首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Corticotropin-releasing factor (CRF) is a 41 amino acid neuropeptide which is involved in the stress response. CRF and neuropeptide Y (NPY) produce reciprocal effects on anxiety in the central nucleus of the amygdala. The molecular mechanisms of possible CRF-NPY interactions in regulating anxiety behavior is not known. In the central nervous system, the action of NPY leads to inhibition of cAMP production while CRF is known to stimulate levels of cAMP in the brain. Consequently, we hypothesized that NPY may antagonize anxiety-like behavior by counter-regulating CRF-stimulated cAMP accumulation and activation of the protein kinase A pathway. We have engineered an immortalized amygdalar cell line (AR-5 cells) which express via RT-PCR, the CRF2, Y1 and Y5 NPY receptor. In addition, in these cells CRF treatment results in significant concentration-dependent increases in cAMP production. Furthermore, incubation of 3 μM CRF with increasing concentrations of NPY was able to significantly inhibit the increases in cAMP compared to that observed with 3 μM CRF treatment alone. These findings suggest that CRF and NPY may counter-regulate each other in amygdalar neurons via reciprocal effects on the protein kinase A pathway.  相似文献   

2.
Bu Q  Yang Y  Yan G  Hu Z  Hu C  Duan J  Lv L  Zhou J  Zhao J  Shao X  Deng Y  Li Y  Li H  Zhu R  Zhao Y  Cen X 《Journal of Proteomics》2012,75(4):1330-1342
It has been known that the reinforcing effects and long-term consequences of morphine are closely associated with nucleus accumbens (NAc) in the brain, a key region of the mesolimbic dopamine pathway. However, the proteins involved in neuroadaptive processes and withdrawal symptom in primates of morphine dependence have not been well explored. In the present study, we performed proteomes in the NAc of rhesus monkeys of morphine dependence and withdrawal intervention with clonidine or methadone. Two-dimensional electrophoresis was used to compare changes in cytosolic protein abundance in the NAc. We found a total of 46 proteins differentially expressed, which were further identified by mass spectrometry analysis. The identified proteins can be classified into 6 classes: metabolism and mitochondrial function, synaptic transmission, cytoskeletal proteins, oxidative stress, signal transduction and protein synthesis and degradation. Importantly, we discovered 14 proteins were significantly but similarly altered after withdrawal therapy with clonidine or methadone, revealing potential pharmacological strategies or targets for the treatment of morphine addiction. Our study provides a comprehensive understanding of the neuropathophysiology associated with morphine addiction and withdrawal therapy in primate, which is helpful for the development of opiate withdrawal pharmacotherapies.  相似文献   

3.
Q. P. Ma  J. S. Han 《Peptides》1991,12(6):1235-1238
The working hypothesis that the periaqueductal gray (PAG), N. accumbens and amygdala were connected serially in a unidirectional loop for antinociception, in which Met-enkephalin and β-endorphin were considered to be two important analgesic neurotransmitters, was examined by simultaneously perfusing the PAG and N. accumbens after microinjection of morphine into the amygdala. Intra-amygdaloid injection of morphine increased the release of enkephalins and β-endorphin in the PAG and N. accumbens. When the perfusion fluid contained 3 μM of naloxone, the release of enkephalins and β-endorphin was reduced in both the PAG and the N. accumbens. These results do not support the hypothesis of a unidirectional loop and its putative sequence.  相似文献   

4.
Oshida Y  Ikeda Y  Chaki S  Okuyama S 《Life sciences》2004,74(15):1911-1924
The full-length complementary DNA (cDNA) of monkey corticotropin-releasing factor type 1 (CRF1) receptor was isolated from a rhesus monkey (Macaca mulatta) amygdala cDNA library. The cloned monkey CRF1 receptor cDNA has 2,374 bp with an open reading frame encoding a 415-amino acid protein. The sequence of the monkey CRF1 receptor cDNA showed a high degree of sequence identity with other species of CRF1 receptors, and being 99.5% identical to human CRF1 receptors. When monkey CRF1 was expressed into COS-7 cells, high specific binding of [125I]-ovine CRF was observed. CRF and CRF-related peptides inhibited [125I]-ovine CRF binding in a concentration-dependent manner. IC50 values of ovine CRF, human/rat CRF, sauvagine and urotensin I were 23.5 +/- 7.4, 22.7 +/- 10.8, 27.5 +/- 12.3 and 14.2 +/- 7.0 nM, respectively. CRF1 receptor specific antagonists, such as CP-154,526, SC241 and CRA1000, also inhibited the [125I]-ovine CRF binding, with IC50 values of 3.9 +/- 0.4, 43.5 +/- 8.0 and 19.8 +/- 2.0 nM, respectively. GTP and its nonhydrolyzed analogue, GTPgammaS, reduced [125I]-ovine CRF binding, while ATP had a negligible effect, thereby indicating that the monkey CRF1 receptor belongs to a family of G-protein coupled receptors. CRF and its related peptides increased cyclic AMP formation concentration-dependently in COS-7 cells transiently expressing the monkey CRF1 receptor. Monkey CRF1 was expressed abundantly in the pituitary, cerebral cortex, hippocampus, amygdala and cerebellum. Thus the monkey CRF1 receptor and the human CRF1 receptor have similar molecular and pharmacological characteristics.  相似文献   

5.
The ability of arginine vasopressin (AVP) to potentiate the actions of synthetic ovine corticotropin-releasing factor (CRF) was examined using anterior pituitary fragments. Marked potentiation of ACTH release was observed upon incubating the fragments with a combination of 2 nM AVP and 1 nM CRF. Potentiation of CRF-induced ACTH release was also observed when the fragments were incubated with a combination of 1 nM AVP and 0.5 nM CRF. These results suggest that AVP may play a role in the release of ACTH from the adenohypophysis.  相似文献   

6.
The effects on locomotor response to cocaine challenge, acquisition of cocaine conditioned place preference and cocaine-induced dopamine (DA) release in nucleus accumbens and ventral tegmental area by the non-specific corticotropin-releasing factor (CRF) receptors antagonist alpha-helical CRF, the selective CRF receptor subtype 1 antagonist CP-154,526 and the selective CRF receptor subtype 2 antagonist anti-sauvagine-30 (AS-30) were investigated in rats. Both alpha-helical CRF (10 microg, i.c.v.) and CP-154,526 (3 microg, i.c.v.) decreased the cocaine-induced distance travelled, whereas AS-30 (3 microg, i.c.v.) did not show such an effect. The CRF receptor antagonists also have significant effects on stereotype counts induced by cocaine injection, in which the alpha-helical CRF or CP-154,526 but not AS-30 did significantly reduce the stereotype counts. alpha-Helical CRF (10 microg) prior to each injection of cocaine blocked cocaine conditioned place preference with no significant difference observed in the time spent in the drug-paired side between post- and pre-training and both 1 and 3 microg CP-154,526 also had significant inhibitory effects on cocaine-induced place preference. However, pre-treatment with an i.c.v. infusion of AS-30 (1 or 3 microg) prior to each injection of cocaine did not affect the acquisition of conditioned place preference. The alpha-helical CRF and CP-154,526 reduced extracellular DA levels of nucleus accumbens and ventral tegmental area in response to the injection of cocaine. However, both alpha-helical CRF and CP-154,526 did not modify extracellular DA levels under basal conditions. In contrast, the i.c.v. infusion of AS-30 had no effects on either the basal DA or the cocaine-induced increase in DA release in nucleus accumbens and ventral tegmental area. These findings demonstrate that activation of the CRF receptor is involved in behavioral and neurochemical effects of cocaine challenge and cocaine reward and that the role of CRF receptor subtypes 1 and 2 in cocaine-induced locomotion, reward and DA release is not identical. The CRF receptor subtype 1 is largely responsible for the action of the CRF system on cocaine locomotion and reward. These results suggest that the CRF receptor antagonist, particularly the CRF receptor subtype 1 antagonist, might be of some value in the treatment of cocaine addiction and cocaine-related behavioral disorders.  相似文献   

7.
Iontophoretic application of corticotropin-releasing factor (CRF) onto the membrane of individual brain neurons produced changes in the spontaneous occurrence of their extracellular action potentials. Neurons in the cortex and hypothalamus tended to be excited by the application of this 41-residue peptide, while those in the thalamus and lateral septal area were inhibited. In general, neurons excited by CRF were also inhibited by the local application of dopamine (DA) and morphine (MOR), while those which were inhibited by CRF were excited by DA and MOR. Glutamate excited the majority of cells tested independent of the other peptide responses. The results suggest that CRF activates several CNS regions with some specificity, and may be involved in neuronal modulation of pituitary as well as extrapituitary events.  相似文献   

8.
The intravenous (IV) administration of synthetic ovine corticotropin-releasing factor (CRF) (10 and 125 μg/kg) to chair restrained rhesus monkeys stimulated the pituitary-adrenal axis. At these doses, increases in plasma concentrations of adrenocorticotropic hormone (ACTH) and cortisol were associated with blood pressure decreases and behavioral effects. These data demonstrate that synthetic ovine CRF (10 and 125 μg/kg) administered IV to the rhesus monkey results in associated endocrine, physiological, and behavioral changes.  相似文献   

9.
Corticotropin-releasing factor (CRF) is involved in a variety of physiological functions including regulation of hypothalamo-pituitary-adrenal axis activity during stressful periods. Urocortins (Ucns) are known to be members of the CRF family peptides. CRF has a high affinity for CRF receptor type 1 (CRF(1) receptor). Both Ucn2 and Ucn3 have very high affinity for CRF receptor type 2 (CRF(2) receptor) with little or no binding affinity for the CRF(1) receptor. Gonadotropin-releasing hormone (GnRH) is known to be involved in the regulation of the stress response. Gonadotropin-inhibitory hormone (GnIH) neurons interact directly with GnRH neurons, and the action of GnIH is mediated by a novel G-protein coupled receptor, Gpr147. This study aimed to explore the possible function of CRF family peptides and the regulation of GnRH mRNA in hypothalamic GnRH cells. Both mRNA and protein expression of the CRF(1) receptor and CRF(2) receptor were found in hypothalamic GnRH N39 cells. CRF suppressed GnRH mRNA levels via the CRF(1) receptor, while Ucn2 increased the levels via the CRF(2) receptor. Both CRF and Ucn2 increased Gpr147 mRNA levels. The results indicate that CRF and Ucn2 can modulate GnRH mRNA levels via each specific CRF receptor subtype. Finally, CRF suppressed GnRH protein levels, while Ucn2 increased the levels. Differential regulation of GnRH by CRF family peptides may contribute to the stress response and homeostasis in GnRH cells.  相似文献   

10.
Abstract: Cross-reactions between dopamine D3 and σ receptor ligands were investigated using (±)-7-hydroxy-N,N-di-n-[3H]propyl-2-aminotetralin [(±)-7-OH-[3H]DPAT], a putative D3-selective radioligand, in conjunction with the unlabeled σ ligands 1,3-di(2-tolyl)guanidine (DTG), carbetapentane, and R(?)-N-(3-phenyl-1-propyl)-1-phenyl-2-aminopropane [R(?)-PPAP]. In transfected CCL1.3 mouse fibroblasts expressing the human D3 receptor, neither DTG nor carbetapentane (0.1 µM) displaced (±)-7-OH-[3H]DPAT binding. R(?)-PPAP (0.1 µM) displaced 39.6 ± 1.0% of total (±)-7-OH-[3H]DPAT binding. In striatal and nucleus accumbens homogenates, (±)-7-OH-[3H]DPAT labeled a single site (15–20 fmol/mg of protein) with high (1 nM) affinity. Competition analysis with carbetapentane defined both high- and low-affinity sites in striatal (35 and 65%, respectively) and nucleus accumbens (59 and 41%, respectively) tissue, yet R(?)-PPAP identified two sites in equal proportion. Carbetapentane and R(?)-PPAP (0.1 µM) displaced ~20–50% of total (±)-7-OH-[3H]DPAT binding in striatum, nucleus accumbens, and olfactory tubercle in autoradiographic studies, with the nucleus accumbens shell subregion exhibiting the greatest displacement. To determine directly (+)-7-OH-[3H]DPAT binding to σ receptors, saturation analysis was performed in the cerebellum while masking D3 receptors with 1 µM dopamine. Under these conditions (+)-7-OH-[3H]DPAT labeled σ receptors with an affinity of 24 nM. These results suggest that (a) (±)-7-OH-[3H]DPAT binds D3 receptors with high affinity in rat brain and (b) a significant proportion of (±)-7-OH-[3H]DPAT binding consists of σ1 sites and the percentages of these sites differ among the subregions of the striatum and nucleus accumbens.  相似文献   

11.
Corticotropin-releasing hormone (CRH) has been shown to be a central mediator for most, if not all, stress-induced responses. Since stressful stimuli may decrease hypothalamic tuberoinfundibular and tuberohypophysial dopaminergic neuronal activities, we aimed to determine whether CRH is involved. Using central administration of various doses of ovine CRH (oCRH; 1, 3 and 10 µg/rat) into the lateral cerebroventricle of either male or female rats, the neurochemical changes in various parts of the central nervous system, including the hypothalamus, were determined by high-performance liquid chromatography at various times after the injection (30, 60, 120 and 240 min). The concentrations of 3,4-dihydroxyphenylacetic acid (DOPAC) and 3-methoxy-4-hydroxy-phenylethyleneglycol (MHPG), two major metabolites of dopamine and norepinephrine, respectively, in discrete brain regions were used as indices for catecholaminergic neuron activity. Plasma corticosterone levels increased significantly after all doses of oCRH and at all time points studied. oCRH also exerted significant stimulatory effects on noradrenergic neuron terminals in the frontal cortex, and on dopaminergic neuron terminals in the nucleus accumbens, hypothalamic paraventricular and periventricular nuclei, and intermediate pituitary lobe. Dopaminergic neuron terminals in the median eminence and the neural lobe of the pituitary, however, were not affected. There was no major difference in the responses between male and female rats. We conclude that CRH has a differential effect on central catecholaminergic neurons.  相似文献   

12.
In vivo electrochemistry was used to investigate the mechanisms contributing to the clearance of locally applied dopamine in the dorsal striatum and nucleus accumbens of urethane-anesthetized rats. Chronoamperometric recordings were continuously made at 5 Hz using Nafion-coated carbon fiber electrodes. When a finite amount of dopamine was pressure-ejected at 5-min intervals from a micropipette adjacent to the electrode, transient and reproducible dopamine signals were detected. Substitution of L-a-methyldopamine, a substrate for the dopamine transporter but not for monoamine oxidase, for dopamine in the micropipette did not substantially alter the time course of the resulting signals. This indicates that metabolism of locally applied dopamine to 3,4-dihydroxyphenylacetic acid is not responsible for the decline in the dopamine signal. Similarly, changing the applied oxidation potential from ±0.45 to ±0.80 V, which allows for detection of 3-methoxytyramine formed from dopamine via catechol-O-methyltransferase, had little effect on signal amplitude or time course. In contrast, lesioning the dopamine terminals with 6-hydroxydopamine, or locally applying the dopamine uptake inhibitors cocaine or nomifensine before pressure ejection of dopamine, significantly increased the amplitude and time course of the dopamine signals in both regions. The effects of cocaine and nomifensine were greater in the nucleus accumbens than in the dorsal striatum. Local application of lidocaine and procaine had no effect on the dopamine signals. Initial attempts at modeling resulted in curves that were in qualitative agreement with our experimental findings. Taken together, these data indicate that (1) uptake of dopamine by the neuronal dopamine transporter, rather than metabolism or diffusion, is the major mechanism for clearing locally applied dopamine from the extracellular milieu of the dorsal striatum and nucleus accumbens, and (2) the nucleus accumbens is more sensitive to the effects of inhibitors of dopamine uptake than is the dorsal striatum.  相似文献   

13.
The present study localized corticotropin-releasing factor (CRF) receptors and studied the actions of CRF in the neonatal rat spinal cord preparation. Lumbar CRF receptors were present in highest concentrations in laminae I and II with progressively lower concentrations in lamina IX and intermediate and central zones respectively. CRF directly and indirectly depolarized lumbar motoneurons in a concentration-related manner and the putative receptor antagonist, alpha helical oCRF(9–41), partially blocked the depolarizing response to CRF. The electrophysiological responses to CRF and the distribution of receptors within the spinal cord suggest that CRF may play a physiological role in regulating spinal cord reflex function.  相似文献   

14.
A series of phosphate and ester-based prodrugs of anilinopyrazinone 1 (BMS-665053) containing either a methylene or an (acyloxy)alkoxy linker was prepared and evaluated in rat pharmacokinetic studies with the goal of improving the oral bioavailability of the parent (1). The prodrugs, in general, had improved aqueous solubility and oral bioavailability compared to 1. Prodrug 12, which contains an (acyloxy)alkoxy linker, showed the greatest improvement in the oral bioavailability relative to the parent (1), with a seven-fold increase (from 5% to 36%) in rat pharmacokinetic studies.  相似文献   

15.
We investigated the effects of corticotropin-releasing factor (CRF) and corticosterone (CORT) on foraging and locomotion in Western spadefoot toad (Spea hammondii) tadpoles and juveniles to assess the behavioral functions of these hormones throughout development. We administered intracerebroventricular injections of ovine CRF or CRF receptor antagonist alphahelical CRF((9-41)) to tadpoles and juveniles, and observed behavior within 1.5 h after injection. In both premetamorphic (Gosner stage 33) and prometamorphic (Gosner stages 35-37) tadpoles, CRF injections increased locomotion and decreased foraging. Injections of alphahelical CRF((9-41)) reduced locomotion but did not affect foraging in premetamorphic tadpoles, but dramatically increased foraging in prometamorphic tadpoles compared to both placebo and uninjected controls. Similarly, alphahelical CRF((9-41)) injections stimulated food intake and prey-catching behavior in juveniles. These results suggest that in later-staged amphibians, endogenous CRF secretion modulates feeding by exerting a suppressive effect on appetite. By contrast to the inhibitory effect of CRF, 3-h exposure to CORT (500 nM added to the aquarium water) stimulated foraging in prometamorphic tadpoles. These tadpoles also exhibited a CORT-mediated increase in foraging 6 h after CRF injection, which was associated with elevated whole-body CORT content and blocked by glucocorticoid receptor (GR) antagonist (RU486) injections. Thus, exogenous CRF influences locomotion and foraging in both pre- and prometamorphic tadpoles, but endogenous CRF secretion in relatively unstressed animals does not affect foraging until prometamorphic stages. Furthermore, the opposing actions of CRF and CORT on foraging suggest that they are important regulators of energy balance and food intake in amphibians throughout development.  相似文献   

16.
Summary Motor behaviour relies on complex neurochemical interactions in the basal ganglia, in particular the striatum. Antagonistic influences in this region are exerted by afferent projections from, on the one hand, the ventral mesencephalon, utilizing dopamine as a transmitter, and, on the other hand, from the cerebral cortex, signalling by the excitatory amino acid glutamate. The activity in both these neuronal populations appears to be regulated by the neuropeptide cholecystokinin. This article concentrates on interactions between cholecystokinin and glutamate, summarizing some recent morphological, biochemical and behavioural findings. It is suggested that cholecystokinin, acting via the cholecystokininB receptor, potentiates the glutamatergic excitatory input to the striatum.  相似文献   

17.
A new class of pyrrolo[2,3-d]pyrimidin-4-one corticotropin-releasing factor 1 (CRF1) receptor antagonists has been designed and synthesized. In general, reported CRF1 receptor antagonists possess a sp2-nitrogen atom as hydrogen bonding acceptor (HBA) on their core scaffolds. We proposed to use a carbonyl group of pyrrolo[2,3-d]pyrimidin-4-one derivatives as a replacement for the sp2-nitrogen atom as HBA in classical CRF1 receptor antagonists. As a result, several pyrrolo[2,3-d]pyrimidin-4-one derivatives showed CRF1 receptor binding affinity with IC50 values in the submicromolar range. Ex vivo 125I-sauvagine binding studies showed that 2-(dipropylamino)-3,7-dimethyl-5-(2,4,6-trimethylphenyl)-3,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-one (16b) (30 mg/kg, po) was able to penetrate into the brain and inhibit radioligand binding to CRF1 receptors (frontal cortex, olfactory bulb, and pituitary) in mice. We identified pyrrolo[2,3-d]pyrimidin-4-one derivatives as the first CRF1 antagonists with a carbonyl-based HBA.  相似文献   

18.
A sensitive and rapid HPLC-UV method for in vivo determinations of cocaine levels in extracellular fluid of specific brain regions and plasma is described. Free drug levels resulting from intravenous administration of cocaine were sampled using in vivo microdialysis probes simultaneously located in the jugular vein, nucleus accumbens, and anteromedial caudate-putamen of halothane-anesthetized rats. In a separate group of animals, the influence of cocaine on extracellular dopamine concentrations in the anteromedial caudate-putamen was also assessed. The time dependences of changes in cocaine concentration in each of the above regions were congruent, and peak concentrations were reached 10 min after the drug was administered. The half-lives of cocaine in the blood, nucleus accumbens, and anteromedial caudate-putamen were estimated to be 31.5, 29.1, and 21.4 min, respectively. A repeated injection of cocaine, given 90 min later, produced a maximal cocaine level and pharmacokinetic profile that were indistinguishable from those of the initial infusion. Cocaine was concentrated to a greater extent in brain than in blood, a feature consistent with the action of a lipophilic drug. In addition, extracellular dopamine levels measured in the anteromedial caudate-putamen following cocaine infusions closely mirrored those of cocaine itself. The ability to measure the free concentration of drugs by microdialysis should be applicable to a wide range of in vivo pharmacological studies.  相似文献   

19.
Summary The corticotropin-releasing factor (CRF)-containing neurons were investigated in the brain of the domestic fowl by means of the peroxidase-antiperoxidase technique at the light-microscopic level. The detection of CRF-immunoreactivity was facilitated by silver intensification. CRF-containing perikarya were found in the paraventricular, preoptic and mammillary nuclei of the hypothalamus and in some extrahypothalamic areas (nuclei dorsomedialis and dorsolateralis thalami, nucleus accumbens septi, lobus parolfactorius, periaqueductal gray of the mesencephalon, nucleus oculomotorius ventralis). Immunoreactive nerve fibers and terminals were demonstrated in the external zone of the median eminence and the organum vasculosum of the lamina terminalis. These results indicate that an immunologically demonstrable CRF-neurosecretory system also exists in the avian central nervous system.  相似文献   

20.
Amperozide, a novel atypical antipsychotic drug with few extrapyramidal side effects, is a strong serotonin2 (5-HT2) antagonist but has low affinity for dopamine receptors in vitro. The effect of amperozide on the dopaminergic synapse was studied with an in vivo microdialysis technique using anesthetized male Sprague-Dawley rats. Following implantation of dialysis probes into the striatum and nucleus accumbens (NuAc), amperozide was intravenously infused as six consecutive incremental doses (0.5, 0.5, 1.0, 2.0, 4.0 and 8.0 mg/kg) at intervals of 15 min. From the beginning of drug infusion, perfusates were collected in fractions every 30 min throughout a total period of 120 min. The samples were then immediately analyzed by high-performance liquid chromatography with electrochemical detection. Amperozide induced a dose-related elevation of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and 5-hydroxyindolacetic acid (5-HIAA) levels in both areas.p-Chlorophenylalanine (pCPA) pretreatment abolished the production of 5-HIAA in both areas and attenuated the amperozide-induced rise of DOPAC but not of dopamine. After pretreatment with an intravenous 5-HT3 antagonist, MDL 72222, the amperozide-induced changes in dopamine, DOPAC and 5-HIAA in both areas were lower than in the saline control group. Preliminary data showed that afterpCPA pretreatment, incremental concentrations of the 5-HT3 agonist 1-(m-chlorophenyl)-biguanide perfused via the probe also produced significant elevation of dopamine and DOPAC levels in these two areas. Taken together, these results suggest that amperozide may directly block 5-HT2 receptors in the striatum and NuAc, thereby enhancing 5-HT transmission. The enhanced 5-HT transmission may activate postsynpatic 5-HT3 receptors located on the dopaminergic terminals, leading to changes in dopamine transmission in these two areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号