首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The role of phrenic afferents in controlling inspiratory duration (TI) at elevated end-expiratory lung volume (EEV) has been studied in pentobarbital-anesthetized, spontaneously breathing cats with intact vagi. Responses to increases in EEV, induced by imposition of an expiratory threshold load (ETL) of 10 cmH2O, were monitored before and after section of cervical dorsal roots C3-C7. The immediate (first-breath) effect of application of ETL was a prolongation of both TI and expiratory duration (TE). After 10 min of breathing against the ETL, average TI returned to control values but TE remained prolonged. Abolishing feedback from the diaphragm did not affect these responses. When steady-state responses to ETL were compared with those elicited by inhalation of 5-6% CO2 in O2, changes in EEV had, on average, no independent effect on respiratory drive (rate of rise of integrated phrenic activity), although phrenic activity increased greatly in some cats despite little or no change in arterial partial pressure of CO2. These data indicate that diaphragmatic receptors do not contribute to either the immediate (first-breath) or steady-state responses of phrenic motoneurons to increases in EEV in intact cats.  相似文献   

2.
Because neonatal apnea is frequently associated with airway obstruction, we compared relative changes in activity between various upper airway muscles and the diaphragm during hypercapnic stimulation. The technique of hyperoxic CO2 rebreathing was employed in 17 healthy, sleeping preterm infants studied at a postnatal age of 32 +/- 12 days. Surface diaphragm (DIA) electromyograms (EMGs) were recorded in all infants, and noninvasive measurements of posterior cricoarytenoid (PCA), genioglossus (GG), and alae nasi (AN) EMGs were analyzed in 11, 9, and 8 infants, respectively. During the control period, consistent phasic EMGs were recorded from the DIA in all infants and from the PCA in 8 infants, but from the GG and AN each in only one infant. During CO2 rebreathing, minute ventilation and end-tidal CO2 increased linearly as CO2 rose from 31 +/- 5 to 51 +/- 5 Torr. DIA and PCA EMGs also had proportional and comparable increases throughout rebreathing. In contrast, both GG and AN responses differed from the DIA and PCA (P less than 0.001) and exhibited minimal or absent responses at low levels of hypercapnia. Consistent GG and AN EMGs appeared at comparable levels of end-tidal CO2 (47 +/- 5 and 45 +/- 5 Torr, respectively) and subsequently increased linearly in most infants. We conclude that during CO2 rebreathing the initially delayed and subsequently linear responses of the GG and AN EMGs indicate a high CO2 threshold for these muscles.  相似文献   

3.
The influence of sleep state on the transient (i.e., initial 60 s) and steady-state ventilatory responses to 2% CO2 inhalation was studied in 19 healthy full-term infants. A nasal mask pneumotachometer was used to measure ventilation and end-tidal CO2 partial pressure (PCO2) and enabled abrupt changes in the inspired gas concentration to be made. The magnitude of the change in minute ventilation for both the transient and steady-state responses to CO2 was not statistically different between active (AS) and quiet (QS) sleep. Nonetheless the greater variability in minute ventilation during AS compared with QS continued throughout the period of CO2 inhalation and was associated with a more variable change in ventilation in the individual infants during AS. There was a greater increase in end-tidal PCO2 over the first 60 s during AS (3.3 +/- 0.3 vs. 2.6 +/- 0.2 Torr, in AS and QS, respectively, P less than 0.03). This may indicate a smaller initial increase in alveolar ventilation, relative to CO2 delivery to the lungs, in response to CO2 inhalation during AS. Asynchronous chest wall movements were more common during AS than QS (P less than 0.005) and did not change with CO2. The inconsistent transient ventilatory response to CO2 during AS compared with QS may be important in the behavior of infants to spontaneous episodes of hypercapnia occurring during AS.  相似文献   

4.
The neonatal ventilatory response to hypoxia is characterized by initial transient stimulation and subsequent respiratory depression. It is unknown, however, whether this response is also exhibited by the upper airway muscles that regulate nasal, laryngeal, and pharyngeal patency. We therefore compared electromyogram (EMG) amplitudes and minute EMGs for the diaphragm (DIA), alae nasi (AN), posterior cricoarytenoid (PCA), and genioglossus (GG) muscles in 12 anesthetized spontaneously breathing piglets during inhalation of 12% O2 over 10 min. Minute EMG for the DIA responded to hypoxia with an initial transient increase and subsequent return to prehypoxia levels by 10 min. Hypoxia also stimulated all three upper airway muscles. In contrast to the DIA EMG, however, AN, PCA, and GG EMGs all remained significantly above prehypoxia levels after 10 min of hypoxia. We have thus demonstrated that the initial stimulation and subsequent depression of the DIA EMG after 12% O2 inhalation contrast with the sustained increase in AN, PCA, and GG EMGs during hypoxia. We speculate that 1) central inhibition during neonatal hypoxia is primarily distributed to the motoneuron pools regulating DIA activation and 2) peripheral chemoreceptor stimulation and/or central disinhibition induced by hypoxia preferentially influence those motoneuron pools that regulate upper airway muscle activation, causing the different hypoxic responses of these muscle groups in the young piglet.  相似文献   

5.
Role of substance P in hypercapnic excitation of carotid chemoreceptors   总被引:1,自引:0,他引:1  
Experiments were performed on 17 anesthetized, paralyzed, and artificially ventilated cats to evaluate the importance of substance P-like peptide (SP) on the carotid body responses to CO2. Single or paucifiber carotid chemoreceptor activity was recorded from the peripheral end of the cut carotid sinus nerve. In eight of the cats the influence of SP on hyperoxic hypercapnic responses was studied. While the animals breathed 100% O2, intracarotid infusion of SP (1 microgram.kg-1.min-1, 3 min) increased chemoreceptor activity by +4.8 +/- 0.3 impulses/s. After SP infusion, inhalation of CO2 in O2 caused a rapid increase in activity that reached a peak and then adapted to a lower level, whereas similar levels of CO2 before SP caused only a gradual increase in carotid body discharge rate without any overshoot in response. Furthermore SP significantly increased the magnitude and slope of the CO2 response. In the other nine cats the effect of intracarotid infusion of an SP antagonist, [D-Pro2,D-Trp7,9] SP (10-15 micrograms.kg-1.min-1), on carotid body responses to 1) hyperoxic hypercapnia (7% CO2-93% O2), 2) isocapnic hypoxia (11% O2-89% N2), and 3) hypoxic hypercapnia (11% O2-7% CO2-82% N2) was examined. SP antagonist had no effect on carotid body response to hyperoxic hypercapnia but significantly attenuated the chemoreceptor excitation caused by isocapnic hypoxia and hypoxic hypercapnia. These results suggest that 1) SP may play an important role in carotid body responses to hypoxia but not to CO2, and 2) the mechanisms of stimulation of the carotid body by hypercapnia and by hypoxia differ.  相似文献   

6.
To distinguish experimentally between motor nerve activity destined for vocal cord abductor muscles and that bound for muscles that adduct the cords, we recorded efferent activities of intralaryngeal branches of the recurrent laryngeal nerve (RLN) in decerebrate, vagotomized, paralyzed, ventilated cats. Activities of the whole RLN and phrenic nerve were also recorded. Nerve activities were assessed at several steady-state end-tidal O2 and CO2 concentrations. The nerve to the thyroarytenoid (TA) muscle, a vocal cord adductor, was only slightly active under base-line (normocapnic, hyperoxic) conditions but in most cats developed strong activity during expiration in hypocapnia or hypoxia. In severe hypocapnia, phasic expiratory TA activity persisted even during phrenic apnea, indicating continuing activity of the respiratory rhythm generator. The nerve to the posterior cricoarytenoid (PCA) muscle, the vocal cord abductor, was always active in inspiration but often showed expiratory activity as well. This expiratory activity was usually enhanced by hypercapnia and often inhibited by hypoxia. The results are consistent with previous electromyographic findings and emphasize the importance of distinguishing abductor from adductor activity in studies of laryngeal control.  相似文献   

7.
To determine whether the responses of tracheal smooth muscle and the nasal vasculature to stimulation of lung C-fiber receptors depend on the level of respiratory drive, the effects of right atrial injection of capsaicin and phenyldiguanide were studied in chloralose-anesthetized, paralyzed, artificially ventilated cats. Studies were performed while the animals were hyperventilated to apnea and, in addition, when breathing was stimulated by inhalation of 7% CO2 or by N-methyl-D-aspartic acid (NMDA) applied to the ventral surface of the medulla. When the cats were hyperventilated to apnea with O2, injection of capsaicin into the right atrium increased tracheal tone and slightly raised nasal resistance. However, when the animals were ventilated with 7% CO2 in O2 or respiratory activity was stimulated by the application of NMDA, administration of capsaicin eliminated spontaneous phrenic nerve activity and caused an abrupt decrease in tracheal tone but still increased nasal resistance. Similar responses were also obtained with right atrial injection of phenyldiguanide. These results showed for the first time that in the cat the direction of the reflex effects on tracheal tone but not nasal resistance depends on the preexisting level of respiratory drive and on cholinergic activity to airway smooth muscle.  相似文献   

8.
The effects of halothane anesthesia have been investigated in intact and in decerebrated cats. Pulmonary ventilation and breathing pattern were studied during room-air breathing, hypercapnia, and O2 inhalation. The following results have been demonstrated. First, halothane anesthesia does not modify pulmonary ventilation, but a tachypnea much more intense in intact than in decerebrated cats is observed. This indicates that halothane-induced tachypnea originates mainly in structures rostral to the brain stem. Second, decerebrated animals exhibit a breathing pattern and a ventilatory response to CO2 similar to those of intact conscious cats, suggesting that forebrain facilitatory and inhibitory influences on brain stem are cancelled out by decerebration. However, the tidal volume vs. inspiratory duration relationship observed in decerebrated cats differs from that in conscious cats. Finally, during halothane anesthesia, ventilatory response to CO2 is markedly depressed. Third, during O2 inhalation, except in decerebrated, anesthetized animals, ventilation is only slightly depressed. This suggests that central stimulatory effect of O2 is enhanced and/or that peripheral chemoreceptor drive is reduced.  相似文献   

9.
Mechanical function of hyoid muscles during spontaneous breathing in cats   总被引:1,自引:0,他引:1  
We assessed the mechanical behavior of the geniohyoid and sternohyoid muscles during spontaneous breathing using sonomicrometry in anesthetized cats. When the animals breathed O2, the hyoid muscles either became longer or did not change length (but never shortened) during inspiration. During progressive hyperoxic hypercapnia, transient increases in geniohyoid muscle inspiratory lengthening occurred in many animals; however, at high PCO2 the geniohyoid invariably shortened during inspiration (mean 4.9% of resting length at the end of CO2 rebreathing; P less than 0.001). The PCO2 at which geniohyoid inspiratory lengthening changed to inspiratory shortening was significantly higher than the CO2 threshold for the onset of geniohyoid electrical activity (P less than 0.01). For the sternohyoid muscle, hypercapnia caused inspiratory lengthening in 13 of 17 cats and inspiratory shortening in 4 of 17 cats; on average the sternohyoid lengthened by 1.6% of resting length at the end of CO2 rebreathing (P less than 0.01). Sternohyoid lengthening occurred in spite of this muscle being electrically active. These results suggest that the relationship between hyoid muscle electrical activity and respiratory changes in length is very complex, so that the presence of hyoid muscle electrical activity does not necessarily indicate muscle shortening, and among the geniohyoid and sternohyoid muscles, the geniohyoid has a primary role as a hypopharyngeal dilator in the spontaneously breathing cat, with the sternohyoid muscle acting in an accessory capacity.  相似文献   

10.
We previously demonstrated dose-dependent increases in both hypoglossal and phrenic electroneurograms after almitrine in anesthetized, paralyzed, and vagotomized cats. We have now investigated the effect of this peripheral chemoreceptor stimulant on diaphragmatic and genioglossal (GG, an upper airway-maintaining muscle) electromyograms in five unanesthetized, chronically instrumented, spontaneously breathing adult cats during slow-wave sleep. In 12 studies almitrine doses of 1.0-6.0 mg/kg increased inspired minute ventilation (VI), frequency (f), and tidal volume (VT) and decreased expiratory time (TE). However, almitrine doses as high as 6.0 mg/kg failed to augment phasic inspiratory GG activity. To determine why almitrine induced phasic inspiratory upper airway activity in anesthetized, vagotomized cats but not in sleeping cats, additional studies were performed. In four dose-response studies in three pentobarbital-anesthetized cats, almitrine, 1.0-6.0 mg/kg, did not produce phasic inspiratory GG activity. Almitrine did induce phasic inspiratory GG activity in two of three studies in three vagotomized, tracheostomized, alpha-chloralose-urethan-anesthetized cats. These results suggest that almitrine would not be useful in obstructive sleep apnea, yet because almitrine markedly increased VI, f, and VT and decreased TE in unanesthetized sleeping cats the drug may be effective in patients who lack normal central neural respiratory drive, such as the preterm infant.  相似文献   

11.
The ventilatory responses to steady-state venous CO2 loading (iv CO2) and CO2 inhalation have been observed in chloralose-urethan-anesthetized dogs. Intravenous CO2 was administered by increasing the CO2 fraction of gas ventilating a membrane gas exchanger in an arteriovenous bypass; blood flow rate was fixed at 30 ml/min. During the study, we identified a time-dependent hyperventilation in all 14 experimentally treated dogs and in 4 additional sham-treated dogs. When we tested 8 of these animals with a protocol having small progressive increments in iv CO2 loading rate, we observed a response approaching isocapnia during iv CO2 and a large hypocapnia when we returned to control conditions. The use of a randomized protocol in 6 animals demonstrated the necessity of accounting for this systematic base-line shift, because before doing so the response depended more on the passage of time than on the nature of the CO2 load. After this analytical adjustment was made, there was no significant difference between the respiratory controller gains (delta nu E/delta Paco2) for inhaled and iv CO2.  相似文献   

12.
In healthy man, the central chemosensitivity to CO2 was studied after depression of the arterial chemoreflex drive by inhalation of pure oxygen. The effectiveness of the functional decrease of arterial chemoreceptor function was assessed by the delayed hyperventilation which followed transient inhalation of hypercapnic gas mixtures for 3 or 5 breaths in hyperoxic conditions. In such a case the first significant increase in tidal volume (VT) occurred 13.9 +/- 3.2 (SE) sec later than the early change in this variable measured in normoxic conditions. The stimulus strength was estimated by the change in CO2 partial pressure in end-tidal alveolar gas (delta PETCO2). The central chemosensitivity (SCO2), defined as the ratio between change in ventilation (delta V) and delta PETCO2, was assessed either by transient inhalation of gas mixtures containing 5 to 8% CO2 in pure O2 ("varying transients") or by progressive hypercapnia (rebreathing in pure O2). In both cases, the first significant change in ventilation was due to an increase in VT, but, for a given delta PETCO2, VT changes were higher during rebreathing than after transient hypercapnia; (2) The respiratory frequency (fR) was progressively enhanced during rebreathing (shortening of expiratory duration in all cases and of inspiratory time in some subjects) but the ventilatory rhythm diminished after transient stimulation as soon as delta PETCO2 reached one kPa, and this was due to an increase in inspiratory duration; (3) The associated changes in VT and fR during rebreathing could explain that SCO2 values given by this method were 5.2 times greater than after transient hypercapnia ("varying tests"). The differences are discussed in terms of, (1) isolated changes in arterial PCO2 or associated decrease in pH of the cerebrospinal fluid; (2) changes in brain blood flow, and (3) stimulation of lung stretch receptors by the important increase in VT during rebreathing.  相似文献   

13.
Obstructive sleep apnea is the result of repeated episodes of upper airway obstruction during sleep. Recent evidence indicates that alterations in upper airway anatomy and disturbances in neuromuscular control both play a role in the pathogenesis of obstructive sleep apnea. We hypothesized that subjects without sleep apnea are more capable of mounting vigorous neuromuscular responses to upper airway obstruction than subjects with sleep apnea. To address this hypothesis we lowered nasal pressure to induce upper airway obstruction to the verge of periodic obstructive hypopneas (cycling threshold). Ten patients with obstructive sleep apnea and nine weight-, age-, and sex-matched controls were studied during sleep. Responses in genioglossal electromyography (EMG(GG)) activity (tonic, peak phasic, and phasic EMG(GG)), maximal inspiratory airflow (V(I)max), and pharyngeal transmural pressure (P(TM)) were assessed during similar degrees of sustained conditions of upper airway obstruction and compared with those obtained at a similar nasal pressure under transient conditions. Control compared with sleep apnea subjects demonstrated greater EMG(GG), V(I)max, and P(TM) responses at comparable levels of mechanical and ventilatory stimuli at the cycling threshold, during sustained compared with transient periods of upper airway obstruction. Furthermore, the increases in EMG(GG) activity in control compared with sleep apnea subjects were observed in the tonic but not the phasic component of the EMG response. We conclude that sustained periods of upper airway obstruction induce greater increases in tonic EMG(GG), V(I)max, and P(TM) in control subjects. Our findings suggest that neuromuscular responses protect individuals without sleep apnea from developing upper airway obstruction during sleep.  相似文献   

14.
We investigated the effect of different levels of O2 tension (hypoxia, normoxia, and hyperoxia) on the breath-by-breath onset and peak electromyographic (EMG) activity of the genioglossus (GG) muscle during a five-breath end-expiratory tracheal occlusion of 20- to 30-s duration. GG and diaphragmatic (DIA) EMG activity were measured with needle electrodes in eight anesthetized tracheotomized adult cats. In response to occlusion, the increase in the number of animals with GG EMG activity was different during hypoxia, normoxia, and hyperoxia (P = 0.003, Friedman). During hypoxia, eight of eight of the animals had GG EMG activity by the third occluded effort. In contrast, during normoxia, only four of eight and, during hyperoxia, only three of eight animals had GG EMG activity throughout the entire five-breath occlusion. Similarly, at release of the occlusion, more animals had persistent GG EMG activity on the postocclusion breaths during hypoxia than during normoxia or hyperoxia. Breath-by-breath augmentation of peak amplitude of the GG and DIA EMGs on each occluded effort was accentuated during hypoxia (P less than 0.01) and abolished during hyperoxia (P = 0.10). These results suggest that hypoxemia is a major determinant of the rapidity of onset, magnitude, and sustained activity of upper airway muscles during airway occlusion.  相似文献   

15.
Studies of sleep influences on human pharyngeal and other respiratory muscles suggest that the activity of these muscles may be affected by non-rapid-eye-movement (NREM) sleep in a nonuniform manner. This variable sleep response may relate to the pattern of activation of the muscle (inspiratory phasic vs. tonic) and peripheral events occurring in the airway. Furthermore, the ability of these muscles to respond to respiratory stimuli during NREM sleep may also differ. To systematically investigate the effect of NREM sleep on respiratory muscle activity, we studied two tonic muscles [tensor palatini (TP), masseter (M)] and two inspiratory phasic ones [genioglossus (GG), diaphragm (D)], also measuring the response of these muscles to inspiratory resistive loading (12 cmH2O.l-1.s) during wakefulness and NREM sleep. Seven normal male subjects were studied on a single night with intramuscular electrodes placed in the TP and GG and surface electrodes placed over the D and M. Sleep stage, inspiratory airflow, and moving time average electromyograph (EMG) of the above four muscles were continuously recorded. The EMG of both tonic muscles fell significantly (P less than 0.05) during NREM sleep [TP awake, 4.3 +/- 0.05 (SE) arbitrary units, stage 2, 1.1 +/- 0.2; stage 3/4, 1.0 +/- 0.2. Masseter awake, 4.8 +/- 0.6; stage 2, 3.3 +/- 0.5; stage 3/4, 3.1 +/- 0.5]. On the other hand, the peak phasic EMG of both inspiratory phasic muscles (GG and D) was well maintained.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The effects of sleep on the ventilatory responses to hypercapnia have been well described in animals and in humans. In contrast, there is little information for genioglossus (GG) responses to a range of CO(2) stimuli across all sleep-wake states. Given the notion that sleep, especially rapid eye movement (REM) sleep, may cause greater suppression of muscles with both respiratory and nonrespiratory functions, this study tests the hypothesis that GG activity will be differentially affected by sleep-wake states with major suppression in REM sleep despite excitation by CO(2). Seven rats were chronically implanted with electroencephalogram, neck, GG, and diaphragm electrodes, and responses to 0, 1, 3, 5, 7, and 9% CO(2) were recorded. Diaphragm activity and respiratory rate increased with CO(2) (P < 0.001) across sleep-wake states with significant increases at 3-5% CO(2) compared with 0% CO(2) controls (P < 0.05). Phasic GG activity also increased in hypercapnia but required higher CO(2) (7-9%) for significant activation (P < 0.05). Further studies in 15 urethane-anesthetized rats with the vagi intact (n = 6) and cut (n = 9) showed that intact vagi delayed GG recruitment with hypercapnia but did not affect diaphragm responses. In the naturally sleeping rats, we also showed that GG activity was significantly reduced in non-REM and REM sleep (P < 0.04) and was almost abolished in REM even with stimulation by 9% CO(2) (decrease = 80.4% vs. wakefulness). Such major suppression of GG activity in REM, even with significant respiratory stimulation, may explain why obstructive apneas are more common in REM sleep.  相似文献   

17.
A direct stimulating action of oxygen on the CO2 respiratory control system was determined from steady-state and dynamic observations in unanesthetized decerebrate cats. In peripheral nerve-intact animals, inhalation of oxygen (1 atm) produced a small but significant shift to the left as well as a decrease in slope in the steady-state VT vs. log PACO2 relationship. Carotid sinus neurotomy more than doubled the shift, to the extent that the mean PACO2 apneic point was lowered by 6.5 mmHg. Neither vagotomy nor chronic ablation of the area postrema had any detectable influence on the stimulating effect of oxygen on CO2 responsiveness. The arterial-alveolar PCO2 difference, prior to and following carotid chemo-denervation, remained unchanged or was increased by a negligible amount during oxygen inhalation. The oxygen threshold for respiratory stimulation, obtained isocapnically, occurred between 115 and 200 mmHg; VT then increased exponentially tending to level off as PAO2 approached 1 atm. The dynamic response to sudden presentation of oxygen after carotid chemodenervation consisted of a monotonic rise in VT, starting after 20-30 s with a t 1/2 of about 75 s.  相似文献   

18.
To investigate airflow regulation in newborn infants, we recorded airflow, volume, diaphragm (Di), and laryngeal electromyogram (EMG) during spontaneous breathing in eight supine unsedated sleeping full-term neonates. Using an esophageal catheter electrode, we recorded phasic respiratory activity consistent with that of the principal laryngeal abductors, the posterior cricoarytenoids (PCA). Sequential activation of PCA and Di preceded inspiration. PCA activity typically peaked early in inspiration followed by either a decrescendo or tonic EMG activity of variable amplitude during expiration. Expiratory airflow retardation, or braking, accompanied by expiratory prolongation and reduced ventilation, was commonly observed. In some subjects we observed a time interval between PCA onset and a sudden increase in expiratory airflow just before inspiration, suggesting that release of the brake involved an abrupt loss of antagonistic adductor activity. Our findings suggest that airflow in newborn infants is controlled throughout the breathing cycle by the coordinated action of the Di and the reciprocal action of PCA and laryngeal adductor activities. We conclude that braking mechanisms in infants interact with vagal reflex mechanisms that modulate respiratory cycle timing to influence both the dynamic maintenance of end-expiratory lung volume and ventilation.  相似文献   

19.
The CO2 response of the phrenic neurogram before and during CO-induced isocapnic brain hypoxia was studied in peripherally chemodenervated, vagotomized, paralyzed, ventilated cats with blood pressure held constant. During inhalation of 0.5% CO in 40% O2, arterial O2 content (CaO2) was reduced to 40% and minute phrenic activity to 38.4 +/- 9.4% (SE; n = 9) of prehypoxic levels, primarily due to depression of peak phrenic amplitude (PP). CO2 response, defined as the slope of the plot of PP vs. end-tidal PCO2 during CO2 rebreathing, was unaffected by phrenic depression even to the point of total suppression of phrenic activity in two cats. The effect of the tissue metabolic acidosis associated with hypoxia on phrenic CO2 sensitivity was assessed in a separate group of cats by blocking lactate formation during hypoxia with dichloroacetate (DCA). Preventing lactic acidosis during hypoxia did not affect the CO2 response of the phrenic activity during hypoxia. We conclude that 1) hypoxic depression does not limit the ability of central respiratory neurons to respond to CO2, and 2) the failure of DCA to affect the CO2 response of the phrenic neurogram suggests that brain intracellular lactic acidosis does not modify the phrenic response to hypercapnia.  相似文献   

20.
Defects in pharyngeal mechanical and neuromuscular control are required for the development of obstructive sleep apnea. Obesity and age are known sleep apnea risk factors, leading us to hypothesize that specific defects in upper airway neuromechanical control are associated with weight and age in a mouse model. In anesthetized, spontaneously breathing young and old wild-type C57BL/6J mice, genioglossus electromyographic activity (EMG(GG)) was monitored and upper airway pressure-flow dynamics were characterized during ramp decreases in nasal pressure (Pn, cmH?O). Specific body weights were targeted by controlling caloric intake. The passive critical pressure (Pcrit) was derived from pressure-flow relationships during expiration. The Pn threshold at which inspiratory flow limitation (IFL) developed and tonic and phasic EMG(GG) activity during IFL were quantified to assess the phasic modulation of pharyngeal patency. The passive Pcrit increased progressively with increasing body weight and increased more in the old than young mice. Tonic EMG(GG) decreased and phasic EMG(GG) increased significantly with obesity. During ramp decreases in Pn, IFL developed at a higher (less negative) Pn threshold in the obese than lean mice, although the frequency of IFL decreased with age and weight. The findings suggest that weight imposes mechanical loads on the upper airway that are greater in the old than young mice. The susceptibility to upper airway obstruction increases with age and weight as tonic neuromuscular activity falls. IFL can elicit phasic responses in normal mice that mitigate or eliminate the obstruction altogether.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号