首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Malate synthase, one of the key enzymes in the glyoxylate cycle, was purified from peroxisomes of alkane-grown yeast, Candida tropicalis. The enzyme was mainly localized in the matrix of peroxisomes, judging from subcellular fractionation followed by exposure of the organelles to hypotonic conditions. The molecular mass of this peroxisomal malate synthase was determined to be 250,000 daltons by gel filtration on a Sepharose 6B column as well as by ultracentrifugation. On sodium dodecylsulfate/polyacrylamide slab-gel electrophoresis, the molecular mass of the subunit of the enzyme was demonstrated to be 61,000 daltons. These results revealed that the native form of this enzyme was homo-tetrameric. Peroxisomal malate synthase showed the optimal activity pH at 8.0 and absolutely required Mg2+ for enzymatic activity. The K m values for Mg2+, acetyl-CoA and glyoxylate were 4.7 mM, 80 M and 1.0 mM, respectively.  相似文献   

2.
A Dutt  W Dowhan 《Biochemistry》1985,24(5):1073-1079
A CDP-diacylglycerol-dependent phosphatidylserine synthase was solubilized from Bacillus licheniformis membranes and purified to near homogeneity. The purification procedure consisted of CDP-diacylglycerol-Sepharose affinity chromatography followed by substrate elution from blue dextran-Sepharose. The purified preparation showed a single band with an apparent relative molecular mass of 53 000 daltons when subjected to sodium dodecyl sulfate--polyacrylamide gel electrophoresis. Proteolytic digestion of the enzyme yielded a smaller (41 000 daltons) active form. The preparation was free of any phosphatidylglycerophosphate synthase, phosphatidylserine decarboxylase, CDP-diacylglycerol hydrolase, and phosphatidylserine hydrolase activities. The utilization of substrates and the formation of products occurred with the expected stoichiometry. Radioisotopic exchange patterns between related substrate and product pairs suggest a sequential Bi-Bi reaction as opposed to the ping-pong mechanism exhibited by the well-studied phosphatidylserine synthase of Escherichia coli [Larson, T. J., & Dowhan, W. (1976) Biochemistry 15, 5212-5218]. The B. licheniformis enzyme was also found to be markedly dissimilar to the E. coli enzyme with regard to association with detergent micelles, affinity for ribosomes, and antigenicity.  相似文献   

3.
Membrane-bound 4-beta-galactosyltransferase (lactose synthase; UDP galactose: D-glucose 4-beta-galactosyltransferase, EC 2.4.1.22) was purified 1500-fold to near homogeneity from pig thyroid microsomes with about 30% yield. The purified enzyme behaved as a lipophilic protein, rapidly losing activity and aggregating if not supplemented with either Triton X-100 or serum albumin (both of these were equally effective for long-term stabilization). The enzyme preparation showed an absolute requirement for Mn2+, which could not be replaced by other cations. Catalytic properties were very similar to those reported for soluble forms of the enzyme in biological fluids. The purified galactosyltransferase showed a major protein band of approx. 74,000 daltons on sodium dodecyl sulfate gel electrophoresis. On gel filtration, enzyme activity was eluted at approx. 70,000 daltons. It is concluded that the membrane-bound thyroid galactosyltransferase is a monomeric protein significantly larger than the soluble forms of this enzyme described earlier; but it resembles recently reported galactosyltransferases from sheep mammary Golgi membranes and liver microsomes.  相似文献   

4.
The ethanol-grown cells of the mutant Acinetobacter sp. strain 1NG, incapable of producing exopolysaccharides, were analyzed for the activity of enzymes of the tricarboxylic acid (TCA) cycle and some biosynthetic pathways. In spite of the presence of both key enzymes (isocitrate lyase and malate synthase) of the glyoxylate cycle, these cells also contained all enzymes of the TCA cycle, which presumably serves biosynthetic functions. This was evident from the high activity of isocitrate dehydrogenase and glutamate dehydrogenase and the low activity of 2-oxoglutarate dehydrogenase. Pyruvate was formed in the reaction catalyzed by oxaloacetate decarboxylase, whereas phosphoenolpyruvate (PEP) was synthesized by the two key enzymes (PEP carboxykinase and PEP synthase) of gluconeogenesis. The proportion between these enzymes was different in the exponential and the stationary growth phases. The addition of the C4-dicarboxylic acid fumarate to the ethanol-containing growth medium led to a 1.5- to 2-fold increase in the activity of enzymes of the glyoxylate cycle, as well as of fumarate hydratase, malate dehydrogenase, PEP synthase, and PEP carboxykinase (the activity of the latter enzyme increased by more than 7.5 times). The data obtained can be used to improve the biotechnology of production of the microbial exopolysaccharide ethapolan on C2-substrates.  相似文献   

5.
NADP-dependent malic enzyme from grape berries is associated with NAD-dependent malate dehydrogenase. A two step procedure, involving affinity chromatography on 2′,5′-ADP-Sepharose 4B, followed by gel- permeation on Bio-Gel A- 1.5 m, was used to separate malic enzyme from malate dehydrogenase and other proteins. The yield was ca 60% Malic enzyme and malate dehydrogenase migrated respectively as three bands and one band during disc electrophoresis in polyacrylamide gel. The MW resulting from gel-permeation was 220 000 for malic enzyme and 53 000 for malate dehydrogenase.  相似文献   

6.
A purification scheme is described for the glyoxylate cycle enzyme malate synthase from maize scutella. With our procedure, large amounts of extremely pure enzyme can easily be prepared. Purification involves a heat denaturation step, followed by ammonium sulfate precipitation, and chromatography on DEAE-cellulose and Blue Dextran-Sepharose. Catalase and malate dehydrogenase, which are the most persistent contaminants, are completely removed by this procedure. Maize malate synthase is an octameric protein with a subunit molecular weight of 64 kDa. Purity of the enzyme preparation was demonstrated by SDS-polyacrylamide gel electrophoresis and by isoelectric focusing (pI = 5.0). Pure malate synthase can be stored without appreciable loss of activity at −70°C in 200 mM Hepes buffer containing 6 mM MgCl2 and 2 mM 2-mercaptoethanol, pH7.6. Maize malate synthase contains no covalently linked carbohydrate residues. The enzyme requires Mg2+ ions for activity. From circular dichroism measurements we estimate that the secondary structure of the enzyme consists of 30% α-helical and almost no (5%) β-pleated sheet segments. A 45-kDa polypeptide, which contaminates malate synthase preparations if the purification starts from seedlings older than 2.5 days, is shown to be a degradation product of malate synthase. Together with full-length chains, these 45-kDa polypeptides are able to take part in octameric oligomer formation.  相似文献   

7.
We have studied the intraperoxisomal location of catalase in peroxisomes of methanol-grown Hansenula polymorpha by (immuno)cytochemical means. In completely crystalline peroxisomes, in which the crystalline matrix is composed of octameric alcohol oxidase (AO) molecules, most of the catalase protein is located in a narrow zone between the crystalloid and the peroxisomal membrane. In non-crystalline organelles the enzyme was present throughout the peroxisomal matrix. Other peroxisomal matrix enzymes studied for comparison, namely dihydroxyacetone synthase, amine oxidase and malate synthase, all were present throughout the AO crystalloid. The advantage of location of catalase at the edges of the AO crystalloids for growth of the organism on methanol is discussed.  相似文献   

8.
Abstract: This paper describes ethanol metabolism in a peroxisome-deficient (PER) mutant of Hansenula polymorpha . The PER mutant was able to use ethanol as sole-carbon source but showed reduced growth rates compared to wild-type cells together with a reduced rate of ethanol utilization under μmax conditions. In chemostat cultures at low-dilution rates, the activities of alcohol dehydrogenase, isocitrate lyase and malate synthase were comparable in wild-type and PER cells. In PER cells the two latter enzymes, exclusively microbody-bound in wild-type cells, were active in the cytosol. The possible advantage of intact microbodies in the intermediary metabolism of ethanol in H. polymorpha is discussed.  相似文献   

9.
Malate synthase is an essential metabolic enzyme of the glyoxylate bypass that makes possible the replenishment of carbon intermediates to cells grown on acetate. A polymerase chain reaction (PCR)-based molecular screening investigation of full-length malate synthase genes from Streptomyces spp. was initiated by our group. To this end, consensus primers were designed based on known streptomycete malate synthase sequences and successful amplification was obtained for Streptomyces griseus, S. fimbriatus and S. lipmanii. The putative full-length malate synthase gene from S. griseus was subsequently cloned, sequenced and expressed. Sequence analysis of this gene showed very high identity with other streptomycete malate synthase genes. Furthermore, high malate synthase activity was detected after heterologous expression in Escherichia coli, thus demonstrating successfully the rapid cloning and functional verification of a streptomycete malate synthase gene. Growth studies of S. griseus revealed that malate synthase activity was induced by the presence of acetate, which is a two-carbon source. Interestingly, the activity peaked during late growth phase when the biomass was declining, suggesting that the enzyme may have a late role in metabolism.  相似文献   

10.
D-Malic enzyme of Pseudomonas fluorescens   总被引:3,自引:0,他引:3  
By the enrichment culture technique 14 gram-negative bacteria and two yeast strains were isolated that used D(+)-malic acid as sole carbon source. The bacteria were identified as Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas aeruginosa and Klebsiella aerogenes. In cell-free extracts of P. fluorescens and P. putida the presence of malate dehydrogenase, D-malic enzyme (NAD-dependent) and L-malic enzyme (NADP-dependent) was demonstrated. D-Malic enzyme from P. fluorescens was purified. Stabilization of the enzyme by 50 mM ammonium sulphate an 1 mM EDTA was essential. Preparation of D-malic enzyme that gave one band with disc gel electrophoresis showed a specific activity of 4-5 U/mg. D-Malic enzyme requires divalent cations. The Km values were for malate Km = 0.3 mM and for NAD Km = 0.08 mM. The pH optimum for the reaction was found to be in the range of pH 8.1 to pH 8.8. D-Malic enzyme is partially inhibited by oxaloacetic acid, meso-tartaric acid, D-lactic acid and ATP. Determined by gel filtration and gradient gel electrophoresis, the molecular weight was approximately 175 000.  相似文献   

11.
Lord JM  Bowden L 《Plant physiology》1978,61(2):266-270
At the onset of castor bean (Ricinus communis) germination, 76% of the cellular malate synthase activity of the endosperm tissue was located in the microsomal fraction, with the remainder in the glyoxysomal fraction. During later developmental stages, when rapid malate synthase synthesis was occurring, an increasing proportion of the enzyme was recovered in glyoxysomes. The kinetics of [35S]methionine incorporation into microsomal and glyoxysomal malate synthase in 2-day-old endosperm tissue was followed by employing antiserum raised against glyoxysomal malate synthase to precipitate specifically the enzyme from KCl extracts of these organelle fractions. This experiment showed that microsomal malate synthase was labeled before the glyoxysomal enzyme. When such kinetic experiments were interrupted by the addition of an excess of unlabeled methionine, 35S-labeled malate synthase was rapidly lost from the microsomal fraction and was quantitatively recovered in the glyoxysomal fraction.

Free cytoplasmic ribosomes were separated from bound ribosomes (rough microsomes) using endosperm tissue labeled with [35S]methionine or 14C-amino-acids. Nascent polypeptide chains were released from polysome fractions using a puromycin-high salt treatment, and radioactive malate synthase was shown to be exclusively associated with bound polysomes.

Together these data establish that malate synthase is synthesized on bound ribosomes and vectorially discharged into the endoplasmic reticulum cisternae prior to its ultimate sequestration in glyoxysomes.

  相似文献   

12.
Suzuki A  Gadal P 《Plant physiology》1982,69(4):848-852
Ferredoxin-dependent glutamate synthase (EC 1.4.7.1) from rice leaves (Oryza sativa L. cv Delta) was purified 206-fold with a final specific activity of 35.9 mumoles glutamate formed per min per milligram protein by a procedure including ammonium sulfate fractionation, DEAE-cellulose chromatography, Sephacryl S-300 gel filtration, and ferredoxin-Sepharose affinity chromatography. The purified enzyme yielded a single protein band on polyacrylamide gel electrophoresis. Molecular weight of the native enzyme was estimated to be 224,000 daltons by Sepharose 6B gel filtration. Electrophoresis of the dissociated enzyme in sodium dodecyl sulfate-polyacrylamide gel gave a single protein band which corresponds to the subunit molecular weight of 115,000 daltons. Thus, it is concluded that the glutamate synthase is composed of two polypeptidic chains exhibiting the same molecular weight. Spectrophotometric analysis indicated that the enzyme is free of iron-sulfide and flavin. The pH optimum was 7.3. The enzyme had a negative cooperativity (Hill number of 0.70) for glutamine, and its K(m) value increased from 270 to 570 mum at a glutamine concentration higher than 800 mum. K(m) values for alpha-ketoglutarate and ferredoxin were 330 and 5.5 mum, respectively. Asparagine and oxaloacetate could not be substituted for glutamine and alpha-ketoglutarate, respectively. Enzyme activity was not detected with pyridine nucleotides as electron donors. Azaserine and several divalent cations were potent inhibitors. The purified enzyme was stabilized by dithiothreitol.  相似文献   

13.
1. One mitochondrial and one cytoplasmic malate dehydrogenase isoenzyme could be purified from acetate grown cells of the yeast Saccharomyces cerevisiae. 2. The purification procedure uses chromatography on dextran blue columns as an essential step for enrichment, and reverse ammonium sulfate chromatography on celite for isoenzyme separation. 3. The homogeneity of the preparations was established by gel electrophoreses in the presence of sodium dodecylsulfate and by a sedimentation run in the analytical ultracentrifuge. 4. Both enzymes are dimers with a molecular weight of 75 000 for the cytoplasmic and of 68 000 for the mitochondrial enzyme. 5. Amino acid analysis and peptide mapping showed that both enzymes are closely related, but genetically different (true isoenzymes). 6. The cytoplasmic enzyme shows electrophoretic splitting. This is most likely due to post-translational deamination in vivo. 7. Antibodies to both isoenzymes could be obtained in rabbits. The antisera to cytoplasmic malate dehydrogenase were specific for this enzyme. Antisera to mitochondrial malate dehydrogenase react with both isoenzymes. Neither type of antisera precipitated an inactive protein after the glucose-dependent inactivation of cytoplasmic malate dehydrogenase in vivo.  相似文献   

14.
We have cloned the Hansenula polymorpha PEX4 gene by functional complementation of a peroxisome-deficient mutant. The PEX4 translation product, Pex4p, is a member of the ubiquitin-conjugating enzyme family. In H.polymorpha, Pex4p is a constitutive, low abundance protein. Both the original mutant and the pex4 deletion strain (Deltapex4) showed a specific defect in import of peroxisomal matrix proteins containing a C-terminal targeting signal (PTS1) and of malate synthase, whose targeting signal is not yet known. Import of the PTS2 protein amine oxidase and the insertion of the peroxisomal membrane proteins Pex3p and Pex14p was not disturbed in Deltapex4 cells. The PTS1 protein import defect in Deltapex4 cells could be suppressed by overproduction of the PTS1 receptor, Pex5p, in a dose-response related manner. In such cells, Pex5p is localized in the cytosol and in peroxisomes. The peroxisome-bound Pex5p specifically accumulated at the inner surface of the peroxisomal membrane and thus differed from Pex5p in wild-type peroxisomes, which is localized throughout the matrix. We hypothesize that in H. polymorpha Pex4p plays an essential role for normal functioning of Pex5p, possibly in mediating recycling of Pex5p from the peroxisome to the cytosol.  相似文献   

15.
We analyzed five malate synthase cDNA clones from the higher plant Brassica napus L. We determined the complete mRNA sequence and showed that the longest cDNA clone, pMS1, contains the entire protein coding region. The deduced polypeptide consists of 561 amino acids with a molecular mass of 63,700 daltons. To discern whether the cloned mRNAs represent distinct malate synthase polypeptides, we compared restriction maps and partial nucleotide sequence of the cDNA clones as well as their pattern of hybridization with restriction fragments in nuclear DNA. The results suggest that the five cloned mRNAs are encoded by either a single gene or by highly conserved members of the gene family.  相似文献   

16.
1. A rapid isolation procedure with a high yield for pure myeloperoxidase (donor:H2O2 oxidoreductase, EC 1.11.1.7) from normal human leucocytes is described. The enzyme was solubilized from leucocytes with the detergent, cetyltrimethylammonium bromide, and purified to apparent homogeneity. The yield of the enzyme was 17% with an absorbance ratio A430nm/A280nm = 0.85. 2. The purified enzyme showed three isoenzyme bands after polyacrylamide gel electrophoresis; ultracentrifuge studies indicated one homogeneous band with a molecular weight of 144 000. After reduction of myeloperoxidase, sodium dodecyl sulfate gel electrophoresis resolved an intense band (63 000 daltons) and a weak band (81 000 daltons). 3. The carbohydrate content of the enzyme was at least 2.5%. Mannose, glucose and N-acetylglucosamine were present. The amino acid composition is reported. 4. The EPR spectrum exhibited a high-spin heme signal with rhombic symmetry (gx = 6.92, gy = 5.07 and gz = 1.95). Upon acidification this signal was converted into a signal with more axial symmetry (g perpendicular = 5.89). At high pH (9.5) the EPR spectrum of the enzyme only shows low-spin ferric heme resonances. The circular dichroism spectra of ferric and ferrous myeloperoxidase in the visible and ultraviolet region show maxima and minima in ellipticity.  相似文献   

17.
Key enzymes of the glyoxylate cycle, isocitrate lyase and malate synthase, were identified in pupas of the butterfly Papilio machaon L. The activities of these enzymes in pupas were 0.056 and 0.108 unit per mg protein, respectively. Isocitrate lyase was purified by a combination of various chromatographic steps including ammonium sulfate fractionation, ion-exchange chromatography on DEAE-Toyopearl, and gel filtration. The specific activity of the purified enzyme was 5.5 units per mg protein, which corresponded to 98-fold purification and 6% yield. The enzyme followed Michaelis-Menten kinetics (Km for isocitrate, 1.4 mM) and was competitively inhibited by succinate (Ki = 1.8 mM) and malate (Ki = 1 mM). The study of physicochemical properties of the enzyme showed that it is a homodimer with a subunit molecular weight of 68 +/- 2 kD and a pH optimum of 7.5 (in Tris-HCl buffer).  相似文献   

18.
J Kuret  H Schulman 《Biochemistry》1984,23(23):5495-5504
A soluble Ca2+/calmodulin-dependent protein kinase has been purified from rat brain to near homogeneity by using casein as substrate. The enzyme was purified by using hydroxylapatite adsorption chromatography, phosphocellulose ion-exchange chromatography, Sepharose 6B gel filtration, affinity chromatography using calmodulin-Sepharose 4B, and ammonium sulfate precipitation. On sodium dodecyl sulfate (NaDodSO4)-polyacrylamide gels, the purified enzyme consists of three protein bands: a single polypeptide of 51 000 daltons and a doublet of 60 000 daltons. Measurements of the Stokes radius by gel filtration (81.3 +/- 3.7 A) and the sedimentation coefficient by sucrose density sedimentation (13.7 +/- 0.7 S) were used to calculate a native molecular mass of 460 000 +/- 29 000 daltons. The kinase autophosphorylated both the 51 000-dalton polypeptide and the 60 000-dalton doublet, resulting in a decreased mobility in NaDodSO4 gels. Comparison of the phosphopeptides produced by partial proteolysis of autophosphorylated enzyme reveals substantial similarities between subunits. These patterns, however, suggest that the 51 000-dalton subunit is not a proteolytic fragment of the 60 000-dalton doublet. Purified Ca2+/calmodulin-dependent casein kinase activity was dependent upon Ca2+, calmodulin, and ATP X Mg2+ or ATP X Mn2+ when measured under saturating casein concentrations. Co2+, Mn2+, and La3+ could substitute for Ca2+ in the presence of Mg2+ and saturating calmodulin concentrations. In addition to casein, the purified enzyme displayed a broad substrate specificity which suggests that it may be a "general" protein kinase with the potential for mediating numerous processes in brain and possibly other tissues.  相似文献   

19.
The eukaryotic glyoxylate cycle has been previously hypothesized to occur in the peroxisomal compartment, which in the yeast Saccharomyces cerevisiae additionally represents the sole site for fatty acid beta-oxidation. The subcellular location of the key glyoxylate-cycle enzyme malate synthase 1 (Mls1p), an SKL-terminated protein, was examined in yeast cells grown on different carbon sources. Immunoelectron microscopy in combination with cell fractionation showed that Mls1p was abundant in the peroxisomes of cells grown on oleic acid, whereas in ethanol-grown cells Mls1p was primarily cytosolic. This was reinforced using a green fluorescent protein (GFP)-Mls1p reporter, which entered peroxisomes solely in cells grown under oleic acid-medium conditions. Although growth of cells devoid of Mls1p on ethanol or acetate could be fully restored using a cytosolic Mls1p devoid of SKL, this construct could only partially alleviate the requirement for native Mls1p in cells grown on oleic acid. The combined results indicated that Mls1p remained in the cytosol of cells grown on ethanol, and that targeting of Mls1p to the peroxisomes was advantageous to cells grown on oleic acid as a sole carbon source.  相似文献   

20.
A rapid assay procedure was developed for cleavage of the N-terminal propeptides of procollagen. With the assay a neutral procollagen N-protease was purified about 300-fold from chick embryo tendon extract. The enzyme had an apparent molecular weight of 260 000 and a pH optimum of 7.4. Ca2+ was required for enzymic activity but this requirement was partially replaced by Mg2+ or Mn2+. The enzyme was bound to concanavalin A-agarose and therefore was presumably a glycoprotein. The N-propeptides released from type I procollagen were of about 23 000 and 11 000 daltons as estimated by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The partially purified enzyme was also found to cleave type II procollagen and the N-propeptide obtained was about 18 000 daltons. Heat denaturation of either type I or type II procollagen decreased the rate at which the proteins were cleaved by the N-protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号