首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The inducible costimulatory (ICOS) molecule is expressed by activated T cells and has homology to CD28 and CD152. ICOS binds B7h, a molecule expressed by APC with homology to CD80 and CD86. To investigate regulation of ICOS expression and its role in Th responses we developed anti-mouse ICOS mAbs and ICOS-Ig fusion protein. Little ICOS is expressed by freshly isolated mouse T cells, but ICOS is rapidly up-regulated on most CD4(+) and CD8(+) T cells following stimulation of the TCR. Strikingly, ICOS up-regulation is significantly reduced in the absence of CD80 and CD86 and can be restored by CD28 stimulation, suggesting that CD28-CD80/CD86 interactions may optimize ICOS expression. Interestingly, TCR-transgenic T cells differentiated into Th2 expressed significantly more ICOS than cells differentiated into Th1. We used two methods to investigate the role of ICOS in activation of CD4(+) T cells. First, CD4(+) cells were stimulated with beads coated with anti-CD3 and either B7h-Ig fusion protein or control Ig fusion protein. ICOS stimulation enhanced proliferation of CD4(+) cells and production of IFN-gamma, IL-4, and IL-10, but not IL-2. Second, TCR-transgenic CD4(+) T cells were stimulated with peptide and APC in the presence of ICOS-Ig or control Ig. When the ICOS:B7h interaction was blocked by ICOS-Ig, CD4(+) T cells produced more IFN-gamma and less IL-4 and IL-10 than CD4(+) cells differentiated with control Ig. These results demonstrate that ICOS stimulation is important in T cell activation and that ICOS may have a particularly important role in development of Th2 cells.  相似文献   

2.
Two key events occur during the differentiation of IFN-gamma-secreting Th1 cells: up-regulation of IL-12Rbeta2 and IL-12-driven up-regulation of IL-18Ralpha. We previously demonstrated that IL-12-driven up-regulation of IL-18Ralpha expression is severely impaired in IFN-gamma(-/-) mice. However, it was unclear from these studies how IFN-gamma influenced IL-18Ralpha since IFN-gamma alone had no direct effect on IL-18Ralpha expression. In the absence of IL-4, IL-12-dependent up-regulation of IL-18Ralpha/IL-12Rbeta2 was independent of IFN-gamma. However, in the presence of IL-4, IFN-gamma functions to limit the negative effects of IL-4 on both IL-18Ralpha and IL-12Rbeta2. Neutralization of IL-4 restored IL-12-driven up-regulation of IL-18Ralpha/IL-12Rbeta2 in an IFN-gamma-independent fashion. In the absence of both IL-12 and IL-4, IFN-gamma up-regulates IL-12beta2 expression and primes IFN-gamma-producing Th1 cells. When T cells were primed in the presence of IL-4, no correlation was found between the levels of expression of the IL-18Ralpha or the IL-12Rbeta2 and the capacity of these cells to produce IFN-gamma, suggesting that IL-4 may also negatively affect IL-12-mediated signal transduction and thus Th1 differentiation. These data clarify the role of IFN-gamma in regulation of IL-18Ralpha/IL-12Rbeta2 during both IL-12-dependent and IL-12-independent Th1 differentiation.  相似文献   

3.
Sugiol and 12-hydroxy-6,7-secoabieta-8,11,13-triene-6,7-dial (Secoferruginol) are diterpenes isolated from the heartwood of Cryptomeria japonica and are pharmacologically active substances. Dendritic cells (DC) have a key influence on the differentiation of na?ve T cells into Th1 or Th2 effector cells. We demonstrate that Sugiol and Secoferruginol activate human DC as documented by phenotypic and functional maturation and altered cytokine production. Human monocytes were exposed to Sugiol or Secoferruginol alone, or in combination with LPS and thereafter co-cultured with na?ve T cells. The expression levels of CD83 on Sugiol-primed DC were enhanced. Sugiol dose-dependently inhibited IL-12p70 production by LPS-primed DC and to a lesser extent, the production of the proinflammatory cytokines. Na?ve T cells co-cultured with Sugiol-primed DC, turned into typical Th2 which produced large quantities of IL-4 and released small amounts of IFN-gamma and reduced Th1 cell polarizing capacity. Sugiol-primed DC induced the development of Th2 cells via the enhanced expression of OX40L and augmented the Th2 cell polarizing capacity of DC via the inhibition of IL-12p70. Similar results were obtained with Secoferruginol. These results suggest that some diterpenes modulate human DC function in a fashion that favors Th2 cell polarization and might have implication in autoimmune diseases.  相似文献   

4.
We found a tight correlation among the levels of H4/inducible costimulator (ICOS) expression, IL-4 production, and GATA-3 induction, using activated CD4(+) T cells obtained from six different murine strains. BALB/c-activated CD4(+) T cells expressed approximately 10-fold more H4/ICOS on their surfaces and produced approximately 10-fold more IL-4 upon restimulation than C57BL/6-activated CD4(+) T cells. BALB/c naive CD4(+) T cells were shown to produce much higher amounts of IL-2 and IL-4 upon primary stimulation than C57BL/6 naive CD4(+) T cells. Neutralization of IL-4 with mAbs in culture of BALB/c naive CD4(+) T cells strongly down-regulated both H4/ICOS expression on activated CD4(+) T cells and IL-4 production upon subsequent restimulation. Conversely, exogenous IL-4 added to the culture of BALB/c or C57BL/6 naive CD4(+) T cells up-regulated H4/ICOS expression and IL-4 production upon restimulation. In addition, retroviral expression of GATA-3 during the stimulation of naive CD4(+) T cells from C57BL/6 or IL-4(-/-) mice increased H4/ICOS expression on activated CD4(+) T cells. A similar effect of IL-2 in the primary culture of BALB/c naive CD4(+) T cells appeared to be mediated by IL-4, the production of which was regulated by IL-2. These data suggest that IL-4 induced by IL-2 is critical to the maintenance of high H4/ICOS expression on BALB/c-activated CD4(+) T cells.  相似文献   

5.
6.
The establishment of ICOS as an important regulator of Th2 development and effector function makes the ICOS locus an attractive candidate for Th2-mediated diseases, such as asthma and allergy. In evaluation of this candidate locus in humans, we identified 11 variants and determined that two in the putative promoter region are significantly associated with allergic sensitization and serum IgE levels. In addition, cultures of activated PBMCs from individuals homozygous for the associated polymorphisms produced increased levels of the Th2 cytokines, IL-4, IL-5, and IL-13, as well as TNF-alpha compared with controls. One of the polymorphisms, -1413G/A, demonstrated differential NF-kappaB binding in mobility shift analysis, suggesting that this polymorphism has functional consequences. Overall, these data demonstrate that ICOS is a susceptibility gene for allergic sensitization, perhaps through the promotion of Th2 differentiation.  相似文献   

7.
The T cell costimulatory molecule ICOS regulates Th2 effector function in allergic airway disease. Recently, several studies with ICOS(-/-) mice have also demonstrated a role for ICOS in Th2 differentiation. To determine the effects of ICOS on the early immune response, we investigated augmenting ICOS costimulation in a Th2-mediated immune response to Schistosoma mansoni Ags. We found that augmenting ICOS costimulation with B7RP-1-Fc increased the accumulation of T and B cells in the draining lymph nodes postimmunization. Interestingly, the increased numbers were due in part to increased migration of undivided Ag-specific TCR transgenic T cells and surprisingly B cells, as well as non-TCR transgenic T cells. B7RP-1-Fc also increased the levels of the chemokines CCL21 and CXCL13 in the draining lymph node, suggesting ICOS costimulation contributes to migration by direct or indirect effects on dendritic cells, stromal cells and high endothelial venules. Further, the effects of B7RP-1-Fc were not dependent on immunization. Our data support a model in which ICOS costimulation augments the pool of lymphocytes in the draining lymph nodes, leading to an increase in the frequency of potentially reactive T and B cells.  相似文献   

8.
Dendritic cells (DCs) retrovirally transduced with IL-4 have recently been shown to inhibit murine collagen-induced arthritis and associated Th1 immune responses in vivo, but the mechanisms that underly these effects are not yet understood. In this report we demonstrate that IL-4-transduced DCs loaded with antigen led to lower T cell production of IFN-gamma, increased production of IL-4, and an attenuated, delayed type hypersensitivity response. We hypothesized that the ability of such DCs to regulate the Th1 immune response in vivo depends in part on their capacity to produce IL-12 and IL-23. Quantitative mRNA analysis revealed that IL-4-transduced DCs stimulated with CD40 ligand expressed higher levels of IL-12p35 mRNA, but lower levels of mRNA for IL-23p19 and the common subunit p40 found in both IL-12 and IL-23, compared with control DCs. These results, which indicate that expression of the IL-12 and IL-23 subunits is differentially regulated in IL-4-transduced DCs, were confirmed by ELISA of the IL-12 and IL-23 heterodimers. Thus, therapeutic suppression of Th1 -mediated autoimmunity (as recently shown in murine collagen-induced arthritis) and induction of Th2 responses in vivo by IL-4-transduced DCs occurs despite their potential to produce increased levels of IL-12, but could reflect, in part, decreased production of IL-23.  相似文献   

9.
IL-6 production by pulmonary dendritic cells impedes Th1 immune responses   总被引:11,自引:0,他引:11  
Mucosal tissues, such as the lung, are continually exposed to both foreign and environmental Ags. To counter the potential inflammatory tissue injury of chronic Th1-mediated responses against these Ags, mucosal sites may skew toward Th2 immune responses. However, the mechanism by which this occurs is unknown. Dendritic cells (DC), as orchestrators of the immune response, skew Th1/Th2 differentiation by cytokine secretion and expression of specific cell surface markers. We compared DC from mucosal and systemic locations. In this study, we show that the lung lacks a CD8alpha(+) DC subpopulation and contains DC that appear less mature than splenic DC. Furthermore, we demonstrate that pulmonary DC produce significant levels of IL-6 and fail to produce the Th1-polarizing cytokine IL-12. Importantly, we demonstrate that IL-6 negatively regulates IL-12 production, as pulmonary DC from IL-6(-/-) mice produce significant levels of IL-12 and induce Th1 polarization of naive CD4(+) T cells. Furthermore, we demonstrate that IL-6 is sufficient to explain the differential polarizing abilities of pulmonary and splenic DC, as splenic DC cocultures supplemented with IL-6 polarize naive T cells toward Th2, and pulmonary DC cultures in which IL-6 was removed with neutralizing Ab resulted in more Th1 polarization, pointing to IL-6 as the mechanism of Th2 polarization in the lung. We propose that the Th2 response seen in the lung is due to DC-mediated inhibition of Th1 responses via IL-6 production, rather than enhanced Th2 responses, and that this regulation decreases the likelihood of chronic inflammatory pathology in the lung.  相似文献   

10.
Treatment of Th cells with compounds that elevate cAMP levels augments Th2-type lymphokine expression, in particular the synthesis of IL-5. Using primary murine CD4(+) T lymphocytes, we show in this study that inhibition of protein kinase A (PKA) activity in Th2 effector cells impairs IL-5 synthesis, whereas the expression of PKA catalytic subunit alpha enhances IL-5 synthesis in Th0 cells. In addition, we observed by coexpression of PKA catalytic subunit and GATA-3 in Th1 cells that the stimulatory effect of PKA is dependent on GATA-3 activity. These data demonstrate that activation of PKA in Th effector cells induces the IL-5 gene expression in a GATA-3-dependent manner.  相似文献   

11.
12.
IL-27 has been shown to play a suppressive role in experimental autoimmune encephalomyelitis (EAE) as demonstrated by more severe disease in IL-27R-deficient (WSX-1(-/-)) mice. However, whether IL-27 influences the induction or effector phase of EAE is unknown. This is an important question as therapies for autoimmune diseases are generally started after autoreactive T cells have been primed. In this study, we demonstrate maximal gene expression of IL-27 subunits and its receptor in the CNS at the effector phases of relapsing-remitting EAE including disease peak and onset of relapse. We also show that activated astrocyte cultures secrete IL-27p28 protein which is augmented by the endogenous factor, IFN-gamma. To investigate functional significance of a correlation between gene expression and disease activity, we examined the effect of IL-27 at the effector phase of disease using adoptive transfer EAE. Exogenous IL-27 potently suppressed the ability of encephalitogenic lymph node and spleen cells to transfer EAE. IL-27 significantly inhibited both nonpolarized and IL-23-driven IL-17 production by myelin-reactive T cells thereby suppressing their encephalitogenicity in adoptive transfer EAE. Furthermore, we demonstrate a strong suppressive effect of IL-27 on active EAE in vivo when delivered by s.c. osmotic pump. IL-27-treated mice had reduced CNS inflammatory infiltration and, notably, a lower proportion of Th17 cells. Together, these data demonstrate the suppressive effect of IL-27 on primed, autoreactive T cells, particularly, cells of the Th17 lineage. IL-27 can potently suppress the effector phase of EAE in vivo and, thus, may have therapeutic potential in autoimmune diseases such as multiple sclerosis.  相似文献   

13.
ICOS costimulation requires IL-2 and can be prevented by CTLA-4 engagement   总被引:32,自引:0,他引:32  
We investigated the relationship between ICOS, CD28, CTLA-4, and IL-2 to gain a better understanding of this family of costimulatory receptors in the immune response. Using magnetic beads coated with anti-CD3 and varying amounts of anti-ICOS and anti-CTLA-4 Abs, we show that CTLA-4 ligation blocks ICOS costimulation. In addition to inhibiting cellular proliferation, CTLA-4 engagement prevented ICOS-costimulated T cells from producing IL-4, IL-10, and IL-13. Both an indirect and direct mechanism of CTLA-4's actions were examined. First, CTLA-4 engagement on resting cells was found to indirectly block ICOS costimulation by interferring with the signals needed to induce ICOS cell surface expression. Second, on preactivated cells that had high levels of ICOS expression, CTLA-4 ligation blocked the ICOS-mediated induction of IL-4, IL-10, and IL-13, suggesting an interference with downstream signaling pathways. The addition of IL-2 not only overcame both mechanisms, but also greatly augmented the level of cellular activation suggesting synergy between ICOS and IL-2 signaling. This cooperation between ICOS and IL-2 signaling was explored further by showing that the minimum level of IL-2 produced by ICOS costimulation was required for T cell proliferation. Finally, exogenous IL-2 was required for sustained growth of ICOS-costimulated T cells. These results indicate that stringent control of ICOS costimulation is maintained initially by CTLA-4 engagement and later by a requirement for exogenous IL-2.  相似文献   

14.
Each of the three Th2 cytokine genes, IL-4, IL-5, and IL-13, has different functions. We hypothesized that Th2 heterogeneity could yield Th2 subpopulations with different cytokine expression and effector functions. Using multiple approaches, we demonstrate that human Th2 cells are composed of two major subpopulations: a minority IL-5(+) (IL-5(+), IL-4(+), IL-13(+)) and majority IL-5(-) Th2 (IL-5(-), IL-4(+), IL-13(+)) population. IL-5(+) Th2 cells comprised only 20% of all Th2 cells. Serial rounds of in vitro differentiation initially yielded IL-5(-) Th2, but required multiple rounds of differentiation to generate IL-5(+) Th2 cells. IL-5(+) Th2 cells expressed less CD27 and greater programmed cell death-1 than IL-5(-) Th2 cells, consistent with their being more highly differentiated, Ag-exposed memory cells. IL-5(+) Th2 cells expressed greater IL-4, IL-13, and GATA-3 relative to IL-5(-) Th2 cells. GATA-3 and H3K4me(3) binding to the IL5 promoter (IL5p) was greater in IL-5(+) relative to IL-5(-) Th2 cells, whereas there was no difference in their binding to the IL4p and IL13p. Conversely, H3K27me(3) binding to the IL5p was greater in IL-5(-) Th2 cells. These findings demonstrate Th2 lineage heterogeneity, in which the IL5 gene is regulated in a hierarchical manner relative to other Th2 genes. IL-5(+) Th2 cells are phenotypically distinct and have epigenetic changes consistent with greater IL5p accessibility. Recurrent antigenic exposure preferentially drives the differentiation of IL-5(+) Th2 cells. These results demonstrate that IL-5(+) and IL-5(-) Th2 cells, respectively, represent more and less highly differentiated Th2 cell subpopulations. Such Th2 subpopulations may differentially contribute to Th2-driven pathology.  相似文献   

15.
16.
17.
Th cell differentiation from naive precursors is a tightly controlled process; the most critical differentiation factor is the action of the driving cytokine: IL-12 for Th1 development, IL-4 for Th2 development. We found that CD4(+) T cells from nonobese diabetic mice spontaneously differentiate into IFN-gamma-producing Th1 cells in response to polyclonal TCR stimulation in the absence of IL-12 and IFN-gamma. Instead, IL-2 was necessary and sufficient to direct T cell differentiation to the Th1 lineage by nonobese diabetic CD4(+) T cells. Its ability to direct Th1 differentiation of both naive and memory CD4(+) T cells was clearly uncoupled from its ability to stimulate cell division. Autocrine IL-2-driven Th1 differentiation of nonobese diabetic T cells may represent a genetic liability that favors development of IFN-gamma-producing autoreactive T cells.  相似文献   

18.
19.
IL-32, a newly described multifunctional cytokine, has been associated with a variety of inflammatory diseases, including rheumatoid arthritis, vasculitis, and Crohn's disease. In this study, we investigated the immunomodulatory effects of IL-32γ on bone marrow-derived dendritic cell (DC)-driven Th responses and analyzed the underlying signaling events. IL-32γ-treated DCs exhibited upregulated expression of cell-surface molecules and proinflammatory cytokines associated with DC maturation and activation. In particular, IL-32γ treatment significantly increased production of IL-12 and IL-6 in DCs, which are known as Th1- and Th17-polarizing cytokines, respectively. This increased production was inhibited by the addition of specific inhibitors of the activities of phospholipase C (PLC), JNK, and NF-κB. IL-32γ treatment increased the phosphorylation of JNK and the degradation of both IκBα and IκBβ in DCs, as well as NF-κB binding activity to the κB site. The PLC inhibitor suppressed NF-κB DNA binding activity and JNK phosphorylation increased by IL-32γ treatment, thereby indicating that IL-32γ induced IL-12 and IL-6 production in DCs via a PLC/JNK/NF-κB signaling pathway. Importantly, IL-32γ-stimulated DCs significantly induced both Th1 and Th17 responses when cocultured with CD4(+) T cells. The addition of a neutralizing anti-IL-12 mAb abolished the secretion of IFN-γ in a dose-dependent manner; additionally, the blockage of IL-1β and IL-6, but not of IL-21 or IL-23p19, profoundly inhibited IL-32γ-induced IL-17 production. These results demonstrated that IL-32γ could effectively induce the maturation and activation of immature DCs, leading to enhanced Th1 and Th17 responses as the result of increased IL-12 and IL-6 production in DCs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号