首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The formation of GABA from L-glutamate was investigated in homogenates of rat brain, liver, and kidney, using highly purified [14C]-L-glutamic acid as substrate and a thin-layer chromatographic separation of products. In agreement with other workers, liberation of [14C]-CO2 was found to be stoichiometric with GABA formation in brain homogenates, but not in liver or kidney extracts. Subcellular fractionation and dialysis experiments suggested that most of the GABA synthesis in these peripheral tissues, unlike brain, does not occur via a direct decarboxylation of glutamate and requires one or more cofactors other than pyridoxal phosphate. NAD stimulated GABA formation in dialyzed extracts, and inhibition of GABA-transaminase, bothin vitro andin vivo, caused marked inhibition of GABA formation from glutamate in peripheral extracts. Although a very low GAD activity in liver and kidney cannot be excluded, these experiments suggest a major pathway from glutamate to GABA in these homogenates which includes (1) conversion of glutamate to -ketoglutarate by glutamate dehydrogenase or transaminases, (2) conversion of -ketoglutarate to succinic semialdehyde, and (3) formation of GABA from succinic semialdehyde and glutamate by GABA-transaminase.  相似文献   

2.
Leptin concentrations are elevated in the majority of obese individuals raising the possibility that leptin resistance contributes to their obesity. Peripheral leptin administration for 48 h caused a several-fold increase in mRNA encoding the suppressors of cytokine signaling SOCS-3 and CIS in hypothalamus and peripheral tissues. Paradoxically, CIS and SOCS-3 mRNAs are also elevated in the leptin-deficient ob/ob mouse. Forced expression of CIS in insulinoma cells prevented transactivation mediated by leptin. Thus tissues continuously exposed to leptin and/or other factors associated with obesity accumulate excessive amounts of SOCS-3 and CIS which could provide a potential mechanism for leptin resistance.  相似文献   

3.
4.
GABA-receptors in peripheral tissues   总被引:5,自引:0,他引:5  
J Ong  D I Kerr 《Life sciences》1990,46(21):1489-1501
Gamma-aminobutyric acid (GABA) and its receptors are found in a wide range of peripheral tissues, including parts of the peripheral nervous system, endocrines, and non-neural tissues such as smooth muscle and the female reproductive system. In all these, both GABAA- and GABAB-receptor types are found, with good evidence for a physiological role in the gut, pancreatic islets and the urinary bladder. In some tissues, the pharmacology of GABA-induced actions is quite atypical and should be further explored with the newer ligands and modulators for GABAA- and GABAB-receptors.  相似文献   

5.
gamma-Aminobutyric acid in peripheral tissues   总被引:9,自引:0,他引:9  
C Tanaka 《Life sciences》1985,37(24):2221-2235
Significant amounts of gamma-aminobutyric acid (GABA), an endogenous amino acid, are present in mammalian peripheral tissues. This finding led to the suggestion that GABA may act as a neurotransmitter in the peripheral nervous system as it does in the central nervous system. This review deals with recent identification of GABA in the autonomic nervous system and the possible functional role of GABA in neuronal and non-neuronal tissues. The identification of GABA in the autonomic nervous system has paved the way for new approaches in pharmacological investigations.  相似文献   

6.
Depending on the stress type, plants activate various signal transduction pathways inducing the optimum defense process. This review is devoted to jasmonate (JA) dependent signaling involved in plant defense against biotic and abiotic stresses, including those determined by wounding, necrotrophic pathogens, pests, and herbivores. The sequence of major events of JA signaling is discussed. It is noted that JA signaling in plants is incorporated into a complex signaling network.  相似文献   

7.
Clock genes in mammalian peripheral tissues   总被引:13,自引:0,他引:13  
  相似文献   

8.
Exhaustive analysis of the location of the peripheral benzodiazepine receptor (PBR) both at the subcellular and the tissue level is warranted to gain a better understanding of its biological roles. To date, many studies have been performed in animal models, such as rat, mouse, and pig, that yielded important information. However, only a few reports were dedicated to the analysis of PBR expression in humans. To enlarge on previous studies, we investigated PBR expression in different human organs using the monoclonal antibody 8D7 that specifically recognized the human PBR. First, we performed electron microscopic analysis that for the first time unambiguously demonstrated the localization of the PBR on the outer mitochondrial membrane. Second, focusing our analysis on human tissues for which information on PBR expression is sparse (lung, stomach, small intestine, colon, thyroid, adrenal gland, pancreas, breast, prostate, ovary), we found that PBR exhibits selective localization. This characterization of PBR localization in human tissues should provide important insights for the understanding of PBR functions.  相似文献   

9.
Z Lackovic  N H Neff 《Life sciences》1983,32(15):1665-1674
In the CNS, dopamine (DA) is a recognized neurotransmitter as well as a precursor for norepinephrine (NE) and epinephrine (EPI). In contrast to the CNS, DA has been assumed to be only a precursor in peripheral tissues. There is now, however, considerable evidence to support the hypothesis that it may function as a neurotransmitter and/or cotransmitter in peripheral tissues in addition to being a precursor. In this minireview we summarize evidence supporting the view that DA plays a role of its own in peripheral neurotransmission.  相似文献   

10.
Receptors for NPY in peripheral tissues bioassays   总被引:2,自引:0,他引:2  
Pheng LH  Regoli D 《Life sciences》2000,67(8):847-862
Neuropeptide Y (NPY) and its congeners, peptide YY (PYY) and the pancreatic polypeptide (PP), have a large spectrum of peripheral actions. NPY is found in peripheral neurons, co-localized or not with noradrenaline; PYY and PP are expressed in endocrine cells of the pancreas and in the intestine of vertebrates. NPY is the most abundant peptide in the brain and is involved in the regulation of food intake and of circadian rhythm. It intervenes also in the process of anxiety and memory. NPY is a potent vasoconstrictor, a cardiac stimulant, and may affect the gut through enteric neurons. PYY and PP act mainly on the gastrointestinal system; however, when in blood, they can cross-react with functional sites elsewhere and replace NPY in some parts of the brain (e.g. regions involved in feeding behavior). These peptides act through G protein coupled receptors (GPCR) of which five different types are known and have been cloned (1,2); functional sites (receptors) for NPY have been found in vessels, the gut, and in vasa deferentia (3-6).  相似文献   

11.
Peripheral neuroepithelioma of soft tissue is a malignant primitive neuroectodermal tumor that appears both in children and adults and usually has a poor outcome. Fine needle aspiration on two patients with tumors in the lower limbs showed small round cells with unipolar processes and a tendency to form Homer-Wright rosettes. The cells had a round to oval nucleus with fine chromatin, up to four small, conspicuous nucleoli and vacuolated, periodic acid-Schiff-positive cytoplasm. The diagnosis was supported by electron microscopic study of the aspirate, which showed features of neuroblastic differentiation (i.e., neurosecretory granules), and by histologic, immunohistochemical and cytogenetic study of the resected tumors.  相似文献   

12.
Circadian rhythms are prevalent in most organisms. Even the smallest disturbances in the orchestration of circadian gene expression patterns among different tissues can result in functional asynchrony, at the organism level, and may to contribute to a wide range of physiologic disorders. It has been reported that as many as 5%-10% of transcribed genes in peripheral tissues follow a circadian expression pattern. We have conducted a comprehensive study of circadian gene expression on a large dataset representing three different peripheral tissues. The data have been produced in a large-scale microarray experiment covering replicate daily cycles in murine white and brown adipose tissues as well as in liver. We have applied three alternative algorithmic approaches to identify circadian oscillation in time series expression profiles. Analyses of our own data indicate that the expression of at least 7% to 21% of active genes in mouse liver, and in white and brown adipose tissues follow a daily oscillatory pattern. Indeed, analysis of data from other laboratories suggests that the percentage of genes with an oscillatory pattern may approach 50% in the liver. For the rest of the genes, oscillation appears to be obscured by stochastic noise. Our phase classification and computer simulation studies based on multiple datasets indicate no detectable boundary between oscillating and non-oscillating fractions of genes. We conclude that greater attention should be given to the potential influence of circadian mechanisms on any biological pathway related to metabolism and obesity.  相似文献   

13.
Restricted usage of VH genes is observed in rabbit B lymphocytes and in human and murine CD5 B lymphocytes. This observation raised the possibility that most rabbit B lymphocytes were CD5+. To investigate this we cloned the CD5 gene from a rabbit cosmid library, using a probe derived from human CD5 cDNA. The rabbit CD5 gene was transfected into a murine T cell line and then we used the transfectants to develop anti-rabbit CD5 mAb. By Western blot analysis, the mAb reacted with a 67-kDa protein in lysates prepared from mesenteric lymph node and spleen cells. We determined the frequency of CD5+ B lymphocytes in peripheral lymphoid tissues of adult rabbits by two-color immunofluorescence analysis using anti-CD5 mAb and anti-L chain antibodies. The analysis showed that essentially all peripheral B lymphocytes in adult rabbits express CD5. The observation that CD5 is expressed on nearly all rabbit B lymphocytes contrasts markedly to mouse and human, where only a small number of B lymphocytes express CD5. We propose that most peripheral B lymphocytes in rabbit, as in chicken, develop early in ontogeny and are maintained throughout life by a self-renewing process.  相似文献   

14.
Simultaneous somatic patch-pipette recording of a single astrocyte to evoke voltage-gated calcium currents, and Ca(2+) imaging, were used to study the spatial and temporal profiles of depolarization-induced changes in intracellular Ca(2+) ([Ca(2+)](i)) in the processes of cultured rat cortical astrocytes existing as pairs. Transient Ca(2+) changes locked to depolarization were observed as microdomains in the processes of the astrocyte pairs, and the responses were more pronounced in the adjoining astrocyte. Considering the functional significance of higher concentrations of glutamate observed in certain pathological conditions, Ca(2+) transients were recorded following pretreatment of cells with glutamate (500 microM for 20 min). This showed distance-dependent incremental scaling and attenuation in the presence of the metabotropic glutamate receptor (mGluR) antagonist, alpha-methyl(4-carboxy-phenyl) glycine (MCPG). Estimation of local Ca(2+) diffusion coefficients in the astrocytic processes indicated higher values in the adjoining astrocyte of the glutamate pretreated group. Intracellular heparin introduced into the depolarized astrocyte did not affect the Ca(2+) transients in the heparin-loaded astrocyte but attenuated the [Ca(2+)](i) responses in the adjoining astrocyte, suggesting that inositol 1,4,5 triphosphate (IP(3)) may be the transfer signal. The uncoupling agent, 1-octanol, attenuated the [Ca(2+)](i) responses in both the control and glutamate pretreated astrocytes, indicating the role of gap junctional communication. Our studies indicate that individual astrocytes have distinct functional domains, and that the glutamate-induced alterations in Ca(2+) signaling involve a sequence of intra- and intercellular steps in which phospholipase C (PLC), IP(3), internal Ca(2+) stores, VGCC and gap junction channels appear to play an important role.  相似文献   

15.
In experimental rat liver perfusion we observed net production of free acetate accompanied by accelerated ketogenesis with long-chain fatty acids. Mitochondrial acetyl-CoA hydrolase, responsible for the production of free acetate, was found to be inhibited by the free form of CoA in a competitive manner and activated by reduced nicotinamide adenine dinucleotide (NADH). The conditions under which the ketogenesis was accelerated favored activation of the hydrolase by dropping free CoA and elevating NADH levels. Free acetate was barely metabolized in the liver because of low affinity, high K(m), of acetyl coenzyme A (acetyl-CoA) synthetase for acetate. Therefore, infused ethanol was oxidized only to acetate, which was entirely excreted into the perfusate. The acetyl-CoA synthetase in the heart mitochondria was much lower in K(m) than it was in the liver, thus the heart mitochondria was capable of oxidizing free acetate as fast as other respiratory substrates, such as succinate. These results indicate that rat liver produces free acetate as a byproduct of ketogenesis and may supply free acetate, as in the case of ketone bodies, to extrahepatic tissues as fuel.  相似文献   

16.
Among a total of 135 tissue-reactive monoclonal antibodies previously prepared, 81 were brain-selective and were classified into neuronal and non-neuronal categories. The neuronal antibodies were again subdivided into antineurofibrillar, antiperikaryonal-neurofibrillar, and antisynapse-associated groups. On the basis of morphologic, developmental, biochemical, and pathologic criteria, the antibodies in at least two of these groups were found to detect heterogeneous antigens (called "neurotypes") rather than different antigenic determinants in single antigens. On examining the distribution in peripheral organs of staining patterns of 11 antineuronal brain-reactive antibodies, we now confirm that these antibodies are, indeed, largely brain-specific. In general, non-neuronal elements in liver, lung, heart, thymus, intestine, adrenal, and spleen remained unstained. However, most of the antibodies stained peripheral neural elements. Occasional antibodies did stain selected, non-neuronal structures. Four out of five antineurofibrillar antibodies stained nerve fibers in adrenal medulla, intestine and thymus. All of three antiperikaryonal-neurofibrillar antibodies also stained nerve fibers in the adrenal medulla, but not in other organs. Two out of three antisynapse-associated antibodies stained what appear to be nerve contacts on adrenal medullary cells, but not on any other peripheral cells examined. The non-neuronal peripheral staining patterns were restricted to selective nuclear staining exhibited by two out of five antineurofibrillar antibodies and the staining of macrophage and selected cardiac muscle nuclei by two of three antisynapse-associated antibodies. However, one antineurofibrillar antibody also stained the cytoplasm of selected liver cells. Among non-neuronally reacting antibodies, two antibodies stained nuclei of all cells except neurons in brain as well as peripheral organs. An antibody staining the ciliary epithelium of choroid plexus also stained basal bodies of ciliated bronchial epithelium. The overall data suggest that the specificity of brain-reactive antibodies is high and that their cross-reactivity with epitopes in non-nervous tissue is rare. In these cases, the antibodies seem to provide specific reagents for these additional structures as well as for their specific brain antigens.  相似文献   

17.
Chronic metabolic and cardiovascular diseases, described as the epidemics of XXI century, are connected to the resistance of peripheral tissues, such as liver, muscle and fat, to insulin. Insulin resistance, which precedes the development of type 2 diabetes by several years, is difficult to diagnose, mainly because of practical limitations to the use of "gold standard" hyperinsulinemic euglycemic clamp technique for screening. It is also begins a certain vicious circle, in which insulin resistant peripheral tissues force pancreatic beta cells to increased insulin release, and sustained high concentrations of insulin cause further development of insulin resistance. Currently, there are two major hypotheses describing the mechanism of insulin resistance: one relating to the "lipid overload" in liver and muscle cells as the key factor and another one emphasizing the role of lipid accumulation in adipocytes, which leads to the overgrowth of fatty tissue and chronic local inflammation.  相似文献   

18.
The suprachiasmatic nucleus (SCN) is the principal generator of circadian rhythms and is part of an entrainment system that synchronizes the animal with its environment. Here, we review the possible communication of timing information from the SCN to peripheral tissues involved in regulating fundamental physiological functions as revealed using a viral, transneuronal tract tracer, the pseudorabies virus (PRV). The sympathetic nervous system innervation of the pineal gland and the sympathetic outflow from brain to white adipose tissue were the first demonstrations of SCN-peripheral tissue connections. The inclusion of the SCN as part of these and other circuits was the result of lengthened postviral injection times compared with those used previously. Subsequently, the SCN has been found to be part of the sympathetic outflow from the brain to brown adipose tissue, thyroid gland, kidney, bladder, spleen, adrenal medulla, and perhaps the adrenal cortex. The SCN also is involved in the parasympathetic nervous system innervation of the thyroid, liver, pancreas, and submandibular gland. Individual SCN neurons appear connected to more than one autonomic circuit involving both sympathetic and parasympathetic innervation of a single tissue, or sympathetic innervation of two different peripheral tissues. Collectively, the results of these PRV studies require an expansion of the traditional roles of the SCN to include the autonomic innervation of peripheral tissues and perhaps the modulation of neuroendocrine systems traditionally thought to be controlled solely by hypothalamic stimulating/inhibiting factors.  相似文献   

19.
20.
Using specific radioimmunoassay and immunocytochemistry for neurokinin A (NKA) and neurokinin B (NKB), distribution and localization of the two peptides in human peripheral tissues were studied. Both NKA-like immunoreactivity (NKA-LI) and NKB-like immunoreactivity (NKB-LI) were present in the walls of the gut and gall bladder and in the pancreas. In the gut, the values for NKA-LI were 0.56-35.73 pmol/g wet weight, while those in pancreas and gall bladder were 0.64-0.68 and 0.36 pmol/g wet weight, respectively. The values of NKB-LI were 0.45-2.66 pmol/g wet weight in the gut, 0.93-1.65 pmol/g wet weight in the pancreas, and 0.30 pmol/g wet weight in the gall bladder. The immunocytochemical reactivity to both peptides was localized to ganglia of the submucosal and myenteric nerve plexuses in the gut wall, and to neurons in the muscle layer and mucosa of the gut wall. Weak but positive NKA-LI appeared in nerve cells of the pancreas, while NKB-LI was not detectable in the pancreas. Conversely, in the gall bladder wall, NKA-LI was undetectable while a very faint NKB-LI was found in the muscle layer. The localization of NKA corresponded closely to that of NKB in the tissues although the relative concentrations of the peptides varied from organ to organ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号