首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thrombopoietin is the major regulator of platelet production and a stimulator of multilineage hematopoietic recovery following irradiation. The efficacy of three different schedules of thrombopoietin administration was tested on blood cell counts, hematopoietic bone marrow progenitors, and 30-day animal survival in C57BL6/J mice receiving a total body irradiation, with doses ranging from 7 to 10 Gy. A single dose of murine thrombopoietin was injected 2 h before, 2 h after, or 24 h after irradiation. Thrombopoietin promoted multilineage hematopoietic recovery in comparison to placebo up to 9 Gy at the level of both blood cells and bone marrow progenitors, whatever the schedule of administration. The injection of thrombopoietin 2 h before or 2 h after irradiation equally led to the best results concerning hematopoietic recovery. On the other hand, thrombopoietin administration promoted 30-day survival up to 9 Gy with the highest efficacy obtained when thrombopoietin was injected either 2 h before or 2 h after irradiation. However, when its injection was delayed at 24 h, thrombopoietin had almost no effect on survival of 9 Gy irradiated mice. Altogether, our results show that the time schedule for thrombopoietin injection is of critical importance and when thrombopoietin is administered before or shortly after irradiation, it efficiently promotes mice survival to supra-lethal irradiation (up to 9 Gy) in relation with hematopoietic recovery.  相似文献   

2.
In the present study, we evaluated the therapeutic potential of recombinant human IL11 in lethally irradiated C57BL6/J mice exposed to gamma rays. IL11 administered for 5 consecutive days beginning 2 h after total-body irradiation with 8 or 9 Gy 60Co gamma rays resulted in a significant increase in 30-day survival. When IL11 was administered, only a slight improvement in the hematopoietic status (both blood cell counts and progenitor cells) was observed after an 8-Gy exposure, and no improvement in hematopoietic reconstitution was observed after 9 Gy total-body irradiation. The enhancement of fibrinogen in the plasma of irradiated animals suggested the importance of infections in the death of animals. IL11 was able to limit the increase in fibrinogen levels. However, prevention of bacterial infections by antibiotic treatment, although it delayed death, was ineffective in promoting survival either in placebo-treated and IL11-treated mice. IL11 was administered along with thrombopoietin (TPO) or bone marrow transplantation to limit the hematopoietic syndrome, in addition to antibiotic treatment. When IL11 was combined with TPO, a potent stimulator of hematopoiesis, the survival of animals which had been irradiated with 10 Gy 137Cs gamma rays was increased significantly compared to those treated with IL11 or TPO alone. Furthermore, an interactive effect of TPO and IL11 on hematopoietic reconstitution was observed. Similarly, IL11 in combination with bone marrow transplantation enhanced survival after 15 Gy 137Cs gamma rays. These data suggest that the effect of IL11 on the hematopoietic system is only moderate when it is used alone in supralethally irradiated mice but that the effect is improved in the presence of a hematopoietic growth factor or bone marrow transplantation.  相似文献   

3.
Hematopoietic processes, especially megakaryocytopoiesis and thrombopoiesis, are highly sensitive to high-linear energy transfer (LET) radiations such as heavy-ion beams that have greater biological effects than low-LET radiation. This study examined the terminal maturation of megakaryocytes and platelet production derived from hematopoietic stem cells irradiated with heavy-ion beams. CD34(+) cells derived from human placental/umbilical cord blood were exposed to monoenergetic carbon-ion beams (LET = 50 keV/μm) and then cultured in a serum-free medium supplemented with thrombopoietin and interleukin-3. There was no significant difference in megakaryocyte-specific markers between nonirradiated control and irradiated cells. Expression of Tie-2, a receptor that acts in early hematopoiesis, showed a significant 1.31-fold increase after 2 Gy irradiation compared to control cells on day 7. There was a significant increase in Tie-2 mRNA expression. In addition, the expression of other mRNAs, such as PECAM1, SELP and CD44, was also significantly increased in cells irradiated with heavy-ion beams. However, the adherent function of platelets derived from the irradiated cells showed no difference from that in the controls. These results clarify that the functions of megakaryocytopoiesis and thrombopoiesis derived from hematopoietic stem/progenitor cells irradiated with heavy-ion beams are similar to those in the unirradiated cells, although heavy-ion beams affect the expression of genes associated with cellular adhesion.  相似文献   

4.
Forty-seven years ago, the parathyroid hormone (PTH) in one injection of Lilly's old bovine parathyroid extract, PTE, was found to greatly increase the 30-day survival of heavily X-irradiated rats when given from 18 h before to as long as 3 h after irradiation but no later. This was the first indication that PTH might stimulate hematopoiesis. Recent studies have confirmed the relation between PTH and hematopoiesis by showing that hPTH-(1-34)OH increases the size of the hematopoietic stem cell pool in mice. The peptide operates through a cyclic AMP-mediated burst of Jagged 1 production in osteoblastic cells lining the stem cells' niches on trabecular bone surfaces. The osteoblastic cells' Jagged 1 increases the hematopoietic stem cell pool by activating Notch receptors on attached stem cells. PTH-triggered cyclic AMP signals also directly stimulate the proliferation of the hematopoietic stem cells. However, the single PTH injection in the early experiments using PTE probably increased the survival of irradiated rats mainly by preventing the damaged hematopoietic progenitors from irreversibly initiating self-destructive apoptogenesis during the first 5 h after irradiation. It has also been shown that several daily injections of hPTH-(1-34)OH enable lethally irradiated mice to survive by stimulating the growth of transplanted normal bone marrow cells. If the osteogenic PTHs currently entering or on the verge of entering the market for treating osteoporosis can also drive hematopoiesis in humans as well as rodents, they could be potent tools for reducing the damage inflicted on bone marrow by cytotoxic cancer chemotherapeutic drugs and ionizing radiation.  相似文献   

5.
Otsuka, K., Koana, T., Tomita, M., Ogata, H. and Tauchi, H. Rapid Myeloid Recovery as a Possible Mechanism of Whole-Body Radioadaptive Response. Radiat. Res. 170, 307- 315 (2008).We investigated the mechanism underlying the radioadaptive response that rescues mice from hematopoietic failure. C57BL/6 mice were irradiated with low-dose acute X rays (0.5 Gy) for priming 2 weeks prior to a high-dose (6 Gy) challenge irradiation. Bone marrow cells, erythrocytes and platelets in low-dose-preirradiated mice showed earlier recovery after the challenge irradiation than those in mice subjected only to the challenge irradiation. This suggests that hematopoiesis is enhanced after a challenge irradiation in preirradiated mice. The rapid recovery of bone marrow cells after the challenge irradiation was consistent with the proliferation of hematopoietic progenitors expressing the cell surface markers Lin(-), Sca-1(-) and c-Kit(+) in low-dose-preirradiated mice. A subpopulation of myeloid (Mac-1(+)/Gr-1(+)) cells, which were descendants of Lin(-), Sca-1(-) and c-Kit(+) cells, rapidly recovered in the bone marrow of low-dose-preirradiated mice, whereas the number of B-lymphoid (CD19(+)/B220(+)) cells did not show a statistically significant increase. Plasma cytokine profiles were analyzed using antibody arrays, and results indicated that the concentrations of several growth factors for myelopoiesis after the challenge irradiation were considerably increased by low-dose preirradiation. The rapid recovery of erythrocytes and platelets but not leukocytes was observed in the peripheral blood of preirradiated mice, suggesting that low-dose preirradiation triggered the differentiation to myelopoiesis. Thus the adaptive response induced by low-dose preirradiation in terms of the recovery kinetics of the number of hematopoietic cells may be due to the rapid recovery of the number of myeloid cells after high-dose irradiation.  相似文献   

6.
目的 明确人促血液血管细胞生成素 (HAPO)对骨髓抑制小鼠的造血重建作用。方法 研究HAPO、G-CSF对骨髓抑制小鼠的促造血作用,以700 cGy 137Csγ射线全身照射的Balb/c小鼠为模型,观察照射后小鼠的生存率;检查血常规;计数内源性脾结节;计数骨髓细胞数;采用半固体培养基进行集落培养检测骨髓细胞的高增殖潜能;取小鼠骨髓细胞接种于96孔培养板,分别在照射前或照射后加HAPO、G-CSF培养72hr,MTT方法测定活细胞数;取小鼠骨髓细胞,分别在照射后加HAPO,培养3周后观察各组小鼠骨髓细胞的生长情况。结果 HAPO、G-CSF均可明显提高放射后的小鼠的生存率;使内源性的脾集落增加。照射后的各组小鼠外周血白细胞变化较为明显,HAPO组白细胞恢复快于PBS组,也可高于G-CSF组。各组小鼠骨髓细胞数虽然14天时G-CSF组最为明显,但32天时HAPO组骨髓细胞数超过G-CSF组,至42天时基本恢复正常;而G-CSF组在32天、42天时骨髓细胞数仍低于正常值。在7天、14天、32天时取各组小鼠骨髓细胞高增殖潜能检测试验,HAPO组生成的GEMM-CFU数均最多。在照射前与HAPO、G-CSF孵育的骨髓细胞,HAPO组活细胞数量比对照组明显增高,而G-CSF组与对照组无明显差异。骨髓细胞被照射后培养72hr时,MTT测定显示不同剂量HAPO、G-CSF均能促进放射后骨髓细胞的增殖。骨髓细胞被照射后继续培养3周,HAPO组均有造血岛生成,细胞sca-1、CD31呈阳性,周围CD31阳性的内皮细胞增多。而PBS组则未出现造血岛,基质细胞中极少有CD31阳性细胞的内皮细胞,未发现sca-1阳性细胞。结论 体内、外实验表明,人促血液血管细胞生成素HAPO对放射损伤的Balb/c小鼠有明显的促造血重建作用,提高小鼠的生存率,促进其造血干细胞的增殖与生长。  相似文献   

7.
The radioadaptive survival response induced by a conditioning exposure to 0.45 Gy and measured as an increase in 30-day survival after mid-lethal X irradiation was studied in C57BL/6N mice. The acquired radioresistance appeared on day 9 after the conditioning exposure, reached a maximum on days 12-14, and disappeared on day 21. The conditioning exposure 14 days prior to the challenge exposure increased the number of endogenous spleen colonies (CFU-S) on days 12-13 after the exposure to 5 Gy. On day 12 after irradiation, the conditioning exposure also increased the number of endogenous CFU-S to about five times that seen in animals exposed to 4.25-6.75 Gy without preirradiation. The effect of the interval between the preirradiation and the challenge irradiation on the increase in endogenous CFU-S was also examined. A significant increase in endogenous CFU-S was observed when the interval was 14 days, but not 9 days. This result corresponded to the increase in survival observed on day 14 after the challenge irradiation. Radiation-inducted resistance to radiation-induced lethality in mice appears to be closely related to the marked recovery of endogenous CFU-S in the surviving hematopoietic stem cells that acquired radioresistance by preirradiation. Preirradiation enhanced the recovery of the numbers of erythrocytes, leukocytes and thrombocytes very slightly in mice exposed to a sublethal dose of 5 Gy, a dose that does not cause bone marrow death. There appears to be no correlation between the marked increase in endogenous CFU-S and the slight increase or no increase in peripheral blood cells induced by the radioadaptive response. The possible contribution by some factor, such as Il4 or Il11, that has been reported to protect irradiated animals without stimulating hematopoiesis is discussed.  相似文献   

8.
Radioprotective effects of ginsan,an immunomodulator   总被引:6,自引:0,他引:6  
Song JY  Han SK  Bae KG  Lim DS  Son SJ  Jung IS  Yi SY  Yun YS 《Radiation research》2003,159(6):768-774
We previously reported that ginsan, a purified polysaccharide isolated from Panax ginseng, had a mitogenic activity, induced LAK cells, and increased levels of several cytokines. In an effort to identify other immunostimulatory effects, we evaluated the protective effects of ginsan injected in vivo against radiation by measuring its effects on the CFU-S bone marrow cells and spleen cells. Ginsan was found to significantly increase the number of bone marrow cells, spleen cells, granulocyte-macrophage colony-forming cells (GM-CFC), and circulating neutrophils, lymphocytes and platelets in irradiated mice. In addition, ginsan induced the endogenous production of cytokines such as Il1, Il6, Ifng and Il12, which are required for hematopoietic recovery, and was able to enhance Th1 function while interfering with the Th2 response in irradiated mice. We demonstrated that pretreatment with ginsan protected mice from the lethal effects of ionizing radiation more effectively than when it was given immediately after or at various times after irradiation. A significant increase in the LD(50/30) from 7.54 Gy for PBS injection to 10.93 Gy for mice pretreated with 100 mg/kg ginsan was observed. These findings indicate that ginsan may be a useful agent to reduce the time necessary for reconstituting hematopoietic cells after irradiation.  相似文献   

9.
重组人血小板生成素(rhTPO)是一种能促进巨核系祖细胞增殖、分化生成血小板的造血因子,研究表明它能促进射线照射小鼠造血功能恢复,前期工作证明rhTPO早期干预可显著提高致死剂量照射小鼠的活存率.本文以7.0Gy照射恒河猴为重度骨髓型急性放射病(ARS)模型,研究了rhTPO早期干预对重症ARS的治疗作用,并与WR2721和"500"的辐射防护作用进行了比较,结果发现rhTPO早期干预可明显促进ARS猴造血功能恢复,改善ARS猴症状,简化对症治疗措施,提高重度骨髓型ARS猴活存率,其对重度骨髓型ARS的防治作用优于现有的辐射防护药WR2721和"500",有望开发成安全有效的新型辐射防治药物.  相似文献   

10.
Meloxicam, a selective inhibitor of cyclooxygenase 2, a nonsteroidal anti-inflammatory drug with an improved side-effects profile in terms of gastrointestinal toxicity, has been found to stimulate hematopoiesis in whole-body gamma-irradiated mice. A distinct corroboration of this positive action of meloxicam is an enhancement of the recovery of hematopoietic progenitor cells committed to granulocyte-macrophage and erythroid development, which has been demonstrated in sublethally irradiated animals treated with meloxicam at a dose of 20 mg/kg administered intraperitoneally either singly 1 h before irradiation or repeatedly after radiation exposure. The results suggest that meloxicam can be added to the list of biological response modifiers that can be used in the treatment of hematopoietic damage induced by ionizing radiation.  相似文献   

11.
Based on the capacity of certain hematopoietic growth factors to mobilize the hematopoietic progenitors from bone marrow to peripheral blood, we have investigated whether the number of progenitors that can be mobilized to peripheral blood after irradiation correlates with the radiation dose and reflects the total reserve of bone marrow progenitors that survive the exposure. In three different mouse strains, a close relationship was observed between the number of G-CSF mobilized progenitors and the radiation dose received by the animals. When G-CSF was replaced by one single injection of SD01 plus thrombopoietin, a similar relationship between the two parameters was observed, which fitted to the multitarget theoretical model. This treatment also promoted 50% survival in mice receiving a lethal dose of 9 Gy. The estimation of the total number of CFU-GM progenitors in the irradiated mice also allowed us to establish a good relationship between the number of progenitors that were mobilized to peripheral blood with respect to the global reserve of surviving progenitors. These results suggest that the quantification of mobilized hematopoietic progenitors would predict the severity and reversibility of the hematopoietic syndrome of irradiated victims, based on direct estimations of their global reserve of hematopoietic progenitors and stem cells.  相似文献   

12.
It has been shown that genetic inhibition of p53 leads to enhanced proliferation of hematopoietic stem cells (HSCs). This could, in theory, contribute to the increased frequency of tumor development observed in p53-deficient mice and humans. In our previous work, we identified chemical p53 inhibitors (PFTs) that suppress the transactivation function of p53 and protect cultured cells and mice from death induced by gamma irradiation (IR). Here we found that when applied to bone marrow cells in vitro or injected into mice, PFTb impeded IR-induced reduction of hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) population sizes. In addition, we showed that PFTb stimulated HSC and HPC proliferation in the absence of IR in vitro and in vivo and mobilized HSCs to the peripheral blood. Importantly, however, PFTb treatment did not affect the timing or frequency of tumor development in irradiated p53 heterozygous mice used as a model for determination of carcinogenicity. Thus, although PFTb administration led to increased numbers of HSCs and HPCs, it was not carcinogenic in mice. These findings suggest that chemical p53 inhibitors may be clinically useful as safe and effective stimulators of hematopoiesis.  相似文献   

13.
Our previous study indicated that injecting nitrogen-containing bisphosphonate (NBP) induced the site of erythropoiesis to shift from the bone marrow (BM) to the spleen. This was due to the depletion of BM-resident macrophages, which support erythropoiesis. In this study, we examined NBP treatment-induced extramedullary hematopoiesis in splenectomized mice, focusing on hepatic hematopoiesis. NBP-treated mice did not display anemia or significant change in erythropoietin production, while megakaryopoiesis and erythropoiesis were constantly observed in the liver. Erythroblastic islands were detected in the sinusoidal lumen. Kupffer cells expressed VCAM-1 following NBP treatment, which is an important factor for erythroblast differentiation. Cl2MBP-liposome treatment depleted the erythroblastic islands, and decreased the number of hematopoietic cells in the liver, as determined by colony forming assays. Together, these results indicate that Kupffer cells support erythropoiesis, acting as stromal cells in the liver, and that they might act as a niche for hematopoietic precursor cells in an emergency.  相似文献   

14.
Multiple organs are induced in the primitive embryonic ectoderm excised from blastula stage Xenopus laevis embryos, under the strict control of mesoderm inducing factors. This in vitro system is useful for exploring the mechanisms of development. In this study, the function of thrombopoietin (TPO)/c-Mpl signaling in the development of hematopoietic cells was investigated. An optimal hematopoietic cell induction system was established to evaluate the influence of growth factors on hematopoiesis. It was found that exogenous TPO enhanced hematopoiesis in explants induced by activin and bone morphogenetic protein (BMP)-4 and increased the number of both erythrocytes and leukocytes in a dose-dependent manner. Addition of anti-c-Mpl antibody completely inhibited the expansion of hematopoietic cells stimulated by TPO, and the antibody specifically recognized blood-like cells. These results demonstrate that TPO acts on hematopoietic progenitors induced in explants and the c-Mpl-like molecule in Xenopus mediates the cellular function of TPO. We also found that forced expression of TPO in embryos promoted hematopoiesis in the ventral blood island and the dorsal-- lateral plate mesoderm. These results suggest that hematopoietic stem and progenitor cells are regulated by TPO/c-Mpl signaling from when they appear in their ontogeny. They also suggest that TPO/c-Mpl signaling play a crucial role in the formation of hematopoietic cells in Xenopus.  相似文献   

15.
Meloxicam, a selective inhibitor of cyclooxygenase 2, was tested to determine its ability to modulate hematopoiesis and to influence survival of mid-lethally gamma-irradiated mice. A single dose of meloxicam (20 mg/kg) administered to mice intraperitoneally 1 h before irradiation was shown to enhance serum levels of granulocyte colony-stimulating factor (G-CSF) during the first 24 h after irradiation, to elevate numbers of granulocytic precursor cells in bone marrow and granulocyte counts in peripheral blood on day 10 after irradiation, and to increase 30-day survival of these mice. The results provide new evidence for the protective ability of meloxicam administration to mice irradiated with mid-lethal doses and contribute to the understanding of the mechanisms of this meloxicam action by drawing attention to the possible role of increased endogenous G-CSF production.  相似文献   

16.
Medications that can mitigate against radiation injury are limited. In this study, we investigated the ability of recombinant human growth hormone (rhGH) to mitigate against radiation injury in mice and nonhuman primates. BALB/c mice were irradiated with 7.5 Gy and treated post-irradiation with rhGH intravenously at a once daily dose of 20 µg/dose for 35 days. rhGH protected 17 out of 28 mice (60.7%) from lethal irradiation while only 3 out of 28 mice (10.7%) survived in the saline control group. A shorter course of 5 days of rhGH post-irradiation produced similar results. Compared with the saline control group, treatment with rhGH on irradiated BALB/c mice significantly accelerated overall hematopoietic recovery. Specifically, the recovery of total white cells, CD4 and CD8 T cell subsets, B cells, NK cells and especially platelets post radiation exposure were significantly accelerated in the rhGH-treated mice. Moreover, treatment with rhGH increased the frequency of hematopoietic stem/progenitor cells as measured by flow cytometry and colony forming unit assays in bone marrow harvested at day 14 after irradiation, suggesting the effects of rhGH are at the hematopoietic stem/progenitor level. rhGH mediated the hematopoietic effects primarily through their niches. Similar data with rhGH were also observed following 2 Gy sublethal irradiation of nonhuman primates. Our data demonstrate that rhGH promotes hematopoietic engraftment and immune recovery post the exposure of ionizing radiation and mitigates against the mortality from lethal irradiation even when administered after exposure.  相似文献   

17.
18.
Hematopoietic stem cells (HSCs), which are defined by their capacity to reconstitute adult conventional mice, are first found in the dorsal aorta after 10.5 days post coitus (dpc) and in the fetal liver at 11 dpc. However, lympho-myeloid hematopoietic progenitors are detected in the dorsal aorta from 9 dpc, raising the issue of their role in establishing adult hematopoiesis. Here, we show that these progenitors are endowed with long-term reconstitution capacity, but only engraft natural killer (NK)-deficient Rag2γc(-/-) mice. This novel population, called here immature HSCs, evolves in culture with thrombopoietin and stromal cells, into HSCs, defined by acquisition of CD45 and MHC-1 expression and by the capacity to reconstitute NK-competent mice. This evolution occurs during ontogeny, as early colonization of fetal liver by immature HSCs precedes that of HSCs. Moreover, organ culture experiments show that immature HSCs acquire, in this environment, the features of HSCs.  相似文献   

19.
The effects of injection of linoleic acid into C57Bl/6 mice on hematopoietic and immunological parameters were examined. Administration of linoleic acid stimulated hematopoiesis as it increased spleen weight and cellularity, increased the number of bone marrow and splenic granulocytic-monocytic progenitor cells, and increased the colony stimulating factor activity in the serum of the treated mice. Associated with the hematopoietic stimulation in linoleic acid-treated mice was a decline in the spleen cell blastogenic responses and the appearance of bone marrow suppressor cells which were inhibitory to normal spleen cell blastogenesis. The linoleic acid-induced bone marrow suppressor cells resembled cells of the monocyte lineage in that they were sensitive to treatment with L-leucine methyl ester, partially sensitive to treatment with anti-Ia antibodies and complement, and their suppressor activity was minimized by indomethacin, a prostaglandin synthesis inhibitor. These results suggest that administration of linoleic acid results in hematopoietic stimulation and, concurrently, in the appearance of suppressor cells in the bone marrow. The bone marrow suppressor cells resemble immature cells of the monocyte lineage and appear to mediate their suppressive effects through the production of prostaglandins.  相似文献   

20.
The role of gap junctions formed by connexins (Cxs) has been implicated in the homeostatic regulation of multicellular systems. Primitive hematopoietic progenitor cells form a multicellular system, but a previous report states that Cx32 is not expressed in the bone marrow. Thus, a question arises as to why Cx molecules are not detected in the hematopoietic tissue other than in stromal cells. Based on our preliminary study, which suggested a potential impairment of hematopoiesis in Cx32-knockout (KO) mice, the objectives of the present study were to determine whether Cx32 functions in the bone marrow during steady-state hematopoiesis and to examine its possible protective roles during regeneration after chemical abrasions and during leukemogenesis after the administration of a secondary genotoxic chemical, methyl nitrosourea (MNU). As a result, the Cx32 molecule, functioning in the hematopoietic stem cell (HSC) compartment during steady-state hematopoiesis, was observed for the first time; the expressions of Cx32 at the mRNA level, as determined by polymerase chain reaction analysis, and at the protein level, determined using an anti-Cx32 antibody, were observed only in the lin(-)c-kit(+) HSC fraction, using a combination of immunobead-density gradient and immunomagnetic bead separation. Hematopoiesis was impaired in the absence of Cx32, and it was delayed during regeneration after chemical abrasion with 5-fluorouracil at 150 mg/kg body wt in Cx32-KO mice. Cx32-KO mice showed increased leukemogenicity compared with wild-type mice after MNU injection; furthermore, in a competitive assay for leukemogenicity in mice that had been lethally irradiated and repopulated with a mixed population of bone marrow cells from Cx32-KO mice and wild-type mice, the resulting leukemias originated predominantly from Cx32-KO bone marrow cells. In summary, the role of Cx32 in hematopoiesis was not previously recognized, and Cx32 was expressed only in HSCs and their progenitor cells. The results indicate that Cx32 in wild-type mice protects HSCs from chemical abrasion and leukemogenic impacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号