首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
In Arabidopsis thaliana, a number of circadian-associated factors have been identified. Among those, TOC1 (TIMING OF CAB EXPRESSION 1) is believed to be a component of the central oscillator. TOC1 is a member of a small family of proteins, designated as Arabidopsis PSEUDO-RESPONSE REGULATORS (APRR1/TOC1, APRR3, APRR5, APRR7, and APRR9). Nonetheless, it is not very clear whether or not the APRR family members other than APRR1/TOC1 are also implicated in the mechanisms underlying the circadian rhythm. To address this issue further, here we characterized a set of T-DNA insertion mutants, each of which is assumed to have a severe lesion in each one of the quintet genes (i.e. APRR5 and APRR7). For each of these mutants (aprr5-11 and aprr7-11) we demonstrate that a given mutation singly, if not directly, affects the circadian-associated biological events simultaneously: (i) flowering time in the long-day photoperiod conditions, (ii) red light sensitivity of seedlings during the early photomorphogenesis, and (iii) the period of free-running rhythms of certain clock-controlled genes including CCA1 and APRR1/TOC1 in constant white light. These results suggest that, although the quintet members other than APRR1/TOC1 may not be directly integrated into the framework of the central oscillator, they are crucial for a better understanding of the molecular mechanisms underlying the Arabidopsis circadian clock.  相似文献   

8.
In higher plants, there are wide ranges of biological processes that are controlled through the circadian clock. In this connection, we have been characterizing a small family of proteins, designated as ARABIDOPSIS PSEUDO-RESPONSE REGULATORS (APRR1, APRR3, APRR5, APRR7, and APRR9), among which APRR1 is identical to TOC1 (TIMING OF CAB EXPRESSION1) that is believed to be a component of the central oscillator. Through previous genetic studies, several lines of evidence have already been provided to support the view that, not only APRR1/TOC1, but also other APRR1/TOC1 quintet members are important for a better understanding of the molecular links between circadian rhythm, control of flowering time, and also photomorphogenesis. However, the least characterized one was APRR3 in that no genetic study has been conducted to see if APRR3 also plays an important role in the circadian-associated biological events. Here we show that APRR3-overexpressing transgenic plants (APRR3-ox) exhibited: (i). a phenotype of longer period (and/or delayed phase) of rhythms of certain circadian-controlled genes under continuous white light, (ii). a phenotype of late flowering under long-day photoperiod conditions, (iii). a phenotype of hypo-sensitiveness to red light during early photomorphogenesis of de-etiolated seedlings, supporting the current idea as to the APRR1/TOC1 quintet described above.  相似文献   

9.
10.
In Arabidopsis thaliana, a number of circadian-associated factors have been identified, including TOC1 (TIMING OF CAB EXPRESSION 1) that is believed to be a component of the central oscillator. TOC1 is a member of a small family of proteins, designated as ARABIDOPSIS PSEUDO-RESPONSE REGULATORS (APRR1/TOC1, APRR3, APRR5, APRR7, and APRR9). As demonstrated previously, these APRR1/TOC1 quintet members are crucial for a better understanding of the molecular links between circadian rhythms, control of flowering time through photoperiodic pathways, and also photosensory signal transduction in this dicotyledonous plant. In this respect, both the dicotyledonous (e.g. A. thaliana) and monocotyledonous (e.g. Oryza sativa) plants might share the evolutionarily conserved molecular mechanism underlying the circadian rhythm. Based on such an assumption, and as the main objective of this study, we asked the question of whether rice also has a set of pseudo-response regulators, and if so, whether or not they are associated with the circadian rhythm. Here we showed that rice has five members of the OsPRR family (Oryza sativa Pseudo-Response Regulator), and also that the expressions of these OsPRR genes are under the control of circadian rhythm. They are expressed in a diurnal and sequential manner in the order of OsPRR73 (OsPRR37)-->OsPRR95 (OsPRR59)-->OsPRR1, which is reminiscent of the circadian waves of the APRR1/TOC1 quintet in A. thaliana. These and other results of this study suggested that the OsPRR quintet, including the ortholog of APRR1/TOC1, might play important roles within, or close to, the circadian clock of rice.  相似文献   

11.
12.
13.
14.
15.
16.
The ADO/FKF/LKP/ZTL family of proteins of Arabidopsis thaliana Heynh. have a LOV domain, an F-box motif, and a kelch repeat region. LKP2 is a member of this family and functions either within or very close to the circadian oscillator in Arabidopsis. Promoter-GUS fusion studies revealed that the LKP2 gene was highly active in rosette leaves. In CaMV 35S:LKP2-GFP plants, GFP-associated fluorescence was detected in nuclei, suggesting that LKP2 is a nuclear protein. Yeast two-hybrid analysis demonstrated that LKP2 interacted with some Arabidopsis Skp1-like proteins (ASK), as do other ADO/FKF/LKP/ZTL family proteins, suggesting that LKP2 can form an SCF (Skp1-Cullin-F-box protein) complex that functions as a ubiquitin E3 ligase. LKP2 interacted not only with itself but also with other members of the family, LKP1 and FKF1. The two-hybrid analysis also demonstrated that LKP2 interacted with TOC1, a clock component, but not with CCA1 or LHY, negative regulators of TOC1 gene expression. The LOV domain of LKP2 was shown to be necessary and sufficient for the interaction with TOC1. An interaction between LKP2 and APRR5, a paralogue of TOC1, was also observed, but LKP2 did not interact with APRR3, APRR7, or APRR9, other paralogues of TOC1.  相似文献   

17.
18.
19.
Ding Z  Doyle MR  Amasino RM  Davis SJ 《Genetics》2007,176(3):1501-1510
It has been proposed that CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) together with TIMING OF CAB EXPRESSION 1 (TOC1) make up the central oscillator of the Arabidopsis thaliana circadian clock. These genes thus drive rhythmic outputs, including seasonal control of flowering and photomorphogenesis. To test various clock models and to disclose the genetic relationship between TOC1 and CCA1/LHY in floral induction and photomorphogenesis, we constructed the cca1 lhy toc1 triple mutant and cca1 toc1 and lhy toc1 double mutants and tested various rhythmic responses and circadian output regulation. Here we report that rhythmic activity was dramatically attenuated in cca1 lhy toc1. Interestingly, we also found that TOC1 regulates the floral transition in a CCA1/LHY-dependent manner while CCA1/LHY functions upstream of TOC1 in regulating a photomorphogenic process. This suggests to us that TOC1 and CCA1/LHY participate in these two processes through different strategies. Collectively, we have used genetics to provide direct experimental support of previous modeling efforts where CCA1/LHY, along with TOC1, drives the circadian oscillator and have shown that this clock is essential for correct output regulation.  相似文献   

20.
Every member of a small family of Pseudo-Response Regulator (PRR) genes, including Timing of Cab Expression 1 (TOC1 [or PRR1]), are believed to play roles close to the circadian clock in the model higher plant Arabidopsis thaliana. In this study we established a transgenic line that misexpresses (or overexpresses) the PRR7 gene. As compared with wild-type plants, the resulting PRR7-misexpressing plants (designated PRR7-ox) showed characteristic phenotypes as to hallmarked circadian-associated biological events: (i) early flowering in a manner independent of photoperiodicity, (ii) hypersensitive response to red light during early photomorphogenesis, and (iii) altered free-running rhythms with long period of clock-associated genes. Finally, a series of all transgenic lines (PRR1-ox, PRR3-ox, PRR5-ox, PRR7-ox, and PRR9-ox) were characterized comparatively with regard to their clock-associated roles. The results suggested that the five homologous PRR factors play coordinate roles, distinctively from one another, and closely to the circadian clock in higher plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号