首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SITES OF NUCLEOLUS PRODUCTION IN CULTURED CHINESE HAMSTER CELLS   总被引:5,自引:4,他引:1       下载免费PDF全文
Chinese hamster cell strains in the early passages in culture display wide variation in number of nucleolus-like bodies per cell, though such strains are characteristically euploid. A variety of criteria indicate that the nucleolus-like bodies are true nucleoli. Their Azure B- and fast green-staining properties indicate the presence of RNA and protein; they have typical nucleolar fine structure, including both fibrous and granular components; radioautography reveals that their patterns of uptake of uridine-3H into RNA are similar to those reported for nucleoli of other cell types; actinomycin D, at a level which selectively inhibits ribosomal RNA synthesis, greatly reduces their RNA synthesis and also causes segregation of fibrous and granular nucleolar components. Colchicine was used to experimentally fragment the nuclei of these cells into a number of separate karyomeres, each presumably containing some, or only one, of the chromosomes of the complement. Almost all the karyomeres contain nucleolus-like bodies which, by the same criteria applied to the multiple nucleolus-like bodies of uninuclear cells, appear to be true nucleoli. The nucleoli of individual karyomeres of the same cell often differ from each other in fine structure while the multiple nucleoli of a uninuclear cell generally resemble each other. The evidence presented in this study indicates that Chinese hamster cells contain many nucleolus-producing sites scattered through the genome.  相似文献   

2.
Numerous nucleoli can be observed in the macronucleus of the logarithmically growing ciliated protozoan Tetrahymena pyriformis; at late log phase the nucleoli aggregate and fuse. In stationary phase this fusion process continues, leaving a very few large vacuolated nuclear fusion bodies in the nucleus. When these stationary phase cells are placed into fresh enriched proteose peptone medium, the large fusion bodies begin to disaggregate during the 2.5-hour lag phase before cell division is initiated. By 3 to 6 hours after inoculation the appearance of the nucleoli in many cells returns to what it was in logarithmic cells. In view of the possible role of nucleoli in ribosome synthesis, attempts were made to correlate the morphological changes to changes in RNA and protein metabolism. The beginning of an increased RNA synthesis was concomitant with the beginning of disaggregation of the large fusion bodies into nucleoli, which was noticed in some cells by 1 hour after the return to fresh enriched proteose peptone medium. Increased protein synthesis then followed the increased RNA synthesis by 1 hour. The supply of RNA precursors (essential pyrimidines) were removed from cultures which were grown on a chemically defined synthetic medium, in order to study the relation between nucleolar fusion and synthesis of RNA and protein. Pyrimidine deprivation drastically curtailed RNA and protein synthesis, but did not cause fusion of nucleoli. When pyrimidines were added back to this culture medium, RNA synthesis was immediately stimulated and again preceded an increased protein synthesis by 1 hour. These studies suggest the involvement of unfused nucleoli in RNA and protein synthesis and demonstrate the extreme plasticity of nucleoli with respect to changes in their environment.  相似文献   

3.
The reconstruction of the nucleolus after mitosis was analyzed by electron microscopy in cultured mammalian (L929) cells in which nucleolar RNA synthesis was inhibited for a 3 h period either after or before mitosis. When synchronized mitotic cells were plated into a concentration of actinomycin D sufficient to block nucleolar RNA synthesis preferentially, nucleoli were formed at telophase as usual. 3 h after mitosis, these nucleoli had fibrillar and particulate components and possessed the segregated appearance characteristic of nucleoli of actinomycin D-treated cells. Cells in which actinomycin D was present for the last 3 h preceding mitosis did not form nucleoli by 3 h after mitosis though small fibrillar prenucleolar bodies were detectable at this time. These bodies subsequently grew in size and eventually acquired a particulate component. It took about a full cell cycle before nucleoli of these cells were completely normal in appearance. Thus, nucleolar RNA synthesis after mitosis is not necessary for organization of nucleoli after mitosis. However, inhibition of nucleolar RNA synthesis before mitosis renders the cell incapable of forming nucleoli immediately after mitosis. If cells are permitted to resume RNA synthesis after mitosis, they eventually regain nucleoli of normal morphology.  相似文献   

4.
Summary The silver impregnation of nucleolar material facilitated the study of the morphological changes which take place in the nucleolus throughout the division cycle in root tip cells ofAllium cepa. The nucleolus appears to undergo no morphological changes throughout the interphase. It undergoes disorganization during the prophase, while in the telophase it appears uniformly on the chromatin as condensing into prenucleolar bodies.The appearance of the prenucleolar bodies is unaffected by puromycin, cordycepin, or ethidium bromide. This suggests that the argyrophilic material does not undergo synthesis during the telophase, nor require RNA or protein synthesis to effect the aggregation into prenucleolar bodies. However, the organization of nucleoli from prenucleolar bodies is inhibited by both cordycepin and ethidium bromide, suggesting that RNA synthesis is involved in this proccess.In aneuploid nuclei induced by treatment with colchicine we observed the appearance of prenucleolar bodies during the telophase even in the absence of the nucleolar organizer, but in this case the formation of nucleoli fails to take place. The nucleolar organizers proved to be capable of acting only in the nucleus to which they belong, but not on other nuclei within the same cytoplasm belonging to multinucleate cells.It seems logical to assume that one of the roles of the nucleolar organizer is related with the above-mentioned RNA synthesis, which is required to the aggregation of prenucleolar bodies into nucleoli.The work reported in the paper was undertaken during the tenure of a Research Training Fellowship awarded by the International Agency for Research on Cancer.  相似文献   

5.
The activity of ribosomal RNA (rRNA) genes as judged by nucleolar size and rRNA synthesis has been shown to depend upon the phase of diapause in the eggs of Bombyx mori. In the present study, we found that nucleolar size in diapausing eggs was enlarged at a very early stage during cold treatment, a procedure necessary for the termination of diapause. In contrast, the intrinsic capacity of ribosomal RNA synthesis in the chilled eggs, as examined at 25°C by radioactive precursor incorporation into rRNA, increased much later, in parallel with the break of diapause. The early phase of cold treatment is the period when the eggs undergo some important changes (the so-called diapause development), preparing for diapause termination. Thus we infer that the above mentioned increase in nucleolar size may be one of the features of diapause development.  相似文献   

6.
The relationship of ribosomal RNA (rRNA) synthesis to nucleolar ultrastructure was studied in partial nucleolar mutants of Xenopus laevis. These mutations are the result of a partial deletion of rRNA genes and therefore alow studies on nucleolar structure and function without using drugs that inhibit rRNA synthesis. Ultrastructural studies demonstrated that normal embryos have reticulated nucleoli that are composed of a loose meshwork of granules and fibrils and a typical nucleolonema. In contrast, partial nucleolar mutants in which rRNA synthesis is reduced to less than 50% of the normal rate have compact nucleoli and nucleolus-like bodies. The compace nucleoli contain granules and fibrils, but they are segregated into distinct regions, and a nucleolonema is never seen. Since other species of RNA are synthesized normally by partial nucleolar mutants, these results demonstrate that nucleolar segragation is related specifically to a reduction in rRNA synthesis. The nucleolus-like bodies are composed mainly of fibrils,and the number of such bodies are composed mainly of fibrils, and the number of such bodies present in the different nucleolar mutants is inversely related to the relative rate of rRNA synthesis. Although the partial nucleolar organizers produce segregated nucleoli in these mutants, they organize morphologically normal, but smaller, nucleoli in heterozygous embryos. Alternative explanations to account for these results are discussed.  相似文献   

7.
In efforts to clarify the role of the nucleolus and substructures thereof in the assembly or synthesis of protein associated with formation of the complete ribosome, the effect of variation of some conditions of aldehyde fixation on the intranuclear distribution of lysine-3H, arginine-3H, and uridine-3H was studied by differential grain count in radioautographs of PPLO-free HeLa cells. It was found that the nucleolus is a site of rapid assembly or synthesis of a protein, the synthesis of which is inhibited equally by puromycin (200 µg/ml) and by actinomycin D under conditions inhibitory for ribosomal precursor RNA synthesis (P < 0.01). This protein is fixed by phosphate-buffered formalin or glutaraldehyde at pH 7.3, but the label is diminished by fixation in customarily employed acetic ethanol or in formalin at acid pH. Elevation of temperature of formalin or glutaraldehyde fixatives to 37°C consistently reduces the nucleolar protein label, but not the RNA label, by a proportion identical with that incurred by puromycin or actinomycin inhibition. This proportional reduction of nucleolar protein label occurs without evident loss of total grain count and is independent of length of fixation between 30 min and 4 hr, but it is not observed at 23°C. The data support the interpretation that the proportion of nucleolar protein not fixed at 37°C is associated with nucleolar ribosomal RNA but that it is dissociated at 37°C in formalin or glutaraldehyde fixatives, probably on the basis of ionic dissociation of a conjugated ribonucleoprotein.  相似文献   

8.
The effects of zinc on the ribonucleoprotein (RNP) constituents of HEp-2 cells have been analyzed. Pulse-chase autoradiographic experiments show a preferential inhibition of nucleolar RNA synthesis and a block in the transport of nucleolar and extranucleolar RNA in zinc-treated cells. Concomitantly with the disturbance in RNA metabolism and in protein synthesis, nucleolar condensation, accumulation of perichromatin granules and fibrils, condensation of interchromatin fibrils, and appearance of dense granular bodies occur. Accumulation of perichromatin fibrils and condensation of interchromatin fibrils appear to be related to the block in the transport of heterogeneous nuclear RNA. Depletion of certain proteins required for the assembly of RNP particles could share in the abnormal behavior of RNA and lead to the accumulation of perichromatin granules and the appearance of dense granular bodies.  相似文献   

9.
A large DNA-containing body is present in addition to the chromosomes in oocytes of the house cricket Acheta domesticus. Large masses of nucleolar material accumulate at the periphery of the DNA body during the diplotene stage of meiotic prophase I. RNA-DNA hybridization analysis demonstrates that the genes which code for 18S and 28S ribosomal RNA are amplified in the ovary. In situ hybridization indicates that the amplified genes are localized within the DNA body of early prophase cells. As the cells proceed through diplotene the DNA which hybridizes with ribosomal RNA is gradually incorporated into the developing nucleolar mass.  相似文献   

10.
Immature rat uterine nucleoli were isolated and their ability to synthesize RNA in vitro was determined. Estradiol-17β injected intraperitoneally 2 hr prior to killing stimulated rat uterine nucleolar in vitro RNA synthesis both quantitatively and qualitatively. The intraperitoneal administration of cycloheximide as late as 10 min prior to the end of a 2-hr estrogen exposure prevented both the quantitative and qualitative changes stimulated by estrogen. The data suggest that estrogen-stimulated rat uterine nucleolar RNA synthesis requires the continuous synthesis of protein.  相似文献   

11.
M. Gontcharoff  B. Rao 《Chromosoma》1972,38(4):441-457
The dependence of nucleolar structure on DNA and RNA synthesis in synchronous cultures of the slime mold Physarum polycephalum was traced through the mitotic cycle. The blockage of RNA synthesis produces a characteristic abnormality of the nucleolar structure when imposed at any time during interphase. But differences in the function of the early and late replicating DNA molecules were observed. The blockage of DNA synthesis causes abnormality of nucleolar structure only when imposed during the early part of the S-period.  相似文献   

12.
REPOPULATION OF THE POSTMITOTIC NUCLEOLUS BY PREFORMED RNA   总被引:6,自引:5,他引:1  
This study is concerned with the fate of the nucleolar contents, particularly nucleolar RNA, during mitosis Mitotic cells harvested from monolayer cultures of Chinese hamster embryonal cells, KB6 (human) cells, or L929 (mouse) cells were allowed to proceed into interphase in the presence or absence (control) of 0.04–0 08 µg/ml of actinomycin D, a concentration which preferentially inhibits nucleolar (ribosomal) RNA synthesis 3 hr after mitosis, control cells had large, irregularly shaped nucleoli which stained intensely for RNA with azure B and for protein with fast green. In cells which had returned to interphase in the presence of actinomycin D, nucleoli were segregated into two components easily resolvable in the light microscope, and one of these components stained intensely for RNA with azure B. Both nucleolar components stained for protein with fast green In parallel experiments, cultures were incubated with 0.04–0 08 µg/ml actinomycin D for 3 hr before harvesting of mitotic cells, then mitotic cells were washed and allowed to return to interphase in the absence of actinomycin D. 3 hr after mitosis, nuclei of such cells were devoid of large RNA-containing structures, though small, refractile nucleolus-like bodies were observed by phase-contrast microscopy or in material stained for total protein. These experiments indicate that nucleolar RNA made several hours before mitosis persists in the mitotic cell and repopulates nucleoli when they reform after mitosis  相似文献   

13.
14.
15.
Two of the 36 chromosomes in Xenopus laevis are known to carry nucleolar organizer loci. Partitioning of the chromosomes of cultured, early-passage Xenopus cells among variable numbers of micronuclei could be induced by extended colcemid treatment. A large, obvious nucleolus occurred in a maximum of 4 micronuclei per colcemid-induced tetraploid cell. The large, deeply-stained nucleoli incorporated [3H]uridine and appeared by electron microscopy to have typical nucleolar morphology with fibrillar and granular areas disposed in nucleolonema. In situ hybridization to radioactive ribosomal RNA (rRNA) resulted in heavy labelling of nucleoli in no more than 4 micronuclei per cell. The other micronuclei generally contained small bodies (blobs) which stained for RNA and protein as well as with ammoniacal silver. In the electron microscope, these appeared as round, dense bodies resembling nucleoli segregated by actinomycin D treatment. Nucleoplasmic RNA synthesis occurred in all micronuclei regardless of whether they contained definitive nucleoli. These observations suggest that micronuclei which formed large, typical, RNA-synthesizing nucleoli contained nucleolar organizer chromosomes, while the other micronuclei, which contained nucleolus-like “blobs” probably lacked nucleolar organizer loci. It is possible that the nucleolus-like bodies may have been aggregates of previously synthesized nucleolar RNA and protein trapped in micronuclei after mitosis.  相似文献   

16.
The formation of daughter nuclei and the reformation of nucleolar structures was studied after microinjection of antibodies to RNA polymerase I into dividing cultured cells (PtK2). The fate of several nucleolar proteins representing the three main structural subcomponents of the nucleolus was examined by immunofluorescence and electron microscopy. The results show that the RNA polymerase I antibodies do not interfere with normal mitotic progression or the early steps of nucleologenesis, i.e., the aggregation of nucleolar material into prenucleolar bodies. However, they inhibit the telophasic coalescence of the prenucleolar bodies into the chromosomal nucleolar organizer regions, thus preventing the formation of new nucleoli. These prenucleolar bodies show a fibrillar organization that also compositionally resembles the dense fibrillar component of interphase nucleoli. We conclude that during normal nucleologenesis the dense fibrillar component forms from preformed entities around nucleolar organizer regions, and that this association seems to be dependent on the presence of an active form of RNA polymerase I.  相似文献   

17.
18.
The incorporation of 3H-uridine in oogonia and oocytes during meiotic prophase I was studied in three human fetuses 13, 18, and 19 weeks old. Following a 40- or 60-min pulse, intense nuclear and nucleolar labeling was observed in oogonia. During the preleptotene chromosome condensation stage, the heteropycnotic masses were unlabeled, while numerous silver grains were seen on the filaments persisting around these masses. During leptotene, chromosomal and nucleolar RNA synthesis was significant, but less than that in the oogonia. The rate of incorporation declined rapidly during zygotene and fell to a very low level at early pachytene. Throughout pachytene no nucleolar RNA synthesis was observed. Chromosomal RNA synthesis progressively recovered during middle pachytene, was of moderate intensity at late pachytene, and increased again at early diplotene. Nucleolar RNA synthesis was very intense at early diplotene, at the same time as nucleolar size and basophilia increased.  相似文献   

19.
Nucleolar partition induced by actinomycin D was used to demonstrate some aspects of nucleolar RNA synthesis and release in mouse hepatic cells, with light and electron microscopic radioautography. The effect of the drug on RNA synthesis and nucleolar morphology was studied when actinomycin D treatment preceded labeling with tritiated orotic acid. Nucleolar partition, consisting of a segegration into granular and fibrillar parts was visible if a dosage of 25 µg of actinomycin D was used, but nucleolar RNA was still synthesized. After a dosage of 400 µg of actinomycin D, nucleolar RNA synthesis was completely stopped If labeling with tritiated orotic acid preceded treatment with 400 µg of actinomycin D, labeled nucleolar RNA was present 15 min after actinomycin D treatment while high resolution radioautography showed an association of silver grains with the granular component. At 30 min after actinomicyn D treatment all labeling was lost. Since labeling was associated with the granular component the progressive loss of label as a result of actinomycin D treatment indicated a release of nucleolar granules. The correlation between this release and the loss of 28S RNA from actinomycin D treated nucleoli as described in the literature is discussed.  相似文献   

20.
The action of 5-Fluorodeoxyuridine (FUdR) used as an inhibitor of RNA synthesis on the nucleolar evolution during mitosis, has been studied in meristematic cells. Under FUdR treatment the nucleolar dispersion appears as a continuous process, but generally it is not completed and nucleolar remnants remain throughout the whole mitosis. The nucleolar material which was dispersed is transported by the mitotic chromosomes, and in telophase contributed to the formation of the new nucleolus. The non-dispersed part persisted in the cytoplasm during telophase, coexisting with both the prenucleolar bodies and the new nucleolus which was being formed. Our results suggest the necessity of some kind of RNA synthesis, preferentially blocked by FUdR, for nucleolar dispersion to take place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号