首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
E G Bendit 《Biopolymers》1966,4(5):561-577
A number of new bands have been found in the spectra of deuterated α- and β-keratin. In particular, the deuteration difference spectrum has been useful for the determination of frequencies of previously unsuspected bands. Thus it is found that the amide A and II frequencies of the nonhelical component in α-keratin occur at 3310–3320 and 1520 cm.?1, respectively, and that both bands exhibit dichroism consistent with polypeptide chains which have a measure of alignment parallel to the fiber axis. The parallel dichroism of the amide II′ band of this phase at about 1435 cm.?l also indicates some alignment. A nondichroic residual band at 1513 cm.?1 in highly deuterated α-keratin is assigned to the tyrosine residue, as a sharp band near this frequency is found in the spectrum of polytyrosine. The ν‖(o) component of the α-helix is weak or absent in α-keratin, and the relatively sharp band observed near this frequency is thought to be due to the tyrosine residue, while its dichroism is caused by the presence of dichroic nonhelical material. A band near 1575 cm.?1 in deuterated α- and β-keratin is tentatively assigned to the deuterated guanidinium group of arginine. This band becomes progressively more prominent during deuteration, which indicates that some arginine side chains arc slow to exchange, possibly because their environment prevents interaction with D2O. The deuteration difference spectrum also shows that, contrary to earlier views, helical material in α-keratin exchanges significantly during the early stages of deuteration, although at a slower rate than the nonhelical material, while part of the nonhelical phase does not exchange as rapidly as had been thought and makes a contribution even after many hours or days.  相似文献   

2.
The normal modes have been calculated for structures having the dihedral angles of the four β-turns of insulin. Frequencies are predicted in the amide I region near 1652 and 1680 cm?1. The former overlaps the α-helix band at 1658 cm?1 in the Raman spectrum, while the latter accounts for the hitherto unassignable band at 1681 cm?1. Calculated amide III frequencies extend above 1300 cm?1, providing a compelling assignment of the 1303-cm?1 band in insulin and similar bands in other globular proteins.  相似文献   

3.
Coat material fromBacillus stearothermophilus spores has been examined for the following properties: X-ray diffraction pattern, infrared absorption spectrum, mechanical strength, and melting temperatures of the crystalline regions. The X-ray diffraction pattern of the coat material is different from that of both α-and β-keratin. The high melting temperature of the crystalline material indicates that its bonding is more stable than that of α- or β-keratin. The mechanical strength of the coat material ?109N/m2 is shown to be high enough to allow the coat to support the internal pressure in bacterial spores. This pressure has been postulated to produce a partial dehydration, which increases the ability of bacterial spores to withstand high temperatures in water.  相似文献   

4.
Intensities and other spectral parameters of infrared amide I and II bands of α-helical polypeptides in solutions have been determined for poly(γ-benzylglutamate), poly(γ-ethylglutamate), and polymethionine in chloroform, polylysine, poly(glutamic acid), and fibrillar protein tropomyosin from rabbit muscles in heavy water. The majority of spectral parameters are characteristic. The half-width of the amide I band was found to vary in the range of 15–40 cm?1 for different polypeptides in the different solutions. The correlation between this parameter of the amide I band and the stability of the α-helix was estimated. A new weak band near 1537 cm?1 of unknown origin was observed for the hydrogen form of polypeptides in the α-helical state.  相似文献   

5.
The synthetic, zwitterionic bacterial cell wall peptides—D -Gluγ-L-Lys, D -Gluγ-L-Lys-D -Ala, D -Gluγ-L-Lys-D -Ala-D -Ala, and L-Ala-D -Gluγ-L-Lys-D -Ala-D -Ala—have been investigated in the crystalline and aqueous solution state applying ir and Raman spectroscopy. Additionally, aqueous solutions of the tetra- and pentapeptide have been investigated by CD spectroscopic techniques. Apart from the dipeptide, whose spectral features were dominated by end-group vibrations, the corresponding ir and Raman active bands of the crystalline peptides in the amide and skeletal regions were found at similar wave numbers, thus suggesting an analogous three-dimensional structure of these compounds. Dominant amide A, I, II, and III bands near 3275, 1630, 1540, and 1220–1250 cm?1, respectively, in the ir are interpreted in favor of an intermolecularly hydrogen-bonded, β-like structure. The absence of any amide components near 1680–1690 cm?1, together with the presence of strong amide bands near 1630 cm?1, and weak bands near 1660 cm?1 in the ir, which, conversely, were found in the Raman spectra as weak and strong bands, but at corresponding wave numbers, is taken as strong evidence for the presence of the unusual, parallel-arranged β-structure. On the basis of comparative theoretical considerations, a parallel-arranged, “β-type ring” conformation [P. De Santis, S. Morosetti, and R. Rizzo (1974) Macromolecules 7 , 52–58] is hypothesized. The solubilized peptides exhibited distinct similarities with their crystalline counterparts in respect to frequency values and relative intensities of the corresponding ir and Raman-active amide I/I′ components, and of some Raman bands in the skeletal region. This is interpreted in terms of residual short-range order, persisting even in aqueous solution. We concluded that the peptides show a strong propensity to form hydrated, strongly associated aggregates in water. On the basis of amide I/I′ band positions, stable, intramolecular interactions via the amide groups are discarded for the solubilized peptides. Complementarily, the CD data obtained suggest the presence of weakly bent, “open-turn”-like structures for the tetra- and pentapeptide in aqueous solution.  相似文献   

6.
Infrared spectroscopy has been applied to the study of a number of aqueous systems of model and natural biomembranes. The absorption bands arising from water and buffer solutions were eliminated by means of an infrared spectrometer data station. Spectra were examined using H2O and 2H2O aqueous buffer systems. Pure lecithin-water systems, and various model biomembranes containing cholesterol, gramicidin A, bacteriorhodopsin or Ca2+-ATPase were examined. The infrared spectra of the reconstituted biomembranes were compared with those of the corresponding natural biomembranes, i.e. the purple membrane of Halobacterium halobium and also sarcoplasmic reticulum membranes, respectively.Changes in lipid chain conformation caused by the various intrinsic molecules incorporated within the model lipid bilayer structures were monitored by studying the shifts in frequency (cm?1) of the CH2 symmetric and asymmetric absorption bands arising from the lipid chains. The effect of gramicidin A and also the intrinsic proteins, as indicated by the shift of band frequencies, are quite different from that of cholesterol at temperatures above the main lipid transition temperature tc. Cholesterol causes a reduction in gauche isomers which increases with concentration of cholesterol within the lipid bilayer. Whilst gramicidin A and the intrinsic proteins at low concentration cause a reduction of gauche isomers, at higher concentrations of these molecules, however, there is little difference in gauche isomer content when the intrinsic molecule is present compared with that of the fluid lipid alone. These results are considered and compared with previously published studies using deuterium nuclear magnetic resonance spectroscopy on similar model biomembrane systems. Below the lipid tc value, all the intrinsic molecules produce an increase in gauche isomers presumably by disturbing the lipid chain packing in the crystalline lipid arrangement.Information about the polypeptide structure within gramicidin A. the reconstituted proteins and also the proteins in the natural biomembranes was obtained by examining the region of the infrared spectrum between 1600 and 1700 cm?1 associated with the amide I and amide II bands. An examination of the infrared band frequencies of the different systems in this region leads to the conclusions: (1) that gramicidin A within a phospholipid bilayer structure probably has a single helix rather than a double helix structure; (2) that there are differences in band widths of the reconstituted Ca2+-ATPase and bacteriorhodopsin compared with the spectra of the corresponding sarcoplasmic reticulum and purple membrane; (3) different membrane proteins adopt different conformations as evinced by a comparison of the spectra of the sarcoplasmic reticulum and purple membrane; (4) the polypeptide arrangement in the purple membrane is mainly helical but the abnormal frequency of the amide I band suggests that some distortion of the helix occurs: and (5) the sarcoplasmic reticulum membrane contains unordered as well as α-helix polypeptide arrangements.  相似文献   

7.
The αII-helix (? = ?70.47°, ψ = ?35.75°) is a structure having the same n and h as the (standard) αI-helix (? = ?57.37°, ψ = ?47.49°). Its conformational angles are commonly found in proteins. Using an improved α-helix force field, we have compared the vibrational frequencies of these two structures. Despite the small conformational differences, there are significant predicted differences in frequencies, particularly in the amide A, amide I, and amide II bands, and in the conformation-sensitive region below 900 cm?1. This analysis indicates that αII-helices are likely to be present in bacteriorhodopsin [Krimm, S. & Dwivedi, A. M. (1982) Science 216 , 407–408].  相似文献   

8.
Water loss during lyophilization of a 49.4 mg/mL solution of lysozyme in D2O was studied with ir spectroscopy using a low-temperature, single reflection, horizontal, attenuated, total reflectance accessory. Four regions of water loss were identified and assignable to different forms of bound water. The amide I band begins to shift to higher frequency while the amide II concurrently shifts to lower frequency and broadens after the first stage of water loss (sublimation) at ?10°C. Additionally, the carboxylate band (at 1584 cm?1) shifts slightly to lower frequency. A second stage at 17°C is characterized by continued shifts in the carboxylate and amide II bands to low frequency, further broadening in the amide II and greater shift to high frequency in the amide I (ascribed to the removal of periphery water around the protein). At the third stage of water loss, the carboxylate band decreases substantially in relative absorbance (consistent with the removal of water from the carbonyl backbone). In the fourth and last stage, the carboxylate band nearly disappears and water loss is very slow. Based upon a final level of hydration of 0.037 h, the last stage corresponds to 25% completion of the removal of water associated with ionizable side chains. From start to finish, the amide I shifts 9 cm?1 to higher frequency. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
Vibrational circular dichroism (VCD) spectra for the principal amide stretching vibrations, amide A (N? H stretch) and amide I (predominantly C?O stretch), are presented and analyzed for a variety of polypeptides dissolved in chloroform, as well as for two examples in D2O. Our results for poly(γ-benzyl-L -glutamate) confirm the first and only previous report of VCD in polypeptides carried out by Singh and Keiderling [(1981) Biopolymers 20 , 237–240]. Collectively, our spectra show that the sense of the bisignate VCD in these two regions depends on the sense of α-helicity and not on the absolute configuration of the constituent amino acids. This conclusion is established by obtaining VCD for the two polypeptides, poly(β-benzyl-L -asparate) and poly(im-benzyl-L -histidine), that form left-handed as opposed to right-handed α-helices. A new amide band having significant VCD intensity owing to its Fermi resonance interaction with the N? H stretching mode has been identified as a weak shoulder on the low-frequency side of the amide A band near 3200 cm?1 and is assigned as a combination band of the amide I and amide II vibrations. VCD spectra of polypeptides in D2O solution, although weak, have been successfully measured in the amide I region, where spectra appear to be more complicated due to the presence of solvated and internally hydrogen-bonded amide groups. Strong monosignate contributions to the VCD in the amide A and amide I regions for some of the polypeptides indicate coupling of an electronic nature between these two regions and is deduced by an application of the concept of local sum rules of rotational strength. It appears that a detailed understanding of the VCD obtained for polypeptides will not only be diagnostic of secondary structure, but also of more subtle structural and vibrational effects that give rise to local, intrinsic chirality in the amide vibrations.  相似文献   

10.
Outer and cytoplasmic membranes of Escherichia coli were prepared by a method based on isopyenic centrifugation on a sucrose gradient. The infrared spectra of solid films of these membranes were studied. The cytoplasmic membrane had an amide I band at 1657 cm?1 and an amide II band at 1548 cm?1. The outer membrane had a broad amide I band at 1631–1657 cm?1 and an amid II band at 1548 cm?1 with a shoulder at 1520–1530 cm?1. Upon deuteration, the amide I band of the cytoplasmic membrane shifted to 1648 cm?1, whereas the band at 1631 cm?1 of the outer membrane remained unchanged. After extraction of lipids with chloroform and methanol, the infrared spectra in the amide I and amide II regions of both membranes remained unchanged. Although the outer membrane specifically contained lipopolysaccharide, this could not account for the difference in the infrared spectra of outer and cytoplasmic membranes. It is concluded that a large portion of proteins in the outer membrane is a β-structured polypeptide, while this conformation is found less, if at all in the cytoplasmic membrane.  相似文献   

11.
Abstract

The effect of pressure on the conformational structure of amyloid β (1–40) peptide (Aβ(1–40)), exacerbated with or without temperature, was determined by Fourier transform infrared (FT-IR) microspectroscopy. The result indicates the shift of the maximum peak of amide I band of intact solid Aβ(1–40) from 1655 cm?1 (α-helix) to 1647–1643 cm?1 (random coil) with the increase of the mechanical pressure. A new peak at 1634 cm?1 assigned to β-antipar- allel sheet structure was also evident. Furthermore, the peak at 1540 cm?1 also shifted to 1527 (1529) cm?1 in amide II band. The former was assigned to the combination of α-helix and random coil structures, and the latter was due to β-sheet structure. Changes in the composition of each component in the deconvoluted and curve-fitted amide I band of the compressed Aβ(1–40) samples were obtained from 33% to 22% for α-helix/random coil structures and from 47% to 57% for β-sheet structure with the increase of pressure, respectively. This demonstrates that pressure might induce the conformational transition from α-helix to random coil and to β-sheet structure. The structural transformation of the compressed Aβ(1–40) samples was synergistically influenced by the combined effects of pressure and temperature. The thermal-induced formation of β-sheet structure was significantly dependent on the pressures applied. The smaller the pressure applied the faster the β-sheet structure transformed. The thermal-dependent transition temperatures of solid Aβ(1–40) prepared by different pressures were near 55–60 °C.  相似文献   

12.
Poly-L -prolines I and II were differentiated by the characteristic bands in the far infrared region. Form I showed two broad bands at about 280 and 160 cm?1 and form II two bands at, 400 and 670 cm.?1. Furthermore, three broad bands at about 250, 200, and 100 cm.?1 were observed in the spectrum for form II. Infrared absorption bands of the pentamer, hexamer, and octamer of tert-amyloxycarbonyl-L -proline were almost similar to those of poly-L -proline II in the 1800–75 cm.?1 region. In the far-infrared region, especially, the absorption bands of these three oligopeptides were in good agreement with that of poly–L –proline II. Accordingly we concluded that the molecules of pentamer, hexamer, and octamer had a helical structure of a left-handed threefold screw axis. The tetrapeptide of tert-amyloxycarbonyl-L -proline might also have a left-handed helix, probably one turn, since the tetramer clearly showed an absorption band at about 400 cm.?-1 characteristic of poly–L –proline II.  相似文献   

13.
Laser Raman spectroscopy study indicates that in concentrated fresh acidic solution (30 mg/ml), glucagon remains predominantly α-helix and not random-coil. The splitting of the amide III band into three components in the crystal at 1262, 1275, and 1295 cm?1 is due to the α-conformation as expected. The presence of a small fraction of β-conformation is demonstrated by the appearance of the weak band at 1230 cm?1 in the fresh solution. This study also established the frequencies of amide III′ bands for the α- and β-conformations of glucagon: 957 and 988 cm?1 for α and β forms, respectively. The conformations of acidic and basic glucagon solutions are apparently different.  相似文献   

14.
Fourier transform infrared transmission spectra have been obtained of the enzyme ribonuclease in both H2O and 2H2O. The resolution of the spectra have been enhanced by Fourier self-deconvolution procedures. The infrared spectrum of ribonuclease changes during exchange of the enzyme's amide hydrogens for deuterium and the exchange has been followed in the amide I and amide II spectral regions. The amide I band shifts towards lower wavenumbers during both the fast and slow phases of hydrogen exchange and the interpretation of these shifts has aided the band assignments. In particular these studies have allowed an assignment to be made for the high frequency component of the β-strand absorption that differs from that proposed previously. This paper represents the first example of the use of deconvoluted Fourier transform infrared spectra in conjunction with hydrogen-deuterium exchange in order to aid in the assignment of a proteins's infrared bands.  相似文献   

15.
The α-helical from of poly(L -glutamic acid) [α-poly(Glu)] gives rise to the same amide I and III lines as α-poly(γ-benzyl-L -glutamate) at 1652 and 1296 cm?1, respectively. The latter is a superposition of the amide III line near 1290 cm?1 and a line deu to vibrational made of CH2 groups of the side chain near 1300 cm?1. A line at 924 cm?1 is tentatively identified as characteristics of α-poly(Glu). Both the β1- and β2- forms of poly(Glu) give rise to characteristic of β-amide. III frequencies that are similar because of their similar backbone structures. Differences in the conformations of their side chains and in the environments of the backbone are reflected in the region 800–1200 cm?1 and in the amide I. A line at 1042 cm?1 and a pair at 1021 and 1059 cm?1 are tentatively assigned as characteristic of β1-poly(Glu) and β2-poly(Glu), respectively. The α-β2 transition in poly(L -Glu78L -Val22) is shown by the appearance of all the β2-characteristic lines in the thermally transformed sample. The same features observed in poly(L -Glu95L -Val5) also indicate that the α-β2 transition of poly(Glu) is facilitated by the presence of L -valine and that the content of L -valine is not critical for this purpose. Investigation of the Raman spectra of the calcium, strontium, barium and sodium slats of poly(Glu) shows that these salts, under the conditions of preparation used, all the have random-coil conformations.  相似文献   

16.
New techniques in laser Raman spectroscopy are used to obtain spectra of aqueous solutions of lysozylme for frequency shifts as small as 5 cm?1. In addition, Raman measurements are made on two crystalline forms of hen egg white lysozyme. The spectra obtained from the solution and from the crystal are found to be similar for frequencies above 100 cm?1. However, a low-frequency band at 25 cm?1 observed in crystalline lysozyme is not found in the solution, indicating that this band cannot be attributed to an internal molecular vibration.  相似文献   

17.
The normal modes have been calculated for β-turns of types I, II, III, I′, II′, and III′. The complete set of frequencies is given for the first three structures; only the amide I, II, and III modes are given for the latter three structures. Calculations have been done for structures with standard dihedral angles, as well as for structures whose dihedral angles differ from these by amounts found in protein structures. The force field was that refined in our previous work on polypeptides. Transition dipole coupling was included, and is crucial to predicting frequency splittings in the amide I and amide II modes. The results show that in the amide I region, β-turn frequencies can overlap with those of the α-helix and β-sheet structures, and therefore caution must be exercised in the interpretation of protein bands in this region. The amide III modes of β-turns are predicted at significantly higher frequencies than those of α-helix and β-sheet structures, and this region therefore provides the best possibility of identifying β-turn structures. Amide V frequencies of β-turns may also be distinctive for such structures.  相似文献   

18.
Infrared spectra of poly-L -alanine in trifluoroacetic acid-chloroform mixtures have been investigated and compared with those of a model amide (N-methylacetamide). The purpose of this work is to determine the nature of peptide-acid specific interactions responsible for the helix-random coil transition of polymer chains. Analysis is made in using amide (A, I, II, III) and acid (νC?O, νOH) vibrations which are specially sensitive to molecular interactions. We examined a model compound to determine the spectral characteristics of the different complexes or species formed between amide and acid. At a low acid concentration, hydrogen-bonded complexes: ? (NH) C?O…?HOOCCF3 (1) are evidenced but no association between amide NH and acid CO groups (complexes A) is observed. For higher acid concentrations complexes (I) are progressively changed into ions pairs and free ions, which result from amide protonation by acid, according to the exothermic equilibrium (I)?? (NH)COH+, ?OOCCF3(II). Amidium and carboxylate bands are localized between 1680–1705 cm?1 and 1620–1625 cm?1, respectively. If the cation band is always clearly seen, the anion band is only observed for the most acidic solutions. For the polymer, a gradual complexation of type (I) is observed for all acid concentrations. From our results, the assumption of an (A) type interaction seems very unlikely but cannot be excluded. Moreover, proton transfer—similar to that observed with a model amide—is never evidenced since, in particular, the amidium band characteristic of protonation is never seen. In contrast to previous investigations, we conclude that the helix-random coil transition of polypeptides is not due to the protonation of the peptide functions. This transition does suggest a strong interaction by hydrogen bonds between polymer and acid molecules.  相似文献   

19.
Poly-β-benzyl-L -aspartate (poly[Asp(OBzl)]) forms either a lefthanded α-helix, β-sheet, ω-helix, or random coil under appropriate conditions. In this paper the Raman spectra of the above poly[Asp(OBzl)] conformations are compared. The Raman active amide I line shifts from 1663 cm?1 to 1679 cm?1 upon thermal conversion of poly[Asp(OBzl)] from the α-helical to β-sheet conformation while an intense line appearing at 890 cm?1 in the spectrum of the α-helix decreases in intensity. The 890 cm?1 line also displays weak intensity when the polymer is dissolved in chloroform–dichloroacetic acid solution and therefore is converted to the random coil. This line probably arises from a skeletal vibration and is expected to be conformationally sensitive. Similar behavior in the intensity of skeletal vibrations is discussed for other polypeptides undergoing conformational transitions. The Raman spectra of two cross-β-sheet copolypeptides, poly(Ala-Gly) and poly(Ser-Gly), are examined. These sequential polypeptides are model compounds for the crystalline regions of Bombyx mori silk fibroin which forms an extensive β-sheet structure. The amide I, III, and skeletal vibrations appeared in the Raman spectra of these polypeptides at the frequencies and intensities associated with β-sheet homopolypeptides. Since the sequential copolypeptides are intermediate in complexity between the homopolypeptides and the proteins, these results indicate that Raman structure–frequency correlations obtained from homopolypeptide studies can now be applied to protein spectra with greater confidence. The perturbation scheme developed by Krimm and Abe for explaining the frequency splitting of the amide I vibrations in β-sheet polyglycine is applied to poly(L -valine), poly-(Ala-Gly), poly(Ser-Gly), and poly[Asp(OBzl)]. The value of the “unperturbed” frequency, V0, for poly[Asp(OBzl)] was significantly greater than the corresponding values for the other polypeptides. A structural origin for this difference may be displacement of adjacent hydrogen-bonded chains relative to the standard β-sheet conformation.  相似文献   

20.
The Raman spectra of the double helical complexes of poly C–poly G and poly I–poly C at neutral pH are presented and compared with the spectra of the constituent homopolymers. When a completely double-helical structure is formed in solution a strong sharp band at 810–814 cm?1 appears which has previously been shown to be due to the A-type conformation of the sugar–phosphate backbone chain. By taking the ratio of the intensity of the 810–814 cm?1 band to the intensity of the 1090–1100 cm?1 phosphate vibration, one can obtain an estimate of the fraction of the backbone chain in the A-type conformation for both double-stranded helices and self-stacked single chains. This type of information can apparently only be obtained by Raman spectroscopy. In addition, other significant changes in Raman intensities and frequencies have been observed and tabulated: (1) the Raman intensity of certain of the ring vibrations of guanine and hypoxanthine bases decrease as these bases become increasingly stacked (Raman hypochromism), (2) the Raman band at 1464 cm?1 in poly I is asigned to the amide II band of the cis-amide group of the hypoxanthine base. It shifts in frequency upon base pairing to 1484 cm?1, thus permitting the determination of the fraction of I–C pairs formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号