首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anthropophilic mosquitoes such as Aedes aegypti L. (Diptera: Culicidae) have been shown to have superior reproductive success on human blood when sugar is not available. Life-table experiments were conducted with Aedes albopictus Skuse and Ae. aegypti to compare the effects of sugar availability on age-specific survivorship, lifetime and daily fecundity, and blood-feeding frequency when offered human blood daily. There were no significant interactions between the effects of sugar availability and mosquito species for these four variables, indicating similar effects of sugar availability for both species. Lifetime fecundity was not significantly affected by sugar availability, but sugar-deprived females had significantly reduced age-specific survivorship than did sugar-fed females. In absence of sugar, females took bloodmeals twice as often, resulting in a higher daily fecundity. The results indicate that superior reproductive success on human blood without sugar does not seem to be limited to highly anthropophilic mosquito species, such as Ae. aegypti. We conclude that evolution of a highly anthropophilic feeding strategy is not an inevitable result of the ability to thrive on human blood alone.  相似文献   

2.

Background

Mosquitoes commute between blood-meal hosts and water. Thus, heterogeneity in human biting reflects underlying spatial heterogeneity in the distribution and suitability of larval habitat as well as inherent differences in the attractiveness, suitability and distribution of blood-meal hosts. One of the possible strategies of malaria control is to identify local vector species and then attack water bodies that contain their larvae.

Methods

Biting and host seeking, not oviposition, have been the focus of most previous studies of mosquitoes and malaria transmission. This study presents a mathematical model that incorporates mosquito oviposition behaviour.

Results

The model demonstrates that oviposition is one potential factor explaining heterogeneous biting and vector distribution in a landscape with a heterogeneous distribution of larval habitat. Adult female mosquitoes tend to aggregate around places where they oviposit, thereby increasing the risk of malaria, regardless of the suitability of the habitat for larval development. Thus, a water body may be unsuitable for adult mosquito emergence, but simultaneously, be a source for human malaria.

Conclusion

Larval density may be a misleading indicator of a habitat's importance for malaria control. Even if mosquitoes could be lured to oviposit in sprayed larval habitats, this would not necessarily mitigate – and might aggravate – the risk of malaria transmission. Forcing mosquitoes to fly away from humans in search of larval habitat may be a more efficient way to reduce the risk of malaria than killing larvae. Thus, draining, fouling, or filling standing water where mosquitoes oviposit can be more effective than applying larvicide.  相似文献   

3.
Malaria is an important global public health challenge, and is transmitted by anopheline mosquitoes during blood feeding. Mosquito vector control is one of the most effective methods to control malaria, and population replacement with genetically engineered mosquitoes to block its transmission is expected to become a new vector control strategy. The salivary glands are an effective target tissue for the expression of molecules that kill or inactivate malaria parasites. Moreover, salivary gland cells express a large number of molecules that facilitate blood feeding and parasite transmission to hosts. In the present study, we adapted a functional deficiency system in specific tissues by inducing cell death using the mouse Bcl-2-associated X protein (Bax) to the Asian malaria vector mosquito, Anopheles stephensi. We applied this technique to salivary gland cells, and produced a transgenic strain containing extremely low amounts of saliva. Although probing times for feeding on mice were longer in transgenic mosquitoes than in wild-type mosquitoes, transgenic mosquitoes still successfully ingested blood. Transgenic mosquitoes also exhibited a significant reduction in oocyst formation in the midgut in a rodent malaria model. These results indicate that mosquito saliva plays an important role in malaria infection in the midgut of anopheline mosquitoes. The dysfunction in the salivary glands enabled the inhibition of malaria transmission from hosts to mosquito midguts. Therefore, salivary components have potential in the development of new drugs or genetically engineered mosquitoes for malaria control.  相似文献   

4.
Vector-borne parasites such as malaria have been shown to modify the feeding behaviour of their invertebrate hosts so as to increase the probability of transmission. However, evolutionary consideration of developmental changes in malaria within Anopheles mosquitoes suggests that the nature of altered feeding by mosquitoes should differ depending on the developmental stage of the parasite. We present laboratory evidence that the feeding persistence of female Anopheles stephensi towards a human host is decreased in the presence of Plasmodium yoelii nigeriensis oocysts (which cannot be transmitted), but increased when the malaria has developed into transmissible sporozoites in the salivary glands. In ten-minute trials, 33% of uninfected mosquitoes gave up their feeding attempt before the test period had ended, 53% of those harbouring oocysts had given up, but only 20% of those infected with sporozoites gave up by this time. We conclude that changes in feeding behaviour of mosquitoes mediated by parasite infection are sensitive to the developmental stage of the parasite and that these changes have important implications for malaria epidemiology.  相似文献   

5.
Invertebrate hosts often bring forward their reproductive effort in response to a parasitic infection. This is widely interpreted as a host-driven response aimed at compensating for the expected losses in future fitness as a result of parasitism. Here we report that mosquitoes bring forward their oviposition schedule when they are infected with Plasmodium, a parasite known to severely curtail mosquito fecundity. This response could aim at compensating for a negative time-dependent effect of the parasite on mosquito fitness, as infected mosquitoes seem to display a strong and progressive decrease in the quality of the eggs they lay. In addition, we show that this shift in oviposition date is dependent on mosquito strain: a comparison of several isogenic mosquitoes strains, one insecticide-susceptible and two insecticide-resistant ones, reveals that only the former shift their oviposition strategy when infected. This pattern suggests the existence of a costly host-driven response to parasitism, as insecticide-resistant mosquitoes have been shown to be in generally poorer condition.  相似文献   

6.
It has often been suggested that vector-borne parasites alter their vector''s feeding behaviour to increase their transmission, but these claims are often based on laboratory studies and lack rigorous testing in a natural situation. We show in this field study that the malaria parasite, Plasmodium falciparum, alters the blood-feeding behaviour of its mosquito vector, Anopheles gambiae s.l., in two ways. First, mosquitoes infected with sporozoited, the parasite stage that is transmitted from the mosquito to a human, took up larger blood meals than uninfected mosquitoes. Whereas 72% of the uninfected mosquitoes had obtained a full blood meal, 82% of the infected ones had engorged fully. Second, mosquitoes harbouring sporozoites were more likely to bite several people per night. Twenty-two per cent of the infected mosquitoes, but only 10% of the uninfected mosquitoes, contained blood from at least two people. We conclude that the observed changes in blood-feeding behaviour allow the parasite to spread more rapidly among human hosts, and thus confirm that the parasite manipulates the mosquito to increase its own transmission.  相似文献   

7.
Because they provide a high density and diversity of vertebrate species, small water pools and shaded environments, zoological gardens offer ideal living conditions for numerous mosquito species. Depending on their host preferences and vector competencies, these species may be able to transmit pathogens between native and non‐adapted exotic blood host species, thereby causing morbidity and mortality among valuable zoo animals. To determine the extent to which native mosquito species feed on captive and wild animals, as well as on humans, in two German zoological gardens, mosquitoes were collected over two seasons by trapping and aspirating. A total of 405 blood‐fed specimens belonging to 16 mosquito taxa were collected. Genetic bloodmeal analysis revealed 56 host species, mainly representing mammals of the zoo animal population, including exotic species previously not known as blood hosts of the mosquito species collected. These results indicate opportunistic feeding patterns with low host‐specificity in the analysed mosquitoes, although these could be grouped, according to their bloodmeals, into ‘amphibian‐’, ‘non‐human mammal‐’ and ‘non‐human mammal and human‐’ feeding species. As the blood‐feeding preferences of vector‐competent mosquito species are major determinants of vector capacity, information on the blood‐feeding behaviour of mosquitoes in zoos is crucial to the success of targeted vector management.  相似文献   

8.
Mosquito dispersal is a key behavioural factor that affects the persistence and resurgence of several vector-borne diseases. Spatial heterogeneity of mosquito resources, such as hosts and breeding sites, affects mosquito dispersal behaviour and consequently affects mosquito population structures, human exposure to vectors, and the ability to control disease transmission. In this paper, we develop and simulate a discrete-space continuous-time mathematical model to investigate the impact of dispersal and heterogeneous distribution of resources on the distribution and dynamics of mosquito populations. We build an ordinary differential equation model of the mosquito life cycle and replicate it across a hexagonal grid (multi-patch system) that represents two-dimensional space. We use the model to estimate mosquito dispersal distances and to evaluate the effect of spatial repellents as a vector control strategy. We find evidence of association between heterogeneity, dispersal, spatial distribution of resources, and mosquito population dynamics. Random distribution of repellents reduces the distance moved by mosquitoes, offering a promising strategy for disease control.  相似文献   

9.
We develop a theory for host seeking decisions in mosquitoes that explicitly considers the tradeoffs mosquitoes face in allocation to somatic and gametic function. Specifically, we consider conditions under which mosquitoes should seek out nectar and blood hosts upon encountering host odours. Results from development of a dynamic model that considers free and crop energy states suggest that mosquitoes should seek out blood hosts under a wide variety of conditions but that decisions to seek nectar depends upon crop volume, concentration and free energy. This pattern arises because mosquitoes carrying large crop loads are constrained in their ability to obtain large blood meals due to space limitations in the abdomen. The predicted patterns of behaviour are supported by published observations of mosquito behaviour.  相似文献   

10.
Aedes aegypti mosquitoes salivate during intradermal probing of vertebrate prey before ingesting blood (Griffiths and Gordon 1952). Nonsalivating mosquitoes locate blood more slowly; this difference was ascribed to an anti-platelet activity found in the mosquito's saliva (Ribeiro et al. 1984). Mosquitoes infected with Plasmodium gallinaceum suffer pathology that specifically impairs saliva anti-hemostatic activity but without reducing volume of output (Rossignol et al. 1984). The complexity of the feeding apparatus of mosquitoes provides opportunity for a variety of strategies in which pathogens may produce specific lesions that enhance their transmission, but the variables that affect the duration of probing by mosquitoes have not been defined. We sought to resolve this complexity by identifying and quantifying relevant parameters of probing behavior. Mosquitoes thrust their mouthparts repeatedly through their host's skin while searching for blood. Female A. aegypti thrust at 7-sec intervals. If this search results in success, feeding ensues. Alternatively, the mosquito "desists," the mouthparts stylets are withdrawn, and the mosquito attempts to feed at another site. Even after previous desistance, the probability of finding blood remains undiminished. Functions for the probability of feeding success and desistance over time were derived using data from observations on 300 mosquitoes. The probability of feeding success was interpreted as being a function of the density of vessels in the skin, their geometric distribution, and the conditions locally affecting hemostasis. During each probe, the probability of desisting increased linearly with time, and after desisting once, mosquitoes tended to desist more rapidly. A model was developed incorporating Monte Carlo simulation which closely fit observed data. By changing values for the several parameters of the probability functions, we predicted modes in which parasites may manipulate their hosts to enhance transmission, both to and from the vector. In particular, parasite strategies in the vector would include induced salivary pathology; increased duration of probing thrusts; decreased desistance time; and inhibited phagoreception. Predicted parasite strategies in the reservoir host would include increased skin vascular volume and impaired host hemostasis. Our model supports the hypothesis of a mutualistic interaction of malaria and mosquitoes.  相似文献   

11.
This study reports on the relationship between Wuchereria bancrofti infection and female body size, intake of blood and fecundity in the mosquito Culex quinquefasciatus, vector of this filarial parasite in Recife (Brazil). Adults from field collected larvae were infected via a membrane feeding procedure, using blood with parasitaemia ranging from 724-6,000 mf/ml. A positive correlation was observed between mosquito size (measured by wing length) and egg production in uninfected females. However, this relationship did not exist in W. bancrofti infected mosquitoes. This change is unlikely to be the result of changes in blood ingestion as no significant difference was found when infected and uninfected females were compared. Variation in egg production observed between trials could not be associated with parasite density in the blood. These results suggest infection with W. bancrofti may disrupt the relationship between mosquito size and egg production during the first gonotrophic cycle of C. quinquefasciatus such that fecundity is sometimes reduced. However, this overall affect is variable and many groups of mosquitoes do not respond in this way.  相似文献   

12.
Mosquito blood meals provide information about the feeding habits and host preference of potential arthropod-borne disease vectors. Although mosquito-borne diseases are ubiquitous in the Neotropics, few studies in this region have assessed patterns of mosquito-host interactions, especially during actual disease outbreaks. Based on collections made during and after an outbreak of equine viral encephalitis, we identified the source of 338 blood meals from 10 species of mosquitoes from Aruza Abajo, a location in Darien province in eastern Panama. A PCR based method targeting three distinct mitochondrial targets and subsequent DNA sequencing was used in an effort to delineate vector-host relationships. At Aruza Abajo, large domesticated mammals dominated the assemblage of mosquito blood meals while wild bird and mammal species represented only a small portion of the blood meal pool. Most mosquito species fed on a variety of hosts; foraging index analysis indicates that eight of nine mosquito species utilize hosts at similar proportions while a stochastic model suggests dietary overlap among species was greater than would be expected by chance. The results from our null-model analysis of mosquito diet overlap are consistent with the hypothesis that in landscapes where large domestic animals dominate the local biomass, many mosquito species show little host specificity, and feed upon hosts in proportion to their biomass, which may have implications for the role of livestocking patterns in vector-borne disease ecology.  相似文献   

13.
Organisms are attacked by different natural enemies present in their habitat. While enemies such as parasitoids and predators will kill their hosts/preys when they successfully attack them, enemies such as micropredators will not entirely consume their prey. However, they can still have important consequences on the performance and ecology of the prey, such as reduced growth, increased emigration, disease transmission. In this paper, we investigated the impact of a terrestrial micropredator, the yellow fever mosquito Aedes aegypti, on its unusual invertebrate host, the Egyptian cotton leaf worm, Spodoptera littoralis. Larvae developing in presence of mosquitoes showed a slower development and reached a smaller pupal weight when compared to a control without mosquitoes, apparently because of a reduced feeding time for larvae. In addition, larvae tended to leave the plant in presence of mosquitoes.These results suggest that mosquitoes act as micropredators and affects lepidopteran larvae behaviour and development. Ecological impacts such as higher risks of food depletion and longer exposure to natural enemies are likely to be costly consequences. The importance of this phenomenon in nature - the possible function as last resort when vertebrates are unavailable - and the evolutionary aspects are discussed.  相似文献   

14.
The vector potential of the rabbit flea (Cediopsylla simplex) and a mosquito (Aedes triseriatus) was investigated for Herpesvirus sylvilagus transmission among cottontail rabbits (Sylvilagus floridanus). Twelve groups of 12-50 fleas were fed on three viremic cottontails for 2-21 days before transfer to 12 susceptible rabbits. Standard interrupted feeding trials employed five groups of 6-12 mosquitoes, two viremic donor cottontails anf five healthy recipients. No evidence of virus was detected from recipients' blood nor did they develop specific antibody. Virus acquisition and persistence in the insects was evaluated by attempting to recover the virus from 19 pools of mosquitoes engorged on viremic blood and 36 pools of engorged fleas or those living on viremic hosts for 1-21 days. Results were negative.  相似文献   

15.

Background

The question whether Plasmodium falciparum infection affects the fitness of mosquito vectors remains open. A hurdle for resolving this question is the lack of appropriate control, non-infected mosquitoes that can be compared to the infected ones. It was shown recently that heating P. falciparum gametocyte-infected blood before feeding by malaria vectors inhibits the infection. Therefore, the same source of gametocyte-infected blood could be divided in two parts, one heated, serving as the control, the other unheated, allowing the comparison of infected and uninfected mosquitoes which fed on exactly the same blood otherwise. However, before using this method for characterizing the cost of infection to mosquitoes, it is necessary to establish whether feeding on previously heated blood affects the survival and fecundity of mosquito females.

Methods

Anopheles gambiae M molecular form females were exposed to heated versus non-heated, parasite-free human blood to mimic blood meal on non-infectious versus infectious gametocyte-containing blood. Life history traits of mosquito females fed on blood that was heat-treated or not were then compared.

Results

The results reveal that heat treatment of the blood did not affect the survival and fecundity of mosquito females. Consistently, blood heat treatment did not affect the quantity of blood ingested.

Conclusions

The study indicates that heat inactivation of gametocyte-infected blood will only inhibit mosquito infection and that this method is suitable for quantifying the fitness cost incurred by mosquitoes upon infection by P. falciparum.  相似文献   

16.
Viruses are the most abundant and diverse genetic entities on Earth; however, broad surveys of viral diversity are hindered by the lack of a universal assay for viruses and the inability to sample a sufficient number of individual hosts. This study utilized vector-enabled metagenomics (VEM) to provide a snapshot of the diversity of DNA viruses present in three mosquito samples from San Diego, California. The majority of the sequences were novel, suggesting that the viral community in mosquitoes, as well as the animal and plant hosts they feed on, is highly diverse and largely uncharacterized. Each mosquito sample contained a distinct viral community. The mosquito viromes contained sequences related to a broad range of animal, plant, insect and bacterial viruses. Animal viruses identified included anelloviruses, circoviruses, herpesviruses, poxviruses, and papillomaviruses, which mosquitoes may have obtained from vertebrate hosts during blood feeding. Notably, sequences related to human papillomaviruses were identified in one of the mosquito samples. Sequences similar to plant viruses were identified in all mosquito viromes, which were potentially acquired through feeding on plant nectar. Numerous bacteriophages and insect viruses were also detected, including a novel densovirus likely infecting Culex erythrothorax. Through sampling insect vectors, VEM enables broad survey of viral diversity and has significantly increased our knowledge of the DNA viruses present in mosquitoes.  相似文献   

17.
蚊虫作为重要的病媒生物,其大多数种类在成虫阶段需要取食糖餐,且对不同糖餐组分表现出不同偏好。同时,糖餐行为具有特定的时辰节律。野外条件下,不同成蚊对不同开花植物及其果实具有不同的偏好,不同糖餐植物对成蚊的存活率、寿命、繁殖力的影响各不相同。成蚊对糖餐的定位与植物挥发物有关,目前已有多种糖餐植物的活性挥发物被鉴定。含毒糖诱剂对多种成蚊具有良好的防治效果,人们已将其用于多种病媒生物的防治及蚊媒病毒的检测。利用糖餐植物挥发物研发出蚊虫引诱剂,在降低蚊媒疾病风险方面具有广阔的应用前景。本文对成蚊取食糖餐的习性、成蚊偏好的糖餐植物相关研究以及如何利用成蚊的糖餐行为来进行蚊虫防制等进行了综述。  相似文献   

18.

Background

Aedes aegypti is the main vector of dengue, a disease that is increasing its geographical range as well as incidence rates. Despite its public health importance, the effect of dengue virus (DENV) on some mosquito traits remains unknown. Here, we investigated the impact of DENV-2 infection on the feeding behavior, survival, oviposition success and fecundity of Ae. aegypti females.

Methods/Principal Findings

After orally-challenging Ae. aegypti females with a DENV-2 strain using a membrane feeder, we monitored the feeding behavior, survival, oviposition success and fecundity throughout the mosquito lifespan. We observed an age-dependent cost of DENV infection on mosquito feeding behavior and fecundity. Infected individuals took more time to ingest blood from anesthetized mice in the 2nd and 3rd weeks post-infection, and also longer overall blood-feeding times in the 3rd week post-infection, when females were around 20 days old. Often, infected Ae. aegypti females did not lay eggs and when they were laid, smaller number of eggs were laid compared to uninfected controls. A reduction in the number of eggs laid per female was evident starting on the 3rd week post-infection. DENV-2 negatively affected mosquito lifespan, since overall the longevity of infected females was halved compared to that of the uninfected control group.

Conclusions

The DENV-2 strain tested significantly affected Ae. aegypti traits directly correlated with vectorial capacity or mosquito population density, such as feeding behavior, survival, fecundity and oviposition success. Infected mosquitoes spent more time ingesting blood, had reduced lifespan, laid eggs less frequently, and when they did lay eggs, the clutches were smaller than uninfected mosquitoes.  相似文献   

19.
The physical integrity of bednets is a concern of national malaria control programs, as it is a key factor in determining the rate of replacement of bednets. It is largely assumed that increased numbers of holes will result in a loss of protection of sleepers from potentially infective bites. Experimental hut studies are valuable in understanding mosquito behaviour indoors, particularly as it relates to blood feeding and mortality. This review summarises findings from experimental hut studies, focusing on two issues: (i) the effect of different numbers or sizes of holes in bednets and (ii) feeding behaviour and mortality with holed nets as compared with unholed nets. As might be expected, increasing numbers and area of holes resulted in increased blood feeding by mosquitoes on sleepers. However, the presence of holes did not generally have a large effect on the mortality of mosquitoes. Successfully entering a holed mosquito net does not necessarily mean that mosquitoes spend less time in contact with the net, which could explain the lack in differences in mortality. Further behavioural studies are necessary to understand mosquito behaviour around nets and the importance of holed nets on malaria transmission.  相似文献   

20.
A common assumption about malaria, dengue, and other mosquito-borne infections is that the two main components of the risk of human infection—the rate at which people are bitten (human biting rate) and the proportion of mosquitoes that are infectious—are positively correlated. In fact, these two risk factors are generated by different processes and may be negatively correlated across space and time in heterogeneous environments. Uneven distribution of blood-meal hosts and larval habitat creates a spatial mosaic of demograPhic sources and sinks. Moreover, mosquito populations fluctuate temporally, forced by environmental variables such as rainfall, temperature, and humidity. These sources of spatial and temporal heterogeneity in the distribution of mosquito populations generate variability in the human biting rate, in the proportion of mosquitoes that are infectious, and in the risk of human infection. To understand how heterogeneity affects the epidemiology of mosquito-borne infections, we developed a set of simple models that incorporate heterogeneity in a stepwise fashion. These models predict that the human biting rate is highest shortly after the mosquito densities peak, near breeding sites where adult mosquitoes emerge, and around the edges of areas where humans are aggregated. In contrast, the proportion of mosquitoes that are infectious reflects the age structure of mosquito populations; it peaks where old mosquitoes are found, far from mosquito breeding habitat, and when mosquito population density is declining. Finally, we show that estimates for the average risk of infection that are based on the average entomological inoculation rate are strongly biased in heterogeneous environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号