首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Production of extracellular alpha-glucosidase was studied with strain KP 1006 of a new species of thermophilic Bacillus, which was isolated from soil samples by enrichment at 65 C. alpha-Glucosidase production was maximum at 60 C and at an initial pH of 6.5. The final enzyme yield was increased by starch, maltose, glycerol, peptone, and yeast extract but reduced by acetate and gluconate, alpha-Glucosidase was formed in the cytoplasm and accumulated as a large pool during the logarithmic growth phase. At a midpoint of this period, the enzyme appeared in the culture broth, and its level increased until the end of the stationary phase.  相似文献   

2.
alpha-Glucosidase (EC 3.2.1.3) is a lysosomal enzyme that hydrolyses alpha-1,4- and alpha-1,6-linkages of glycogen to produce free glucose. A deficiency in alpha-glucosidase activity results in glycogen storage disorder type II (GSD II), also called Pompe disease. Here, d-glucose was shown to be a competitive inhibitor of alpha-glucosidase and when added to culture medium at 6.0 g/L increased the production of this protein by CHO-K1 expression cells and stabilised the enzyme activity. D-Glucose also prevented alpha-glucosidase aggregation/precipitation and increased protein yield in a modified purification scheme. In fibroblast cells, from adult-onset GSD II patients, D-glucose increased the residual level of alpha-glucosidase activity, suggesting that a structural analogue of d-glucose may be used for enzyme enhancement therapy.  相似文献   

3.
The organism Bacillus amyloliquefaciens is capable of producing alpha-amylase (1,4-alpha-D-glucan glucanohydrolase, EC 3.2.1.1) and isoamylase (glycogen 6-glucanohydrolase, EC 3.2.1.68) extracellurlarly and a membrane-bound, intracellular alpha-glucosidase (alpha-D-glucoside glucohydrolase, EC 3.2.1.20). The amounts of alpha-glucosidase in cells of B. amyloliquefaciens grown on amylaceous polysaccharides were significantly higher then in cells grown on non-carbohydrate carbon sources. alpha-Glucosidase was exclusively found associated with membranes from ruptured spheroplasts by subcellular fractionation and solubilization studies. Salt solutions and chelating agents alone did not dislodge alpha-glucosidase from membranes, but in combination with detergents were most effective in solubilizing active enzyme (0.1% sodium cholate (pH 8.0)/0.4 M sodium chloride). Purified alpha-glucosidase very rapidly hydrolized p-nitrophenyl alpha-D-glucopyranoside and sucrose. Maltose, maltotriose, isomaltose and isomaltotriose were hydrolized at slower rates, whereas beta-glucosides and polymeric alpha-glucans were not attacked. Other properties of the purified enzyme were as follows: Temperature optimum for catalysis = 39 +/- 1 degrees C; pH optimum = 6.8; molecular weight = 27,000 +/- 1000. alpha-Glucosidase is proposed to function in the endogenous metabolism of alpha-glucans provided extracellularly as carbon sources for growth of B. amyloliquefaciens.  相似文献   

4.
alpha-Glucosidase activity has been estimated in the tissues and rinsings of the reproductive tract of the ewe. There were peaks of activity in the oviducal mucosa at pH 4.0 and 5.7. In the endometrium, caruncles and cervical mucosa and pH optimum occurred from pH 4.0 to pH 5.7. A sharp peak in the activity in the vaginal mucosa occurred at pH 5.7. The only tissue in which changes in enzyme activity were consistently related to one endocrinological state of the ewe was the cervical mucosa. Cervical alpha-glucosidase activity was greater at oestrus than during the rest of the oestrous cycle, declined during early pregnancy, and increased in ovariectomized ewes following the injection of oestradiol-17 beta.  相似文献   

5.
A Galichet  A Belarbi 《FEBS letters》1999,458(2):188-192
alpha-Glucosidase is found in methanogenic and thermophilic archaea and also in eukaryotes and bacteria. The gene encoding the enzyme was cloned from Thermococcus hydrothermalis by complementation of a Saccharomyces cerevisiae deficiency maltase mutant strain. The gDNA clone isolated encodes an open reading frame corresponding to a protein of 242 amino acids. The protein shows 42% identity to a Pyrococcus horikoshii unknown ORF but no similarities were obtained with polysaccharidase sequences.  相似文献   

6.
alpha-Glucosidase from two microbial sources, Bacillus stearothermophilus and Brewer's yeast, has been used to catalyze transglycosylation reactions and a comparative study was carried out to determine the regioselectivity of this reaction. Bacterial alpha-glucosidase exhibited higher transfer activity with maltose and was able to synthesize tri- and tetrasaccharides in high yield (27%). In the case of yeast enzyme, only trisaccharides were synthesized in lower yield. Structure analysis of transglycosylation products by means of GC-MS and NMR spectroscopy revealed a correlation between the hydrolytic substrate specificity and the regioselectivity of transglycosylation reaction. Higher substrate specificity of bacterial enzyme, however, influenced its transglucosylation activity toward other saccharide acceptors.  相似文献   

7.
Production of extracellular maltase was studied with thermophilic Bacillus sp. KP 1035, which was selected as the organism producing the highest levels of maltase. The final enzyme yield was increased by maltose, peptone, and yeast extract but reduced by succinate and fumarate. Maximum enzyme production was achieved at 55 degrees C and at an initial pH of 6.2 to 7.0 on a medium containing 0.3% maltose, 1% peptone, 0.1% meat extract, 0.3% yeast extract, 0.3% KH2PO4, and 0.1% KH2PO4. Maltase was synthesized in cytoplasm and accumulated as a large pool during the logarithmic growth phase, which preceded sporulation. At the end of this phase, the enzyme appeared in the culture broth, and its accumulation increased in parallel with a rise in the extracellular protein level. Maltase was stable for 24 h at 60 degrees C over a pH range of 5.6 to 9.0 and retained 95% of the original activity after treatment for 20 min at 70 degrees C at pH 6.8.  相似文献   

8.
A new biosensing flow injection method for the determination of alpha-amylase activity has been introduced. The method is based on the analysis of maltose produced during the hydrolysis of starch in the presence of alpha-amylase. Maltose determination in the flow system was allowed by the application of peroxide electrode equipped with an enzyme membrane. The membrane was obtained by immobilisation of glucose oxidase, alpha-glucosidase and optionally mutarotase on a cellophane, co-crosslinked by gelatin-glutaraldehyde together with bovine serum albumine. alpha-Glucosidase hydrolyses maltose to alpha-D-glucose, which is converted to beta-D-glucose by mutarotase. beta-D-Glucose is then determined via glucose oxidase. The new biosensor has the limit of detection of 50 nmol l(-1) maltose, which means 2 nkat ml(-1) in alpha-amylase activity units, when the reaction time of amylase was 5 min (determined with respect to a signal-to-noise ratio 3:1). When the reaction time of alpha-amylase was 30 min, the limit of detection was 0.5 nkat ml(-1). A linear range of current response was 0.1-3 mmol l(-1) maltose, with a response time of 35s. The biosensor was stable at least two months and retained 70% of its original activity (with mutarotase the stability is decreased to 3 weeks). When the enzyme membrane was stored in a dry state at 4 degrees C in a refrigerator, the lifetime was approximately 6 months (with mutarotase only 3 months).  相似文献   

9.
Y Suzuki  T Tsuji    S Abe 《Applied microbiology》1976,32(6):747-752
Production of extracellular maltase was studied with thermophilic Bacillus sp. KP 1035, which was selected as the organism producing the highest levels of maltase. The final enzyme yield was increased by maltose, peptone, and yeast extract but reduced by succinate and fumarate. Maximum enzyme production was achieved at 55 degrees C and at an initial pH of 6.2 to 7.0 on a medium containing 0.3% maltose, 1% peptone, 0.1% meat extract, 0.3% yeast extract, 0.3% KH2PO4, and 0.1% KH2PO4. Maltase was synthesized in cytoplasm and accumulated as a large pool during the logarithmic growth phase, which preceded sporulation. At the end of this phase, the enzyme appeared in the culture broth, and its accumulation increased in parallel with a rise in the extracellular protein level. Maltase was stable for 24 h at 60 degrees C over a pH range of 5.6 to 9.0 and retained 95% of the original activity after treatment for 20 min at 70 degrees C at pH 6.8.  相似文献   

10.
alpha-Glucosidase from yeast is inactivated rapidly at temperatures above 42 degrees C. The thermal inactivation is accompanied by aggregation. The molecular chaperone GroEL suppresses the formation of aggregates by binding the thermally inactivated alpha-glucosidase. Spectroscopic studies suggest that GroEL binds alpha-glucosidase in an intermediately folded state. The complex between alpha-glucosidase and GroEL can be dissolved by MgATP. GroES accelerates the MgATP-dependent dissociation of the alpha-glucosidase-GroEL complex. At elevated temperatures this release leads to the formation of aggregates, while at lower temperatures native, enzymatically active molecules are formed.  相似文献   

11.
H Jones  W A Venables 《FEBS letters》1983,151(2):189-192
Solubilisation, delipidation and partial purification of the membrane-bound enzyme D-amino acid dehydrogenase of Escherichia coli K12 produced significant changes in several of its properties. Solubilised enzyme showed a broader substrate specificity, increased affinity for at least three substrates, and a lower pH optimum with D-alanine as substrate. Solubilised enzyme was more heat-labile than native enzyme, particularly at 37 degrees C, and re-binding to envelope preparations restored protection against heat denaturation. Activity of delipidated enzyme could be increased by addition of pure phospholipids. Native enzyme showed biphasic Arrhenius kinetics associated with phase changes of membrane lipids.  相似文献   

12.
The hydrolysis and esterification by a thermostable lipase from Humicola lanuginosa No. 3 were investigated. Both reactions occurred readily at temperatures between 45~50°C. Esterification by the enzyme with glycerol was observed to be specific towards fatty acids with carbon numbers of C12~C18. Laurie acid esters with different alcohols such as primary alcohols, terpene alcohols, eie., were also synthesized readily. Esterification by the enzyme was adversely affected by the water content (optimum, ca. 7%), however, the hydrolysis rate increased rapidly with increasing water content (optimum, az. 60%). The enzyme showed increased activity in organic solvent-aqueous reaction systems. Nevertheless, hydrolysis in complete organic phase reactions was found not to be feasible. Hydrolysis at a higher temperature (50 or 55°C) in a solvent free phase was almost the same as that in organic solvent-aqueous phase reactions. The components of glycerides varied considerably during hydrolysis, whereby esterification resulted in a higher quantity of mono- and diglycerides (about 40%), compared to in the case of hydrolysis, for which the value was about 10~20%.  相似文献   

13.
A novel haloalkaliphilic, thermostable serine protease was purified from the extreme halophilic archaeon, Halogeometricum borinquense strain TSS101. The protease was isolated from a stationary phase culture, purified 116-fold with 18% yield and characterized biochemically. The molecular mass of the purified enzyme was estimated to be 86 kDa. The enzyme showed the highest activity at 60 degrees C and pH 10.0 in 20% NaCl. The enzyme had high activity over the pH range from 6.0 to 10.0. Enzymatic activity was strongly inhibited by 1 mM phenyl methylsulfonyl fluoride, but activity was increased 59% by 0.1% cetyltrimethylammonium bromide. The enzyme exhibited relatively high thermal stability, retaining 80% of its activity after 1 h at 90 degrees C. Thermostability increased in the presence of Ca2+. The stability of the enzyme was maintained in 10% sucrose and in the absence of NaCl.  相似文献   

14.
The proteins encoded in the yicI and yihQ gene of Escherichia coli have similarities in the amino acid sequences to glycoside hydrolase family 31 enzymes, but they have not been detected as the active enzymes. The functions of the two proteins have been first clarified in this study. Recombinant YicI and YihQ produced in E. coli were purified and characterized. YicI has the activity of alpha-xylosidase. YicI existing as a hexamer shows optimal pH at 7.0 and is stable in the pH range of 4.7-10.1 with incubation for 24h at 4 degrees C and also is stable up to 47 degrees C with incubation for 15 min. The enzyme shows higher activity against alpha-xylosyl fluoride, isoprimeverose (6-O-alpha-xylopyranosyl-glucopyranose), and alpha-xyloside in xyloglucan oligosaccharides. The alpha-xylosidase catalyzes the transfer of alpha-xylosyl residue from alpha-xyloside to xylose, glucose, mannose, fructose, maltose, isomaltose, nigerose, kojibiose, sucrose, and trehalose. YihQ exhibits the hydrolysis activity against alpha-glucosyl fluoride, and so is an alpha-glucosidase, although the natural substrates, such as alpha-glucobioses, are scarcely hydrolyzed. alpha-Glucosidase has been found for the first time in E. coli.  相似文献   

15.
The effect of decreasing the organic (octanol) to aqueous phase volume ratio was evaluated in a two-phase enzymatic process for (R)-phenylacetylcarbinol (PAC) production. Decreasing the ratio from 1:1 to 0.43:1 at 4°C increased PAC in the organic phase from 112 g/l to 183 g/l with a 10% improvement in overall productivity. Interestingly, the rate of enzyme (pyruvate decarboxylase) activity loss was unaffected by the reduced phase ratio over the reaction period (48 h). At 20°C and 0.43:1 phase ratio the organic phase PAC concentration increased to 212 g/l and the overall productivity increased by 30% although the PAC yield (based on pyruvate) declined by about 10% due to greater byproduct acetoin formation at the higher temperature. Product recovery in such a system is facilitated both by the higher PAC concentration and the reduced organic phase volume.  相似文献   

16.
tsFT20 cells derived from mouse FM3A cells are DNA temperature-sensitive mutants, which have heat-labile DNA polymerase alpha activity. When tsFT20 cells were incubated at restrictive temperatures, intracellular levels of DNA polymerase alpha activity changed biphasically, showing an initial fast decrease (phase I) and a subsequent slow decrease (phase II). The activity of DNA polymerase alpha from tsFT20 cells cultured at a permissive temperature (33 degrees C) was greatly increased by the addition of glycerol or ethylene glycol to the reaction mixture, while little increase in enzyme activity was observed at any concentration of glycerol or ethylene glycol tested with the enzyme from the cells cultured at a restrictive temperature (39 degrees C) for 8 h (phase II). The activity of DNA polymerase alpha from wild-type cells was also increased by the addition of glycerol but the increase was much less than that in the tsFT20 cells. An in vitro preincubation experiment showed that DNA polymerase alpha from tsFT20 cells cultured at 33 degrees C very rapidly lost its ability to be stimulated by glycerol. Furthermore, the experiment using the extracts prepared from tsFT20 cells cultured at 39 degrees C for various periods showed that the ability to be stimulated by glycerol decreased with the duration of incubation time at 39 degrees C. DNA polymerase alpha from the revertants, which can grow at 39 degrees C and exhibit a partial recovery in heat stability of DNA polymerase alpha activity, showed an intermediate response to glycerol, between those of DNA polymerase alpha from tsFT20 and from the wild-type cells. Finally, it was observed that the level of enzyme activity that can be stimulated by glycerol correlated well with the DNA synthesizing ability of tsFT20 cells.  相似文献   

17.
Escherichia coli cells showed maximum activity of gamma-glutamyltranspeptidase (EC 2.3.2.2) when they were grown at 20 degrees C, 14% of maximum activity at 37 degrees C, and none at 43 degrees C. The enzyme activity of intact cells grown at 20 degrees C was stably maintained after the temperature was changed to 45 degrees C. The activity increased during the exponential phase, and maximum activity was found at stationary phase. Its intracellular localization in the periplasmic space was confirmed.  相似文献   

18.
The in vivo and in vitro effects of 4-amino-3-(D-glucopentitol-1-yl)-5-mercapto-1,2,4-triazole and its 3-methyl analogue on alpha- and beta-glucosidases, beta-glucuronidase as well as alpha-amylase have been investigated. alpha-Glucosidase is the enzyme that is markedly affected in vivo and in vitro in a dose-dependent manner. The compounds showed a reversible inhibition of a competitive type for alpha-glucosidase. Moreover, they exert a relatively potent inhibition on alpha-glucosidase with a Ki magnitude of 3.6 x 10(-4), 9.5 x 10(-5) M.  相似文献   

19.
alpha-Glucosidase deficiency (Pompe's disease)   总被引:2,自引:0,他引:2  
alpha-Glucosidase is deficient (less than 30% of control) in Pompe's disease, but the extent of the deficiency does not always correlate with the severity of the clinical symptoms. The defects that lead to a deficiency of alpha-glucosidase include synthesis of catalytically inactive protein, absence of mRNA for the enzyme, decreased synthesis of the precursor, lack of phosphorylation of the precursor, impaired conversion of the precursor to the mature enzyme and synthesis of unstable precursor. A single type of defect can lead to different clinical phenotypes. The precursor of alpha-glucosidase is present in the brush border of the polarized epithelial cells of small intestine and kidney and is secreted into urine.  相似文献   

20.
alpha-Glucosidase with a high regioselectivity for alpha-1,3-glucosidic linkages for hydrolysis and transglucosylation was purified from culture broth of Acremonium implicatum. The enzyme was a tetrameric protein (M.W. 440,000), of which the monomer (M.W. 103,000; monomeric structure was expected from cDNA sequence) was composed of two polypeptides (M.W. 51,000 and 60,000) formed possibly by posttranslational proteolysis. Nigerose and maltose were hydrolyzed by the enzyme rapidly, but slowly for kojibiose. The k(0)/K(m) value for nigerose was 2.5-fold higher than that of maltose. Isomaltose was cleaved slightly, and sucrose was not. Maltotriose, maltotetraose, p-nitrophenyl alpha-maltoside and soluble starch were good substrates. The enzyme showed high affinity for maltooligosaccharides and p-nitrophenyl alpha-maltoside. The enzyme had the alpha-1,3- and alpha-1,4-glucosyl transfer activities to synthesize oligosaccharides, but no ability to form alpha-1,2- and alpha-1,6-glucosidic linkages. Ability for the formation of alpha-1,3-glucosidic linkage was two to three times higher than that for alpha-1,4-glucosidic linkage. Eight kinds of transglucosylation products were synthesized from maltose, in which 3(2)-O-alpha-nigerosyl-maltose and 3(2)-O-alpha-maltosyl-maltose were novel saccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号