首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aminoacyltransferase I-catalysed binding of phenylalanyl-tRNA (unfractionated Escherichia coli B tRNA acylated with radioactive phenylalanine and 19 non-radioactive amino acids) to skeletal-muscle ribosomes from diabetic rats was less than that to ribosomes from normal rats when the Mg(2+) concentration was low (7.5mm); whereas just the reverse was true when the concentration of the cation was higher (15mm). Thus the Mg(2+) dependency of aminoacyltransferase I-catalysed binding of phenylalanyl-tRNA to ribosomes from normal and diabetic rats paralleled the effect of Mg(2+) concentration on synthesis of polyphenylalanine reported before. During incubation at 7.5mm-Mg(2+) phenylalanyl-tRNA was bound only to ribosomes bearing nascent peptidyl-tRNA. There are fewer such ribosomes in a preparation from the muscle of diabetic animals because diabetic animals synthesize less protein in vivo. Thus the difference in polyphenylalanine synthesis in vitro is adequately explained by the difference in enzyme-catalysed binding of phenylalanyl-tRNA to ribosomes, however, the basis of the difference in protein synthesis in vivo is still unknown.  相似文献   

2.
A technique that permitted the reversible dissociation of rat liver ribosomes was used to study the difference in protein-synthetic activity between liver ribosomes of normal and hypophysectomized rats. Ribosomal subunits of sedimentation coefficients 38S and 58S were produced from ferritin-free ribosomes by treatment with 0.8m-KCl at 30 degrees C. These recombined to give 76S monomers, which were as active as untreated ribosomes in incorporating phenylalanine in the presence of poly(U). Subunits from normal and hypophysectomized rats were recombined in all possible combinations and the ability of the hybrid ribosomes to catalyse polyphenylalanine synthesis was measured. The results show that the defect in ribosomes of hypophysectomized rats lies only in the small ribosomal subunit. The 40S but not the 60S subunit of rat liver ribosomes bound poly(U). The only requirement for the reaction was Mg(2+), the optimum concentration of which was 5mm. No apparent difference was seen between the poly(U)-binding abilities of 40S ribosomal subunits from normal or hypophysectomized rats. Phenylalanyl-tRNA was bound by 40S ribosomal subunits in the presence of poly(U) by either enzymic or non-enzymic reactions. Non-enzymic binding required a Mg(2+) concentration in excess of 5mm and increased linearly with increasing Mg(2+) concentrations up to 20mm. At a Mg(2+) concentration of 5mm, GTP and either a 40-70%-saturated-(NH(4))(2)SO(4) fraction of pH5.2 supernatant or partially purified aminotransferase I was necessary for binding of aminoacyl-tRNA. Hypophysectomy of rats resulted in a decreased binding of aminoacyl-tRNA by 40S ribosomal subunits.  相似文献   

3.
Under standard conditions (Mg2+/150 mM NH4+) ribosomes can quantitatively participate in tRNA binding at Mg2+ concentrations of 12 to 15 mM. The overall poly(U)-directed Phe incorporation and the extent of tRNA binding to either P, E or A sites decrease in a parallel manner when the Mg2+ concentration is lowered below 10 mM. At 4 mM the inactivation amounts to about 80%. The coordinate inactivation of all three binding sites is accompanied by an increasing impairment of the ability to translocate A-site bound AcPhe-tRNA to the P site. The translocation efficiency is already reduced at 10 mM Mg2+, and is completely blocked at 6-8 mM. The severe inactivation seen at 6 mM Mg2+ vanishes when the polyamines spermine (0.6 mM) and spermidine (0.4 mM) are present in the assay; tRNA binding again becomes quantitative, the total Phe synthesis even exceeds that observed in the absence of polyamines by a factor of 4. In the presence of polyamines and low Mg2+ (3 and 6 mM) two essential features of the allosteric three-site model (Rheinberger and Nierhaus, J. Biol. Chem. 261, 9133 (1986] are demonstrated. 1) Deacylated tRNA is not released from the P site, but moves to the E site during the course of translocation. 2) Occupation of the E site reduces the A site affinity and vice versa (allosteric interactions between E and A sites). The quality of an in vitro system for protein synthesis can be assessed by two criteria. First, the incubation conditions must allow a near quantitative tRNA binding. Secondly, protein synthesis should proceed with near in vivo rate and accuracy. The 3 mM Mg2+/NH4+/polyamine-system seems to be the best compromise at present between these two requirements.  相似文献   

4.
1. The interaction of aflatoxin B(1) with different polynucleotides was studied spectrophotometrically. Equations were derived that enable the degree of binding to be determined without first determining the extinction coefficient of the bound form. 2. The interaction with calf thymus DNA obeys first-order relationships with an association constant of 0.40mm(-1), but there is some evidence for a secondary binding process from results obtained at 390nm. 3. The spectral shifts decreased in the order polyadenylic acid+polyuridylic acid>DNA>polyadenylic acid>polyadenylic acid+polyinosinic acid. Polycytidylic acid, polyuridylic acid, polyinosinic acid (both single- and triple-stranded), AMP, CMP, GMP and UMP did not interact with aflatoxin. It was concluded that there is a requirement for the amino group of adenine (or possibly guanine) for binding of aflatoxin to polynucleotides to occur. 4. Binding is reversed by increasing ionic strength, and by Mn(2+) and Mg(2+) in the concentration range studied (0-5mm). The effect of the Mn(2+) or Mg(2+) was far greater than would be expected on the basis of their ionic strength. With both the bivalent cations and sodium chloride the reversal is greatest with double-stranded polynucleotides. 5. Inhibition in vitro of the DNA-dependent RNA polymerase of Escherichia coli by aflatoxin B(1) was detected only in the absence of Mg(2+) and at concentrations of Mn(2+) below the optimum for RNA synthesis in vitro. 6. The degree of inhibition (maximally 30%) was dependent on the concentration of Mn(2+) and decreased during incubation.  相似文献   

5.
1. s-RNA nucleotidyltransferase incorporated CMP into phosphodiesterase-treated s-RNA more rapidly in the presence of Mg(2+) (10mm) than in the presence of Mn(2+) (2mm). UMP was incorporated more rapidly in the presence of Mn(2+), and at high ionic strength the incorporation of CMP was also more rapid in the presence of Mn(2+). 2. The capacity of phosphodiesterase-treated s-RNA for CMP, UMP and AMP was increased in the presence of Mn(2+). Terminal sequences of more than one UMP or AMP residue were synthesized, but these atypical reactions were inhibited when CTP was added. CMP was incorporated rapidly to form -pCpC terminal sequences and then more slowly as longer chains were formed, but very little CMP was incorporated into s-RNA-pCpCpA. 3. CMP was incorporated into phosphodiesterase-treated 5s RNA and ribosomal RNA to form short chains of polyC attached to the primer RNA. This reaction was inhibited by the presence of s-RNA. 4. A small Mn(2+)-dependent incorporation of CMP was also primed by poly(A).(U) and poly(C).(I).  相似文献   

6.
细胞外Ba^2+对内向整流钾通道的阻断作用   总被引:1,自引:0,他引:1  
Xie A  Zang YM 《生理学报》2000,52(1):50-54
实验采用双微电极电压箝(TEV)法研究Ba^2+对非洲爪蟾卵母细胞表达的内向整流钾通道(IRK1)的阻断作用。细胞外Ba^2+浓度分别为0,1,3,10和100μmol/L,K^+浓度分别为10和90mmol/L,可见快速开通道阻断剂Ba^2+对IRK1的瞬间电流(施加电压后1ms)的阻断作用依赖Ba^2+、K^+、时间和电压;但对IRK1的开关特性几乎无影响,IRK1对之不通透。三级指数拟合的结  相似文献   

7.
THE EFFECT OF EXPOSING RABBIT RETICULOCYTE RIBOSOMES TO CONCENTRATED SOLUTIONS OF POTASSIUM CHLORIDE WAS EXAMINED BY: (a) dialysis against 0.5m-potassium chloride; (b) zone centrifugation through a sucrose gradient in 0.5m-potassium chloride; (c) differential centrifugation of a solution made 0.5m with respect to potassium chloride. The products of each treatment and their ability to support protein synthesis in a reticulocyte cell-free system, in the presence and in the absence of polyuridylic acid, were examined. The following results were found. (1) Exposing the polysomes to 0.5m-potassium chloride was not a sufficient condition for the complete dissociation of ribosomes into subparticles; the reaction showed a concentration-dependence, implying the existence of an equilibrium between the various ribosomal species. Disturbance of the equilibrium by removing certain products, as in zone centrifuging, can lead to complete dissociation. (2) The subparticles produced by dialysis or sucrose-gradient fractionation were biologically inactive and unstable. (3) The pellet obtained by differential centrifuging consisted of subparticles, if suspended in a Mg(2+)-free buffer; addition of Mg(2+) converted about 30% of the material into heavier sedimenting species, and the preparation had 20-40% of the activity of the untreated control polysomes in the cell-free system. Addition of the 0.5m-potassium chloride supernatant fraction resulted in further apparent reconstitution of sub-particles into ribosomes and polysomes and in a 50-100% restoration of biological activity. When both polyuridylic acid and supernatant factors were present incorporations similar to or higher than those of the control were attained.  相似文献   

8.
Ricin toxin A-chain (RTA), a ribosome-inactivating protein from seeds of the castor bean plant (Ricinus communis), inactivates eukaryotic ribosomes by hydrolyzing the N-glycosidic bond of a single adenosine residue in a highly conserved loop of 28S rRNA, but does not act on prokaryotic ribosomes. We investigated the interaction of rat liver 80S ribosomes with RTA using an optical biosensor based on surface plasmon resonance (BIAcore instrument), which allows real-time recording of the interaction. RTA was coupled to the dextran gel matrix on the sensor chip surface through a single thiol group that is not involved in the enzymatic action. The interaction of rat ribosomes with RTA, which was greatly affected by the Mg(2+) concentration and ionic strength, was usually measured at 5 mM Mg(2+), 50 mM KCl, and pH 7.5. The modes of interaction of intact and RTA-depurinated rat liver ribosomes with the immobilized RTA were virtually the same, while no considerable interaction was observed for Escherichia coli ribosomes. The interaction was not influenced by the presence of 5 mM adenine, which is higher than the reported dissociation constant (1 mM) for the adenine-RTA complex. These results demonstrate that binding of the target adenine with the active site of RTA does not contribute much to the total interaction of ribosomes and RTA. Global analyses of association and dissociation data with several binding models, taking account of mass transport, allowed us to conclude that the data were unable to fit a simple 1:1 binding model, but were best described by a model including a conformational change involved in high affinity complex formation.  相似文献   

9.
1. Proteinaceous factors contained in a 0.5m-KCl extract of ribosomes from pea cotyledons form a ternary complex at 0 degrees C with [(14)C]phenylalanyl-tRNA and poly(U). The complex is measured by its quantitative retention on Millipore filters. 2. Complex-assembly is optimal at 5mm-Mg(2+) and is independent of GTP and ribosomes. 3. The addition of ribosomes is required to stabilize the complex at 34 degrees C. The complex binds to a puromycin-sensitive site on the ribosome. 4. Soluble factors from the 250000g supernatant of pea cotyledon form a Millipore-retainable complex dependent on GTP and ribosomes. 5. Complex-formation by soluble factors has a Mg(2+) optimum of 10-12mm and forms a puromycin-insensitive complex with ribosomes. 6. The function of the ribosomal protein factors and the supernatant fraction in initiation of protein synthesis is discussed.  相似文献   

10.
Ribulose 1,5-diphosphate carboxylase (RuDPCase, EC 4.1.1.39) isolated from spinach leaves is metabolically regulated at 10 mm Mg(2+) and low CO(2) concentrations by its substrates (RuDP and CO(2)) and by effectors which include 6-phosphogluconate (6-PGluA), NADPH, and fructose 1,6-diphosphate (FDP), but not fructose 6-phosphate. Physiological concentrations of RuDP severely inhibit the enzyme activity when the enzyme has not been preincubated with HCO(3) (-) and Mg(2-), and this inactivity persists for 20 minutes or longer after 1 mm HCO(3) (-) and 10 mm Mg(2+) are added. Maximum activity requires that the preincubation mixture also include either 0.01 mm 6-PGluA or 0.5 mm NADPH.When the enzyme, following preincubation with HCO(3) (-) and Mg(2+), is presented with RuDP plus either 6-PGluA or FDP, competitive inhibition is observed with respect to RuDP. The Ki value for 6-PGluA is 0.02 mm and the Ki value for FDP is 190 mum. NADPH or 3-phosphoglycerate (PGA) at physiological concentrations does not have any effect when presented simultaneously with RuDP. Other studies on the order of addition of substrates and effectors, concentration effects, and kinetics provide additional information that serves as a basis for a proposed model of allosteric regulation combined with competitive inhibition.In this model, there are catalytic sites at which the substrates and 6-PGluA and FDP can bind, and at least four allosteric regulatory sites, which we designate I, A(1), A(2), and A(3). RuDP binds very tightly to site I (in the absence of Mg(2+) or HCO(3) (-)), causing a conformational change in the protein to an inactive form which persists for as long as 20 minutes in the subsequent presence of Mg(2+) and 1 mm HCO(3) (-). Mg(2+) and HCO(3) (-) (or CO(2)) bind to site A(3) (in the absence of RuDP), holding the enzyme in an active form which has a much lower affinity for RuDP at site I, so that when physiological levels of RuDP are then added, only part of the enzyme activity is lost. This active form of the enzyme can bind 6-PGluA or FDP at site A(1) and NADPH at site A(2) during preincubation with Mg(2+) and HCO(3) (-). With optimal levels of bound effectors, 6-PGluA or NADPH, enzyme activity is fully maintained, even when RuDP is subsequently added. Without one of these effectors present, addition of RuDP following preincubation reduces enzyme activity to about 40% at the levels of substrates and effectors studied. FDP is a much poorer effector, and this is ascribed to a possible binding of FDP at site I, as well as at site A(1).The physiological role of this regulation is discussed, particularly with respect to protection of "C-3" plants against oxidation of RuDP to phosphoglycolate.  相似文献   

11.
Spermine and spermidine added to a Saccharomyces cerevisiae cell-free protein synthesizing system increased phenylalanine polymerization reaction several-fold at suboptimal concentration of Mg2+ and approximately two-fold at optimal amounts of Mg2+. The addition of polyamines greatly stimulated the enzymatic and nonenzymatic binding of phenylalanyl-tRNA and N-acetylphenylalanyl-tRNA to ribosomes. The binding of the acetylated derivative was higher than phenylalanyl-tRNA, however, as it was shown the former was bound exclusively to the A site of the ribosome. Contrary to the binding process, the puromycin reaction was not stimulated by spermine added at a concentration which enhanced the polyphenylalanine synthesis. These results indicate that polyamines have not only a sparing effect on the Mg2+ requirement for yeast protein synthesis in vitro and suggest that one of the possible sites of polyamines action might be the binding of aminoacyl-tRNA to ribosomes.  相似文献   

12.
The influence of divalent metal ions on the intrinsic and kirromycin-stimulated GTPase activity in the absence of programmed ribosomes and on nucleotide binding affinity of elongation factor Tu (EF-Tu) from Thermus thermophilus prepared as the nucleotide- and Mg(2+)-free protein has been investigated. The intrinsic GTPase activity under single turnover conditions varied according to the series: Mn(2+) (0.069 min(-1)) > Mg(2+) (0.037 min(-1)) approximately no Me(2+) (0.034 min(-1)) > VO(2+) (0.014 min(-1)). The kirromycin-stimulated activity showed a parallel variation. Under multiple turnover conditions (GTP/EF-Tu ratio of 10:1), Mg(2+) retarded the rate of hydrolysis in comparison to that in the absence of divalent metal ions, an effect ascribed to kinetics of nucleotide exchange. In the absence of added divalent metal ions, GDP and GTP were bound with equal affinity (K(d) approximately 10(-7) m). In the presence of added divalent metal ions, GDP affinity increased by up to two orders of magnitude according to the series: no Me(2+) < VO(2+) < Mn(2+) approximately Mg(2+) whereas the binding affinity of GTP increased by one order of magnitude: no Me(2+) < Mg(2+) < VO(2+) < Mn(2+). Estimates of equilibrium (dissociation) binding constants for GDP and GTP by EF-Tu on the basis of Scatchard plot analysis, together with thermodynamic data for hydrolysis of triphosphate nucleotides (Phillips, R. C., George, P., and Rutman, R. J. (1969) J. Biol. Chem. 244, 3330-3342), showed that divalent metal ions stabilize the EF-Tu.Me(2+).GDP complex over the protein-free Me(2+).GDP complex in solution, with the effect greatest in the presence of Mg(2+) by approximately 10 kJ/mol. These combined results show that Mg(2+) is not a catalytically obligatory cofactor in intrinsic and kirromycin-stimulated GTPase action of EF-Tu in the absence of programmed ribosomes, which highlights the differential role of Mg(2+) in EF-Tu function.  相似文献   

13.
Thiolases are CoA-dependent enzymes which catalyze the formation of a carbon-carbon bond in a Claisen condensation step and its reverse reaction via a thiolytic degradation mechanism. Mitochondrial acetoacetyl-coenzyme A (CoA) thiolase (T2) is important in the pathways for the synthesis and degradation of ketone bodies as well as for the degradation of 2-methylacetoacetyl-CoA. Human T2 deficiency has been identified in more than 60 patients. A unique property of T2 is its activation by potassium ions. High-resolution human T2 crystal structures are reported for the apo form and the CoA complex, with and without a bound potassium ion. The potassium ion is bound near the CoA binding site and the catalytic site. Binding of the potassium ion at this low-affinity binding site causes the rigidification of a CoA binding loop and an active site loop. Unexpectedly, a high-affinity binding site for a chloride ion has also been identified. The chloride ion is copurified, and its binding site is at the dimer interface, near two catalytic loops. A unique property of T2 is its ability to use 2-methyl-branched acetoacetyl-CoA as a substrate, whereas the other structurally characterized thiolases cannot utilize the 2-methylated compounds. The kinetic measurements show that T2 can degrade acetoacetyl-CoA and 2-methylacetoacetyl-CoA with similar catalytic efficiencies. For both substrates, the turnover numbers increase approximately 3-fold when the potassium ion concentration is increased from 0 to 40 mM KCl. The structural analysis of the active site of T2 indicates that the Phe325-Pro326 dipeptide near the catalytic cavity is responsible for the exclusive 2-methyl-branched substrate specificity.  相似文献   

14.
Wedekind JE  McKay DB 《Biochemistry》2003,42(32):9554-9563
The leadzyme is a small ribozyme, derived from in vitro selection, which catalyzes site specific, Pb(2+)-dependent RNA cleavage. Pb(2+) is required for activity; Mg(2+) inhibits activity, while many divalent and trivalent ions enhance it. The leadzyme structure consists of an RNA duplex interrupted by a trinucleotide bulge. Here, crystal structures determined to 1.8 A resolution, both with Mg(2+) as the sole divalent counterion and with Mg(2+) and Sr(2+) (which mimics Pb(2+) with respect to binding but not catalysis), reveal the metal ion interactions with both the ground state and precatalytic conformations of the leadzyme. Mg(H(2)O)(6)(2+) ions bridge complementary strands of the duplex at multiple locations by binding tandem purines of one RNA strand in the major groove. At one site, Mg(H(2)O)(6)(2+) ligates the phosphodiester backbone of the trinucleotide bulge in the ground state conformation, but not in the precatalytic conformation, suggesting (a) Mg(2+) may inhibit leadzyme activity by stabilizing the ground state and (b) metal ions which displace Mg(2+) from this site may activate the leadzyme. Binding of Sr(2+) to the presumed catalytic Pb(2+) site in the precatalytic leadzyme induces local structural changes in a manner that would facilitate alignment of the catalytic ribose 2'-hydroxyl with the scissile bond for cleavage. These data support a model wherein binding of a catalytic ion to a precatalytic conformation of the leadzyme, in conjunction with the flexibility of the trinucleotide bulge, may facilitate structural rearrangements around the scissle phosphodiester bond favoring configurations that allow bond cleavage.  相似文献   

15.
Daher M  Rueda D 《Biochemistry》2012,51(17):3531-3538
Transfer messenger RNA (tmRNA) and small binding protein B (SmpB) are the main components of the trans-translation rescue machinery that releases stalled ribosomes from defective mRNAs. Little is known about how SmpB binding affects the conformation of the tRNA-like domain (TLD) of tmRNA. It has been previously hypothesized that the absence of a D stem in the TLD provides flexibility in the elbow region of tmRNA, which can be stabilized by its interaction with SmpB. Here, we have used F?rster resonance energy transfer to characterize the global structure of the tRNA-like domain of tmRNA in the presence and absence of SmpB and as a function of Mg(2+) concentration. Our results show tight and specific binding of SmpB to tmRNA. Surprisingly, our data show that the global conformation and flexibility of tmRNA do not change upon SmpB binding. However, Mg(2+) ions induce an 11 ? compaction in the tmRNA structure, suggesting that the flexibility in the H2a stem may allow different conformations of tmRNA as the TLD and mRNA-like domain need to be positioned differently while moving through the ribosome.  相似文献   

16.
Escherichia coli ribonuclease III, purified to homogeneity from an overexpressing bacterial strain, exhibits a high catalytic efficiency and thermostable processing activity in vitro. The RNase III-catalyzed cleavage of a 47 nucleotide substrate (R1.1 RNA), based on the bacteriophage T7 R1.1 processing signal, follows substrate saturation kinetics, with a Km of 0.26 microM, and kcat of 7.7 min.-1 (37 degrees C, in buffer containing 250 mM potassium glutamate and 10 mM MgCl2). Mn2+ and Co2+ can support the enzymatic cleavage of the R1.1 RNA canonical site, and both metal ions exhibit concentration dependences similar to that of Mg2+. Mn2+ and Co2+ in addition promote enzymatic cleavage of a secondary site in R1.1 RNA, which is proposed to result from the altered hydrolytic activity of the metalloenzyme (RNase III 'star' activity), exhibiting a broadened cleavage specificity. Neither Ca2+ nor Zn2+ support RNase III processing, and Zn2+ moreover inhibits the Mg(2+)-dependent enzymatic reaction without blocking substrate binding. RNase III does not require monovalent salt for processing activity; however, the in vitro reactivity pattern is influenced by the monovalent salt concentration, as well as type of anion. First, R1.1 RNA secondary site cleavage increases as the salt concentration is lowered, perhaps reflecting enhanced enzyme binding to substrate. Second, the substitution of glutamate anion for chloride anion extends the salt concentration range within which efficient processing occurs. Third, fluoride anion inhibits RNase III-catalyzed cleavage, by a mechanism which does not involve inhibition of substrate binding.  相似文献   

17.
The attachment of polyuridylic acid to reticulocyte ribosomes   总被引:1,自引:1,他引:0       下载免费PDF全文
The attachment of polyuridylic acid to reticulocyte ribosomes was studied by using polyadenylic acid, which inhibits the attachment reaction only, while permitting translation of polyuridylic acid bound to ribosomes. After addition of polyadenylic acid the amount of polyphenylalanine synthesized under standard conditions was taken as a measure of the bound polyuridylic acid. In this way certain parameters of the attachment reaction and the subsequent translation of attached polyuridylic acid were defined: (1) polyuridylic acid-ribosome interaction at 37 degrees requires only Mg(2+) at an optimum concentration of 8mm; (2) K(+) (required for translation) is a non-competitive inhibitor of the attachment reaction; (3) optimum polyphenylalanine synthesis directed by attached polyuridylic acid occurs at 5mm-Mg(2+) concentration; (4) from kinetic studies single ribosomes appear to participate in the attachment reaction.  相似文献   

18.
Magnesium (Mg2+) increases binding of follicle-stimulating hormone (FSH) to membrane-bound receptors and increases adenylyl cyclase activity. We examined the effects of divalent and monovalent cations on FSH binding to receptors in granulosa cells from immature porcine follicles. Divalent and monovalent cations increased binding of [125I]iodo-porcine FSH (125I-pFSH). The divalent cations Mg2+, calcium (Ca2+) and manganese, (Mn2+) increased specific binding a maximum of 4- to 5-fold at added concentrations of 10 mM. Mg2+ caused a half-maximal enhancement of binding at 0.6 mM, whereas Ca2+ and Mn2+ had half-maximal effects at 0.7 mM and 0.8 mM, respectively. The monovalent cation potassium (K+) increased binding a maximum of 1.5-fold at an added concentration of 50 mM, whereas the monovalent cation (Na+) did not increase binding at any concentration tested. The difference between K+ and Na+ suggested that either enhancement of binding was not a simple ionic effect or Na+ has a negative effect that suppresses its positive effect. Ethylenediamine tetraacetic acid, a chelator of Mg2+, prevented binding of 125I-pFSH only in the presence of Mg2+, whereas pregnant mare's serum gonadotropin, a competitor with FSH for the receptor, prevented binding in both the absence and the presence of Mg2+. Guanyl-5-ylimidodiphosphate (Gpp[NH]p) inhibited binding of 125I-pFSH in the absence or presence of Mg2+, but only at Gpp(NH)p concentrations greater than 1 mM. We used Mg2+ to determine if divalent cations enhanced FSH binding by increasing receptor affinity or by increasing the apparent number of binding sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
B W Kirk  R D Kuchta 《Biochemistry》1999,38(31):10126-10134
We examined the effects of Mn(2+) on eukaryotic DNA primase both in the presence and absence of 5 mM Mg(2+). In the absence of Mg(2+), Mn(2+)-supported primase activity to a level 4-fold greater than that obtained with Mg(2+) alone, and adding low levels of Mn(2+) (100 microM) to assays containing 5 mM Mg(2+) greatly stimulated primase. Increased activity was primarily due to more efficient utilization of NTPs, as reflected in a lower K(M) for NTPs. Under conditions of saturating NTPs, Mn(2+) had minimal effects on both the rate of initiation (i.e., dinucleotide synthesis) and processivity. The effects of Mn(2+) involve multiple metal binding sites on primase and may involve both the catalytic p49 subunit as well as the p58 subunit. Physiological levels of salt can inhibit primase activity due to the presence of an anion binding site and low levels of Mn(2+) significantly decreased this salt sensitivity. The implications of these results with respect to the biological role of primase are discussed.  相似文献   

20.
Mg(2+)-induced folding of yeast tRNA(Phe) was examined at low ionic strength in steady-state and kinetic experiments. By using fluorescent labels attached to tRNA, four conformational transitions were revealed when the Mg(2+) concentration was gradually increased. The last two transitions were not accompanied by changes in the number of base pairs. The observed transitions were attributed to Mg(2+) binding to four distinct types of sites. The first two types are strong sites with K(diss) of 4 and 16 microM. The sites of the third and fourth types are weak with a K(diss) of 2 and 20 mM. Accordingly, the Mg(2+)-binding sites previously classified as "strong" and "weak" can be further subdivided into two subtypes each. Fluorescent transition I is likely to correspond to Mg(2+) binding to a unique strong site selective for Mg(2+); binding to this site causes only minor A(260) change. The transition at 2 mM Mg(2+) is accompanied by substantial conformational changes revealed by probing with ribonucleases T1 and V1 and likely enhances stacking of the tRNA bases. Fast and slow kinetic phases of tRNA refolding were observed. Time-resolved monitoring of Mg(2+) binding to tRNA suggested that the slow kinetic phase was caused by a misfolded tRNA structure formed in the absence of Mg(2+). Our results suggest that, similarly to large RNAs, Mg(2+)-induced tRNA folding exhibits parallel folding pathways and the existence of kinetically trapped intermediates stabilized by Mg(2+). A multistep scheme for Mg(2+)-induced tRNA folding is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号