首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Simultaneous aerobic treatment of COD, phosphate, nitrate and H2S in a synthetic sewage wastewater was carried out using porous ceramic immobilized photosynthetic bacteria, Rhodobacter sphaeroidesS, Rb. sphaeroidesNR-3 and Rhodopseudomonas palustris. In the batch treatment, effective simultaneous removal of COD (89%), phosphate (77%), nitrate (99%) and H2S (99.8%) was observed after 48 h. In semi-continuous treatments with dilution rates of 0.17 to 0.75 day–1under aerobic conditions, simultaneous removal of these four components was also observed after about one month.  相似文献   

2.
We have previously shown that an outer membrane protein, SspA, is prominently induced by salt stress in a photosynthetic bacterium, Rhodobacter sphaeroides f. sp. denitrificans IL106 (R. sphaeroides). In this study, we investigated the physiological role of SspA under various stress conditions. Using recombinant SspA expressed in Escherichia coli as an antigen, the polyclonal antiserum of SspA was prepared. Western blot analysis demonstrated that SspA was highly induced by salt stress under both anaerobic and aerobic conditions. SspA was also induced, but to a lesser extent, by osmotic and acid stress. It is reduced under heat and cold compared to non-stressed conditions. While sspA-disrupted R. sphaeroides grew normally under anaerobic conditions in either the presence or absence of stress, it displayed significantly retarded growth under aerobic conditions in the dark, especially when osmotic or salt stress were imposed. In addition, the sspA disruptant, but not the wild type, formed cell aggregates when grown under both anaerobic and aerobic conditions, and this phenotype was significantly enhanced under salt-stressed aerobic conditions. Together, our findings suggest that SspA is critical under salt-stressed, aerobic growth conditions.  相似文献   

3.
From polluted water of a lagoon pond a new type of denitrifying photosynthetic purple bacteria was isolated. With respect to morphology, fine structure, photopigments, requirement for growth factors, the range of utilization of organic substrates for phototrophic growth and DNA base ratio, the denitrifying strains show the closest resemblance to Rhodopseudomonas sphaeroides and were therefore described as a subspecies named R. sphaeroides forma sp. denitrificans. The new isolates grow well with nitrate anaerobically in the dark accompanying the evolution of nitrogen gas. They cannot assimilate nitrate as the nitrogen source for growth.  相似文献   

4.
A balance of electrons available from acetic acid consumed for growth and oxygen uptake in the aerobic- and photoheterotrophic growth of Rhodopseudomonas sphaeroides S on acetate-minimal medium could be realized the same as in the carbon balance. The unmeasured amounts of yeast extract consumed by the cells grown on propionate–yeast extract media were indirectly estimated from the balance equation of electrons available from carbon substrates. The specific consumption rate of the yeast extract increased with an increase in propionate consumption rate in aerobic and photoheterotrophic cultures. Growth yields from acetic acid and from propionic acid plus yeast extract were calculated on the electron level, i.e., YX/ave g cell produced/equivalent electrons available from substrate consumed. YX/ave values were 5.0 to 5.8 g cell/ave in photoheterotrophic cultures and 2.7 to 3.6 in aerobic–heterotrophic cultures regardless of different medium compositions.  相似文献   

5.
New denitrifying strains of phototrophic bacteria isolated from photosynthetic sludge reactors for wastewater treatment were characterized. All of the new isolates were mesophilic, nonhalophilic, facultative photoheterotrophs that were able to grow by anaerobic photosynthesis, aerobic respiration, or nitrate respiration. They had ovoid cells that were motile by single polar flagella, formed vesicular photosynthetic membranes together with bacteriochlorophyll a and carotenoids of the spheroidene series, required biotin, thiamine, and biotin as growth factors, and utilized a wide variety of organic compounds as electron donor and carbon sources. In these respects, the isolates most closely resembled Rhodobacter sphaeroides. However, they differed from this species in utilizing malonate and dulcitol but not tartrate as carbon sources and in their inability to grow anaerobically in darkness with trimethylamine N-oxide or dimethylsulfoxide as a terminal oxidant. Partial sequencing of 16S rRNA genes provided evidence for genetic differences between the new isolates and R. sphaeroides or other members of the genus Rhodobacter. Activities of nitrate reductase, nitrite reductase, and nitrous oxide reductase were detected in intact cells of one of the new isolates. All these enzyme activities were induced by cultivation with nitrate.  相似文献   

6.
7.
Alginate extracted from the macroalgae Sargassum sinicola was used as the raw material for co-immobilization of the microalgae Chlorella sorokiniana and growth-promoting bacterium Azospirillum brasilense for wastewater treatment and as an inoculant carrier of A. brasilense for plant growth promotion. The composition, structure, viscosity, color, and phenolic compound content of the alginate were analyzed and compared with commercially available alginate produced from the macroalgae Macrocystis pyrifera. From 1H NMR analysis of alginate, S. sinicola was found to have more guluronic acid (F G=0.64) than it had mannuronic acid (F M=0.38) and had a viscosity of 13.5 m Pa s compared to 50 m Pa s for M. pyrifera. The S. sinicola alginate had dark brown color, reducing light penetration, with more phenolic compounds than M. pyrifera alginate. Nonetheless, growth of C. sorokiniana and A. brasilense in S. sinicola alginate was not significantly different than the growth in M. pyrifera alginate beads. Nutrient removal from wastewater by the co-immobilized microorganisms was similar for both types of alginate beads, and so was the growth enhancement of tomato plants inoculated with microbeads containing A. brasilense. This study shows the potential use of S. sinicola alginate as a raw material for cell immobilization for wastewater treatment and plant growth promotion.  相似文献   

8.
The use of three freshwater microalgal cultures—Chlorella sorokiniana, Anabaena laxa, and Hapalosiphon welwitschii—for sorption of copper(II) from synthetic Cu(II) solutions and Marinduque, Philippines, wastewater was studied. The optimum amount of biomass for the three species was 0.025 g dry weight. The optimum contact time for both C. sorokiniana and A. laxa was 1 h, whereas that of H. welwitschii was 30 min. All three species exhibited maximum Cu(II) sorption at pH 4.0–6.0. The Langmuir adsorption isotherm was the best fit model for the three species. The three cultures were found to be effective biosorbents when used in synthetic wastewaters of low concentration (10–30 ppm). Maximum Cu(II) reductions obtained were 88.2, 88.6, and 91.7% for the C. sorokiniana, A. laxa, and H. welwitschii cultures, respectively. C. sorokiniana, A. laxa, and H. welwitschii removed 5.70, 11.16, and 7.15% of Cu(II), respectively, when applied to wastewater taken from Consolidated Mines Inc. (CMI) containing around 150 ppm Cu(II). C. sorokiniana and A. laxa, in combination, exhibited 14.05% Cu(II) removal from CMI wastewater. Desorption with 0.11 M HCl effected 73.20, 64.54, and 70.85% removal of Cu(II) from the surfaces of C. sorokiniana, A. laxa, and H. welwitschii, respectively. SEM-EDS spectra of the three species confirmed the presence of Cu(II) on their surfaces. Presented at the 6th Meeting of the Asia Pacific Society of Applied Phycology, Manila, Philippines.  相似文献   

9.
The growth and amino acid contents of the cyanobacterium,Spirulina platensis strain NIES 46, were investigated using ammonium, nitrate, nitrite, or urea as the sole nitrogen source in a batch culture. Chlorophylla concentration was highest at 2,096 μg/L in the nitrate group after 10 days of cultivation, while the dry weight ofS. platensis was highest at 4.5 g/L in the ammonium group after 30 days of cultivation. The total amino acid content was highest at 174 mg/g dry weight ofS. platensis in the urea group at the end of the cultivation period, yet the amino acid patterns forS. platensis were similar for all the experimental groups. Therefore, it seemed that the growth and amino acid composition ofS. platensis varied depending on the type of nitrogen sources, while the amino acid patterns were not changed. Also, the most efficient harvesting time forS. platensis seemed to be approximately 10 days after cultivation.  相似文献   

10.
Edible oil industry produced massive wastewater, which requires extensive treatment to remove pungent smell, high phosphate, carbon oxygen demand (COD), and metal ions prior to discharge. Traditional anaerobic and aerobic digestion could mainly reduce COD of the wastewater from oil refinery factories (WEORF). In this study, a robust oleaginous microalga Desmodesmus sp. S1 was adapted to grow in WEORF. The biomass and lipid content of Desmodesmus sp. S1 cultivated in the WEORF supplemented with sodium nitrate were 5.62 g·L?1 and 14.49%, whereas those in the WEORF without adding nitrate were 2.98 g·L?1 and 21.95%. More than 82% of the COD and 53% of total phosphorous were removed by Desmodesmus sp. S1. In addition, metal ions, including ferric, aluminum, manganese and zinc were also diminished significantly in the WEORF after microalgal growth, and pungent smell vanished as well. In comparison with the cells grown in BG-11 medium, the cilia-like bulges and wrinkles on the cell surface of Desmodesmus sp. S1 grown in WEORF became out of order, and more polyunsaturated fatty acids were detected due to stress derived from the wastewater. The study suggests that growing microalgae in WEORF can be applied for the dual roles of nutrient removal and biofuel feedstock production.  相似文献   

11.
Photosynthetic prokaryotes that assimilate CO2 under anoxic conditions may also grow chemolithoautotrophically with O2 as the electron acceptor. Among the nonsulfur purple bacteria, two species (Rhodobacter capsulatus and Rhodopseudomonas acidophilus), exhibit aerobic chemolithoautotrophic growth with hydrogen as the electron donor. Although wild-type strains of Rhodobacter sphaeroides grow poorly, if at all, with hydrogen plus oxygen in the dark, we report here the isolation of a spontaneous mutant (strain HR-CAC) of Rba. sphaeroides strain HR that is fully capable of this mode of growth. Rba. sphaeroides and Rba. capsulatus fix CO2 via the reductive pentose phosphate pathway and synthesize two forms of ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). RubisCO levels in the aerobic-chemolithoautotrophic-positive strain of Rba. sphaeroides were similar to those in wild-type strains of Rba. sphaeroides and Rba. capsulatus during photoheterotrophic and photolithoautotrophic growth. Moreover, RubisCO levels of Rba. sphaeroides strain HR-CAC approximated levels obtained in Rba. capsulatus when the organisms were grown as aerobic chemolithoautotrophs. Either form I or form II RubisCO was able to support aerobic chemolithoautotrophic growth of Rba. capsulatus strain SB 1003 and Rba. sphaeroides strain HR-CAC at a variety of CO2 concentrations, although form II RubisCO began to lose the capacity to support aerobic CO2 fixation at high O2 to CO2 ratios. The latter property and other facets of the physiology of this system suggest that Rba. sphaeroides and Rba. capsulatus strains may be effectively employed for the biological selection of RubisCO molecules of altered substrate specificity. Received: 8 August 1997 / Accepted: 26 December 1997  相似文献   

12.
Glycolate metabolism is under nitrogen control in chlorella   总被引:1,自引:0,他引:1       下载免费PDF全文
The utilization of nitrate and ammonia as nitrogen sources had different effects on the metabolism of glycolate in Cholorella sorokiniana. During photolithotrophic growth with nitrate as nitrogen source, glycolate was metabolized via the glycine-serine pathway. Ammonia, produced as a result of glycolate metabolism, was reassimilated by glutamine synthetase. Two isoforms of this enzyme were present at different relative abundance in C. sorokiniana wild type and in a mutant with an increased capacity for the metabolism of glycolate (strain OR).

During photolithotrophic growth in the presence of ammonia as sole nitrogen source, several lines of evidence indicated that glycolate was metabolized to malate, pyruvate, tricarboxylic acid cycle intermediates and related amino acids in C. sorokiniana wild-type cells. Malate synthase was induced and glycine decarboxylase and serine-glyoxylate aminotransferase were repressed in cells grown with ammonia. An inverse correlation was observed between aminating NADPH-glutamate dehydrogenase and the in vivo glycine decarboxylation rate.

  相似文献   

13.
Different concentrations either of ammonium chloride or urea were used in batch and fed-batch cultivations of Spirulina platensis to evaluate the possibility of substituting nitrate by cheaper reduced nitrogen sources in wastewaters biotreatment. The maximum nitrogen concentration able to sustain the batch growth of this microalga without inhibition was 1.7 mM in both cases. Ammonium chloride was limiting for the growth at lower concentrations, whereas inhibition took place at higher levels. This inhibition effect was less marked with urea, likely because the enzymatic hydrolysis of this compound by urease controlled the ammonia transfer into the cell. Fed-batch experiments carried out by pulse-feeding either ammonium or urea proved that the use of these compounds as nitrogen sources can sustain the long term-cultivation of S. platensis, provided that the conditions for their feeding are accurately optimized.  相似文献   

14.
Rhodobacter sphaeroides, which lacks methyl accepting chemotaxis proteins, showed a strong response to gradients of either pyruvate or propionate. If cells were placed in a saturating background of pyruvate they no longer responded to a gradient of propionate but they still responded to potassium or ammonia. This demonstrates that pyruvate saturated the response to another carbon source, but not to other classes of compound. The total movement of cells in a pyruvate background was maintained at a high level relative to a buffer control, indicating an apparent lack of adaptation to saturating pyruvate. The response of R. sphaeroides to a saturating background of pyruvate was weak in cells grown on limiting ammonia although these cells showed a strong response to ammonia. These data suggest that cells show a strong response to the class of compound that currently limits motility. Two hypotheses to explain these results are presented. Firstly, cells show a chemotactic response to a gradient of the limiting compound until saturated by it, they then respond to a gradient of the new compound that has then become limiting. The chemotactic response is the result of a decrease in stopping frequency as cells move up a gradient and an increase as they move down. Secondly, the behavioural response may have two components, a short term chemotactic response and a long term excitation of motility.Abbreviations MCP methyl accepting chemotaxis protein  相似文献   

15.
The R and M phase variants of Rhodobacter sphaeroides and Rhodobacter capsulatus were isolated. The growth rates in the dark and in the light in glucose-containing media were much higher for the Rba. sphaeroides R variant than for the M variant. For the Rba. capsulatus R and M variants, growth rates in the dark and in the light in fructose- or glucose-containing media differed insignificantly. The cells of Rba. sphaeroides and Rba. capsulatus phase variants growing in media with glucose and fructose exhibited differences in activity of the key enzymes of the Embden–Meyerhof–Parnas (EMP) and Entner–Doudoroff (ED) pathways. The oxidative pentose phosphate pathway (PPP) does not participate in glucose and fructose metabolism in the studied bacteria. Specific activity of the ED pathway enzymes was higher in dark-grown R and M variants of both Rba. sphaeroides and Rba. capsulatus than in the cells grown under light. Specific activity of the EMP enzymes was higher for the R and M variants of both cultures grown in the light than for those grown in the dark. Activities of the 2-keto-3-deoxy-6-phosphogluconate and fructose bisphosphate aldolases, the key enzymes of the ED and EMP pathways in Rba. sphaeroides M variant grown in the medium with glucose in the light or in the dark, were approximately twice those of the R variant. In the medium with fructose activities of these enzymes in both R and M variants did not change significantly depending on growth conditions. Activities of the enzymes of the EMP and ED pathways in the extracts of the Rba. capsulatus R and M cells grown with glucose or fructose did not change significantly. Cultivation of Rba. sphaeroides and Rba. capsulatus phase variants in the medium with fructose resulted in a considerably increased synthesis of 1-phosphofructokinase. Induction of 1-phosphofructokinase synthesis in Rba. sphaeroides occurred only in the light, while in Rba. capsulatus induction of this enzyme in the medium with fructose was observed both in the dark and in the light. Thus, under aerobic conditions in the dark the phase variants of both bacteria probably assimilated glucose and fructose via the ED pathway, while in the light the EMP pathway was active.  相似文献   

16.
Roldán  M. D.  Reyes  F.  Moreno-Vivián  C.  Castillo  F. 《Current microbiology》1994,29(4):241-245
Chlorate or trimethylamine-N-oxide (TMAO) added to phototrophic cultures ofRhodobacter sphaeroides DSM 158 increased both the growth rate and the growth yield although this stimulation was not observed in the presence of tungstate. This strain, exhibited basal activities of nitrate, chlorate, and TMAO reductases independently of the presence of these substrates in the culture medium, and nitrate reductase (NR) activity was competitively inhibited by chlorate. Phototrophic growth ofRhodobacter capsulatus B10, a strain devoid of NR activity, was inhibited only by 100 mM chlorate. However, growth of the nitrate-assimilatingR. capsulatus strains E1F1 and AD2 was sensitive to 10mm chlorate, and their NR activities were not inhibited by chlorate. Both NR and chlorate reductase (CR) activities of strain E1F1 were induced in the presence of nitrate or chlorate respectively, whereas strain AD2 showed basal levels of these activities in the absence of the substrates. A basal TMAO reductase (TR) activity was also observed when these strains ofR. capsulatus were cultured in the absence of this electron acceptor. These results suggest that chlorate and TMAO can be used as ancillary oxidants byRhodobacter strains and that a single enzyme could be responsible for nitrate and chlorate reduction inR. sphaeroides DSM 158, whereas these reactions are catalyzed by two different enzymes inR. capsulatus E1F1 and AD2.  相似文献   

17.
For three species of anoxygenic phototrophic alphaproteobacteria differing in their reaction to oxygen and light, physiological characteristics (capacity for acetate assimilation, activity of the tricarboxylic acid (TCA) cycle enzymes, respiration, and the properties of the oxidase systems) were studied. Nonsulfur purple bacteria Rhodobacter sphaeroides, Rhodobaca bogoriensis, and aerobic anoxygenic phototrophic bacteria Roseinatronobacter thiooxidans were the subjects of investigation. All of these organisms were able to grow under aerobic conditions in the dark using the respiratory system with cytochrome aa 3 as the terminal oxidase. They differed, however, in their capacity for growth in the light, bacteriochlorophyll synthesis, and regulation of activity of the TCA cycle enzymes. Oxygen suppressed bacteriochlorophyll synthesis by Rha. sphaeroides and Rbc. bogoriensis both in the dark and in the light. Bacteriochlorophyll synthesis in Rna. thiooxidans occurred only in the dark and was suppressed by light. The results on acetate assimilation by the studied strains reflected the degree of their adaptation to aerobic growth in the dark. Acetate assimilation by light-grown Rha. sphaeroides was significantly higher than by the dark-grown ones. Unlike Rha. sphaeroides, acetate assimilation by Rbc. bogoriensis in the light under anaerobic and aerobic conditions was much less dependent on the growth conditions. Aerobic acetate assimilation by all studied bacteria was promoted by light. In Rha. sphaeroides, activity of the TCA cycle enzymes increased significantly in the cells grown aerobically in the dark. In Rbc. bogoriensis, activity of most of the TCA cycle enzymes under aerobic conditions either decreased or remained unchanged. Our results confirm the origin of modern chemoorganotrophs from anoxygenic phototrophic bacteria. The evolution from anoxygenic photoorganotrophs to aerobic chemoorganotrophs included several stages: nonsulfur purple bacteria → nonsulfur purple bacteria similar to Rbc. bogoriensis → aerobic anoxygenic phototrophs → chemoorganotrophs.  相似文献   

18.
Acrylamide, a neurotoxin and suspected carcinogen, is produced by industrial processes and during the heating of foods. In this study, the microbial diversity of acrylamide metabolism has been expanded through the isolation and characterization of a new strain of Rhodopseudomonas palustris capable of growth with acrylamide under photoheterotrophic conditions. The newly isolated strain grew rapidly with acrylamide under photoheterotrophic conditions (doubling time of 10 to 12 h) but poorly under anaerobic dark or aerobic conditions. Acrylamide was rapidly deamidated to acrylate by strain Ac1, and the subsequent degradation of acrylate was the rate-limiting reaction in cell growth. Acrylamide metabolism by succinate-grown cultures occurred only after a lag period, and the induction of acrylamide-degrading activity was prevented by the presence of protein or RNA synthesis inhibitors. 13C nuclear magnetic resonance studies of [1,2,3-13C]acrylamide metabolism by actively growing cultures confirmed the rapid conversion of acrylamide to acrylate but failed to detect any subsequent intermediates of acrylate degradation. Using concentrated cell suspensions containing natural abundance succinate as an additional carbon source, [13C]acrylate consumption occurred with the production and then degradation of [13C]propionate. Although R. palustris strain Ac1 grew well and with comparable doubling times for each of acrylamide, acrylate, and propionate, R. palustris strain CGA009 was incapable of significant acrylamide- or acrylate-dependent growth over the same time course, but grew comparably with propionate. These results provide the first demonstration of anaerobic photoheterotrophic bacterial acrylamide catabolism and provide evidence for a new pathway for acrylate catabolism involving propionate as an intermediate.  相似文献   

19.
We successfully isolated a novel aerobic chemolithotrophic sulfur-oxidizing bacterium, designated strain SO07, from wastewater biofilms growing under microaerophilic conditions. For isolation, the use of elemental sulfur (S0), which is the most abundant sulfur pool in the wastewater biofilms, as the electron donor was an effective measure to establish an enrichment culture of strain SO07 and further isolation. 16S rRNA gene sequence analysis revealed that newly isolated strain SO07 was affiliated with members of the genus Halothiobacillus, but it was only distantly related to previously isolated species (89% identity). Strain SO07 oxidized elemental sulfur, thiosulfate, and sulfide to sulfate under oxic conditions. Strain SO07 could not grow on nitrate. Organic carbons, including acetate, propionate, and formate, could not serve as carbon and energy sources. Unlike other aerobic sulfur-oxidizing bacteria, this bacterium was sensitive to NaCl; growth in medium containing more than 150 mM was negligible. In situ hybridization combined with confocal laser scanning microscopy revealed that a number of rod-shaped cells hybridized with a probe specific for strain SO07 were mainly present in the oxic biofilm strata (ca. 0 to 100 μm) and that they often coexisted with sulfate-reducing bacteria in this zone. These results demonstrated that strain SO07 was one of the important sulfur-oxidizing populations involved in the sulfur cycle occurring in the wastewater biofilm and was primarily responsible for the oxidation of H2S and S0 to SO42− under oxic conditions.  相似文献   

20.

Rhodobacter sphaeroides is a metabolically versatile bacterium capable of producing terpenes natively. Surprisingly, terpene biosynthesis in this species has always been investigated in complex media, with unknown compounds possibly acting as carbon and nitrogen sources. Here, a defined medium was adapted for R. sphaeroides dark heterotrophic growth, and was used to investigate the conversion of different organic substrates into the reporter terpene amorphadiene. The amorphadiene synthase was cloned in R. sphaeroides, allowing its biosynthesis via the native 2-methyl-d-erythritol-4-phosphate (MEP) pathway and, additionally, via a heterologous mevalonate one. The latter condition increased titers up to eightfold. Consequently, better yields and productivities to previously reported complex media cultivations were achieved. Productivity was further investigated under different cultivation conditions, including nitrogen and oxygen availability. This novel cultivation setup provided useful insight into the understanding of terpene biosynthesis in R. sphaeroides, allowing to better comprehend its dynamics and regulation during chemoheterotrophic cultivation.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号