacking of helical arms, and a rotation into an antiparallel conformation in which there is close association between the loops. This probably generates the local conformation required to facilitate the trajectory into an in-line SN2 transition state. Folding is induced by the cooperative binding of at least two divalent metal ions, which are probably distributed between the junction and the loop-loop interface. The junction forms the structural scaffold on which the geometry of the ribozyme is built, and structural perturbation of the junction leads to impaired catalytic activity.  相似文献   

4.
5.
6.
7.
A R Fersht  M M Kaethner 《Biochemistry》1976,15(15):3342-3346
Valyl-tRNA synthetase from Bacillus stearothermophilus activates thereonine and forms a 1:1 complex with threonyl adenylate, but it does not catalyze the net formation of threonyl-tRNAVal at pH 7.78 and 25 degrees C in the quenched flow apparatus it decomposes at a rate constant of 36s-1. During this process there is a transient formation of Thr-tRNAVal reaching a maximum at 25 ms and rapidly falling to zero after 150 ms. At the peak, 22% of the (14C) threonine from the complex is present as (14C) Thr-tRNA. The reaction may be quenched with phenol and the partially mischarged tRNA isolated. The enzyme catalyzes its hydrolysis with a rate constant of 40s-1. The data fit a kinetic scheme in which 62% of the threonine from the threonyl adenylate is transferred to the tRNA. This may be compared with the rate constant of 12s-1 at which 84% of the valine is transferred to tRNAVal from the enzyme-bound valyl adenylate, and the rate constant of 0.015s-1 for the subsequent hydrolysis of Val-tRNAVal. Inhibition studies indicate a distinct second site for hydrolysis. The translocation of the aminoacyl moiety between the two sites could be mediated by a transfer between the 2'-and 3'-OH groups of the terminal adenosine fo the tRNA. The hyperspecificity of the enzyme is based on discriminating between the two competing substrates twice: once against the undesired substrate in the synthetic step, and once against the desired substrate in the destructive step.  相似文献   

8.
9.
10.
11.
12.
The stimulated human neutrophil can damage a variety of target cells, and in some models, a mechanism involving secretion of myeloperoxidase and H2O2 has been demonstrated. We explored the characteristics of this cell-cell interaction by using neutrophils and our recently described liposome model target cell system. Exposure of 51Cr-labeled liposomes to phorbol myristate acetate-stimulated human neutrophils resulted in release of 25 to 30% of the radioactivity. 51Cr release was abrogated by omission of the neutrophils, the phorbol ester or halide (iodide), replacement of the phorbol by an inactive congener, or addition of azide, cyanide, or catalase. Neutrophils from patients with hereditary absence of myeloperoxidase (MPO) or a failure of H2O2 formation (chronic granulomatous disease) did not cause liposome lysis unless purified MPO or a source of H2O2, respectively, was added. These data indicate that 51Cr release from liposomes is a consequence of the secretion of MPO and H2O2, which combine with extracellular halides to form a membrane lytic system. The influence of liposome composition on injury was then examined, with a focus on physiologically relevant lipid soluble antioxidants. Liposomes containing either alpha-tocopherol (0.33 to 1.67% of molar fraction of lipid) or beta-carotene (1.67% of molar fraction of lipid) were markedly resistant to lysis by the cellfree MPO-H2O2-chloride system. When the major structural lipid phosphatidyl choline was replaced by dipalmitoyl phosphatidyl choline, a synthetic phospholipid with no oxidizable double bonds, the resultant liposomes were totally resistant to lysis by the MPO-H2O2-chloride system. The addition of iodide to this system (i.e., both chloride and iodide present) changed the pattern of protection dramatically in that alpha-tocopherol and beta-carotene were no longer protective and the resistance of dipalmitoyl phosphatidyl choline liposomes was partial rather than complete. In contrast to iodide, the addition of bromide or thiocyanate did not have a major effect on the protection by antioxidants. Finally, we demonstrated protection by alpha-tocopherol or dipalmitoyl phosphatidyl choline against liposome lysis by phorbol-activated neutrophils. These studies illustrate the use of model phospholipid membranes in the characterization of oxygen-dependent cell-mediated cytotoxicity. Activated neutrophils lyse liposome targets through a MPO-dependent mechanism. Target properties, especially the content of lipid-soluble antioxidants, have a marked influence on susceptibility to lysis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号