首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Processing proteases of avian and mammalian retroviruses cut the polyprotein precursors encoded by the retroviral genes into mature functional proteins. Retroviral processing proteases are still a rather poorly characterized group as to their relation to other proteases, specificity, and mechanism of enzymatic action. In avian retroviruses the generation of the processing protease itself comprises a processing cleavage event - the protease p15gag is cut off the carboxy-terminus of a gag polyprotein precursor, Pr76gag. We report here that direct and efficient production of the avian retrovirus processing protease p15gag (required for structure-function studies and rational design of inhibitors) was obtained in an E. coli system, where massive expression of a size-reduced, recombinant precursor (Pr25lac-delta gag) was accompanied by its structurally accurate processing.  相似文献   

3.
Activity of avian retroviral protease expressed in Escherichia coli.   总被引:13,自引:11,他引:2       下载免费PDF全文
M Kotler  R A Katz    A M Skalka 《Journal of virology》1988,62(8):2696-2700
  相似文献   

4.
The full-length provirus of human T-cell leukemia virus type I (HTLV-I) was isolated from MT-2, a lymphoid cell line producing HTLV-I. In transfected cells, structural proteins of HTLV-I, the gag and env products, were formed and processed in the same manner as observed in MT-2 cells. The nucleotide sequence was determined for a region between the gag and pol genes of the proviral DNA clone containing an open-reading frame. The deduced amino acid sequences show that this open-reading frame encodes a putative HTLV-I protease. The protease gene (pro) of HTLV-I was investigated using a vaccinia virus expression vector. Processing of 53k gag precursor polyprotein into mature p19, p24, and p15 gag structural proteins was detectable with a recombinant plasmid harboring the entire gag- and protease-coding sequence. We demonstrated that the protease processed the gag precursor polyprotein in a trans-action. A change in the sequence Asp(64)-Thr-Gly, the catalytic core sequence among aspartyl proteases, to Gly-Thr-Gly was shown to abolish correct processing, suggesting that HTLV-I protease may belong to the aspartyl protease group. The 76k gag-pro precursor polyprotein was identified, implying that a cis-acting function of HTLV-I protease may be necessary to trigger the initial cleavage event for its own release from a precursor protein, followed by the release of p53 gag precursor protein. The p53 gag precursor protein is then processed by the trans-action of the released protease to form p19, p24, and p15.  相似文献   

5.
S H Nam  M Kidokoro  H Shida    M Hatanaka 《Journal of virology》1988,62(10):3718-3728
The biological activity encoded in the putative protease gene (pro) of human T-cell leukemia virus type I was investigated by using a vaccinia virus expression vector. The 53-kilodalton gag precursor polyprotein was processed into the mature p19, p24, and p15 gag proteins when the gag and protease-coding sequence was expressed under the control of a vaccinia virus promoter, suggesting that the protease may be synthesized through the mechanism of ribosomal frame shifting. The processing defect of a protease mutant could be complemented by cointroduction of a wild-type construct into the cell, demonstrating that the pro gene encodes the biologically active protease molecules which are capable of processing the gag precursor polyprotein in vivo in trans. A study involving the use of a variety of mutants constructed in vitro revealed that the protease consists of a nonessential carboxy-terminal region and a part essential for its activity, including the putative catalytic residue, aspartic acid. Furthermore, a cluster of adenine residues positioned at the overlapping region between the gag and pro genes was shown to be involved in the ribosomal frameshifting event for the synthesis of protease. To mimic the formation of the 76-kilodalton gag-pro precursor polyprotein formed by ribosomal slipping, the coding frames of the gag and pro gene were adjusted. The processing of the gag-pro precursor polyprotein depended on an intact protease gene, implying that a cis-acting function of human T-cell leukemia virus type I protease may be necessary to trigger the initial cleavage event that leads to the release of protease from the precursor protein.  相似文献   

6.
7.
8.
Chemical synthesis and expression of the HIV-1 protease gene in E. coli   总被引:3,自引:0,他引:3  
The 297bp HIV-1 protease gene was constructed from five discrete synthetic fragments and expressed in E. coli. A soluble protein product of 11.5 Kd was detected by immunoblotting using protease specific antisera. A quantitative assay system, utilizing a synthetic nonapeptide spanning the cleavage site between p17-p24 in the gag polyprotein, was used to measure the specific protease activity in crude extracts. The protease hydrolyzed tyrosyl-proline bonds with an approximate specific activity of 43 pmoles/min/micrograms of total protein. The chemical synthesis of the protease gene and it's expression provides a feasible method for rapid mutant analysis, important for structure-function studies and rational design of potential inhibitors.  相似文献   

9.
S Oertle  P F Spahr 《Journal of virology》1990,64(12):5757-5763
Rous sarcoma virus nucleocapsid protein (NC) has been shown by site-directed mutagenesis to be involved in viral RNA packaging and in the subsequent maturation of genomic RNA in the progeny viral particles. To investigate whether NC exerts these activities as a free protein or as a domain of the polyprotein precursor Pr76gag, we have constructed several mutants unable to process Pr76gag and analyzed their properties in a transient-transfection assay of chicken embryo fibroblasts, the natural host of Rous sarcoma virus. A point mutation in the protease (PR) active site completely prevents Pr76gag processing. The full-length Pr76gag polyprotein is still able to package viral RNA, but cannot mature it. A shorter gag precursor polyprotein lacking the C-terminal PR domain, but retaining that of the NC protein, is however, unable even to package viral RNA. This indicates that the NC protein can participate in packaging viral RNA only as part of a full-length Pr76gag and that the PR domain is, indirectly or directly, also involved in RNA packaging. These results also demonstrate that processing of Pr76gag is necessary for viral RNA dimerization.  相似文献   

10.
The 297bp gene coding for the HIV-1 protease was chemically synthesized and expressed in E. coli. Single amino acid substitutions (Arg 87 - greater than Lys; Arg 87 - greater than Glu) were introduced in the C-terminally located conserved region GlyArgAsn of the protease gene in the wild-type clone. The products of the mutant and the wild-type clones were expressed at approximately similar levels at 30 minutes of induction but the mutant protease proteins accumulated as a function of time of induction unlike the wild-type protease which declined after 60 minutes. The mutants were completely devoid of proteolytic activity as determined in assays employing as substrates a synthetic nonapeptide and a gag related recombinant polyprotein.  相似文献   

11.
Human T-cell leukemia virus type I (HTLV-I) protease has been purified to homogeneity from a strain of recombinant Escherichia coli. The protease was expressed as a larger precursor, which was autoprocessed to form a mature protease. Protein chemical analyses revealed the coding sequence of mature protease, which agreed with the putative sequence predicted from the sequence of bovine leukemia virus protease. The purified protease processed the natural substrate gag precursor (p53) to form gag p19 and gag p24. The protease activity was inhibited by pepstatin A. These results provide direct evidence that this protease belongs to the aspartic protease family and has an activity consistent with the protease in HTLV-I virion.  相似文献   

12.
13.
H Burstein  D Bizub    A M Skalka 《Journal of virology》1991,65(11):6165-6172
Assembly and maturation of retroviral particles requires the aggregation and controlled proteolytic cleavage of polyprotein core precursors by a precursor-encoded protease (PR). Active, mature retroviral PR is a dimer, and the accumulation of precursors at sites of assembly may facilitate subunit interaction and subsequent activation of this enzyme. In addition, it has been suggested that cellular cytoplasmic components act as inhibitors of PR activity, so that processing is delayed until the nascent virions leave this compartment and separate from the surface of host cells. To investigate the mechanisms that control PR activity during virus assembly, we studied the in vivo processing of retroviral gag precursors that contain tandemly linked PR subunits in which dimerization is concentration independent. Sequences encoding four different linked protease dimers were independently joined to the end of the Rous sarcoma virus (RSV) gag gene in a simian virus 40-based plasmid vector which expresses a myristoylated gag precursor upon transfection of COS-1 cells. Three of these plasmids produced gag precursors that were incorporated into viruslike particles and proteolytically cleaved by the dimers to mature core proteins that were indistinguishable from the processed products of wild-type gag. The amount of viral gag protein that was assembled and packaged in these transfections was inversely related to the relative proteolytic activities of the linked PR dimers. The fourth gag precursor, which contained the most active linked PR dimer, underwent rapid intracellular processing and did not form viruslike particles. In the absence of the plasma membrane targeting signal, processing of all four linked PR dimer-containing gag precursors was completed entirely within the cell. From these results, we conclude that the delay in polyprotein core precursor processing that occurs during normal virion assembly does not depend on a cytoplasmic inhibitor of PR activity. We suggest that dimer formation is not only necessary but may be sufficient for the initiation of PR-directed maturation of gag and gag-pol precursors.  相似文献   

14.
Synthetic non-peptide inhibitors of HIV protease   总被引:3,自引:0,他引:3  
We have studied the inhibition of HIV protease by the antifungal antibiotic cerulenin, as well as by several related synthetic, structurally simpler analogs. The effect of these compounds on HIV protease was conveniently studied by monitoring the cleavage of an authentic single peptide bond in a synthetic nonapeptide corresponding to a natural cleavage site in HIV-1 gag precursor polyprotein. The relative inhibitory effects of these compounds have afforded an insight into the structural characteristics which impart antiprotease activity.  相似文献   

15.
J Luban  C Lee    S P Goff 《Journal of virology》1993,67(6):3630-3634
We have expressed the human immunodeficiency virus type 1 (HIV-1) protease (PR) in bacteria as a Gag-PR polyprotein (J. Luban and S.P. Goff, J. Virol. 65:3203-3212, 1991). The protein displays enzymatic activity, cleaving the Gag polyprotein precursor Pr55gag to the expected products. The PR enzyme is only active as a dimer, and we hypothesized that PR activation might be used as an indicator of polyprotein multimerization. We constructed 25 linker insertion mutations throughout gag and assessed the PR activity of mutant Gag-PR polyproteins by the appearance of Gag cleavage products in bacterial lysates. All mutant constructs produced stable protein in bacteria. PR activity of the majority of the Gag-PR mutants was indistinguishable from that of the wild type. Six mutants, one with an insertion in the matrix (MA), four with insertions in the capsid (CA), and one with insertions in the nucleocapsid (NC), globally disrupted polyprotein processing. When PR was provided in trans on a separate plasmid, the Gag proteins were cleaved with wild-type efficiency. These results suggest that the gag mutations identified as disruptive of polyprotein processing did not conceal the scissile bonds of the polyprotein. Rather, the mutations prevented PR activation in the context of a Gag-PR polyprotein, perhaps by preventing polyprotein dimerization.  相似文献   

16.
17.
1. The p15gag proteinase responsible for the processing of the polyprotein precursor of the myeloblastosis associated virus was obtained by a recombinant technique in an E. coli expression system. The massive expression of the intentionally truncated precursor (Pr25lac-delta gag) was accompanied by its structurally correct processing. 2. Three procedures for the purification of the recombinant proteinase from both the cytoplasmic fraction and the inclusion bodies were developed. 3. The purified proteinase was compared with the authentic proteinase isolated from MAV virions by N-terminal sequence analysis and amino acid analysis, molecular weight determination, reverse-phase HPLC and FPLC elution profiles, electrophoretic mobility and isoelectric point determination, and activity assays with proteins and synthetic substrates. The identity of both enzymes was shown. 3. Contrary to reported data, the amino acid sequence of the p15gag proteinase differs from the sequence of the homologous Rous sarcoma virus proteinase in one residue only, as follows from cDNA sequencing. 4. Crystallization of the proteinase from a citrate-phosphate buffer at pH 5.6 afforded hexagonal crystals which diffracted well as 2.3 A without deterioration.  相似文献   

18.
19.
Processing of the gag and pol gene precursor proteins of retroviruses is essential for the production of mature infectious virions. The processing is directed by a viral protease that itself is part of these precursors and is presumed to cleave itself autocatalytically. To facilitate study of this process, the protease was produced as a fusion protein in Escherichia coli. In this construct, the 10,793-Da protease was preceeded by two copies of a modified IgG binding domain derived from protein A. The IgG binding domain was linked to the protease by an Asp-Pro peptide bond which could not be cleaved by the viral protease. A dimer of the 25,400-Da fusion protein was catalytically active, specifically cleaving a substrate peptide at the correct Tyr-Pro bond. Thus, the fusion protein could serve as a model of the viral gag-pol polyprotein. The finding that the fusion protein was catalytically active supports the suggestion that a gag-pol dimer can initiate a proteolytic cascade after budding of the immature virus. The fusion protein also provided a source of authentic protease. The protease was released from the fusion construct by incubation with formic acid, cleaving the Asp-Pro linkage which had been inserted between the IgG binding domain and the protease.  相似文献   

20.
Intracellular precursor polyproteins of three baboon endogenous retrovirus (BaEV) isolates, m7, 455K, and BILN, were compared with the intracellular proteins of the type C human isolated HL23V by radioimmunoprecipitation, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and tryptic peptide analysis. Human and canine cells infected with m7-BaEV and canine thymus cells infected with BILN-BaEV were characterized by identical precursor polyproteins Pr85gag, Pr70-71gag, Pr65gag, and gPr85env. Canine cells infected with 455K-BaEV consistently showed a slightly different pattern of precursor polyproteins. These included Pr85gag, Pr70gag, Pr67gag, and gPR85env. By tryptic digest mapping of peptides containing [3H]leucine, m7-BaEV and 455K-BaEV were shown to be highly related. By comparison, mapping studies showed that BILN-BaEV was less highly related to m7-BaEV than ws 455K-BaEV. Differences in these related BaEV isolates presumably reflected virus-specific differential cleavage of core protein precursors or alterations in polyprotein primary structure or both. Chase-incubated cells infected with BaEV also contained a stable, p28-related polyprotein termed P72gag. This polyprotein migrated upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis slightly slower than the major core protein precursor Pr70-71gag and appeared to arise by posttranslational modification of Pr70-71gag. Immunoprecipitation of extracts of HL23V-infected cells with antisera to simian sarcoma-simian-associated virus proteins and BaEV proteins confirmed that these cells contained two unrelated viral components, one that was similar to m7-BaEV or BILN-BaEV and a second that was related to simian sarcoma-simian-associated virus. Tryptic digest mapping of BaEV and HL23V prcursor polyproteins suggested that the BaEV-like component of HL23V weas more closely related to m7-BaEV than to 455K-BaEV or BILN-BaEV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号