共查询到20条相似文献,搜索用时 0 毫秒
1.
New substrate for galactose oxidase 总被引:1,自引:0,他引:1
2.
Combinatorial chemistry can be efficiently used for the synthesis and evaluation of binding properties of libraries of synthetic receptors. This approach has been applied particularly to 'tweezer' and other 'multi-armed' receptors, and has been used for the identification of receptors for peptides in aqueous media, and for the development of new sensors and sensor arrays. 相似文献
3.
Using a mixture of scientific intuition, iteration and serendipity, combinatorial materials science is an approach to the discovery and study of new materials that combines high-speed chemical synthesis, high-throughput screening and high-capacity information processing to create, analyse and interpret large numbers of new and diverse material compositions. Technology has now been developed that makes this powerful integration possible. The classes of materials under investigation include catalysts, luminescent, optical, magnetic and dielectric materials, and structural polymers. 相似文献
4.
Lowe CR 《Current opinion in chemical biology》2001,5(3):248-256
A new armoury of protein purification tools is required to support rapid advances in high-throughput genomics and proteomics, which are predicted to lead to the discovery, isolation, characterisation and manufacture of a number of new biopharmaceutical proteins. Computer-aided molecular design, combinatorial (bio)chemistry and high-throughput screening techniques are now being exploited to identify highly selective ligands for use in the purification of these proteins by affinity chromatography. 相似文献
5.
Achim Sokolowski Heiko Leutbecher Thomas Weyhermüller Robert Schnepf Eberhard Bothe Eckhard Bill Peter Hildebrandt K. Wieghardt 《Journal of biological inorganic chemistry》1997,2(4):444-453
The reaction of the macrocycles 1,4,7-tris (3,5-di-tert-butyl-2-hydroxy-benzyl)-1,4,7-triazacyclononane, L1H3, or 1,4,7-tris(3-tert-butyl-5-methoxy-2-hydroxy-benzyl)-1,4,7-triazacyclononane, L2H3, with Cu(ClO4)2·6H2O in methanol (in the presence of Et3N) affords the green complexes [CuII(L1H)] (1), [CuII(L2H)]·CH3OH (2) and (in the presence of HClO4) [CuII(L1H2)](ClO4) (3) and [CuII(L2H2)] (ClO4) (4). The CuII ions in these complexes are five-coordinate (square-base pyramidal), and each contains a dangling, uncoordinated pendent
arm (phenol). Complexes 1 and 2 contain two equatorially coordinated phenolato ligands, whereas in 3 and 4 one of these is protonated, affording a coordinated phenol. Electrochemically, these complexes can be oxidized by one electron,
generating the phenoxyl-copper(II) species [CuII(L1H)]+ ·, [Cu(L2H)]+ ·, [CuII(L1H2)]2+ ·, and [CuII(L2H2)]2+ ·, all of which are EPR-silent. These species are excellent models for the active form of the enzyme galactose oxidase (GO).
Their spectroscopic features (UV-VIS, resonance Raman) are very similar to those reported for GO and unambiguously show that
the complexes are phenoxyl-copper(II) rather than phenolato-copper(III) species.
Received: 10 February 1997 / Accepted: 7 April 1997 相似文献
6.
Böcker S Mäkinen V 《IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM》2008,5(1):91-100
Mass spectrometry has become one of the most popular analysis techniques in Proteomics and Systems Biology. With the creation of larger datasets, the automated recalibration of mass spectra becomes important to ensure that every peak in the sample spectrum is correctly assigned to some peptide and protein. Algorithms for recalibrating mass spectra have to be robust with respect to wrongly assigned peaks, as well as efficient due to the amount of mass spectrometry data. The recalibration of mass spectra leads us to the problem of finding an optimal matching between mass spectra under measurement errors. We have developed two deterministic methods that allow robust computation of such a matching: The first approach uses a computational geometry interpretation of the problem, and tries to find two parallel lines with constant distance that stab a maximal number of points in the plane. The second approach is based on finding a maximal common approximate subsequence, and improves existing algorithms by one order of magnitude exploiting the sequential nature of the matching problem. We compare our results to a computational geometry algorithm using a topological line-sweep. 相似文献
7.
8.
Firbank S Rogers M Guerrero RH Dooley DM Halcrow MA Phillips SE Knowles PF McPherson MJ 《Biochemical Society symposium》2004,(71):15-25
GO (galactose oxidase; E.C. 1.1.3.9) is a monomeric 68 kDa enzyme that contains a single copper ion and an amino acid-derived cofactor. The enzyme is produced by the filamentous fungus Fusarium graminearum as an extracellular enzyme. The enzyme has been extensively studied by structural, spectroscopic, kinetic and mutational approaches that have provided insight into the catalytic mechanism of this radical enzyme. One of the most intriguing features of the enzyme is the post-translational generation of an organic cofactor from active-site amino acid residues. Biogenesis of this cofactor involves the autocatalytic formation of a thioether bond between Cys-228 and Tyr-272, the latter being one of the copper ligands. Formation of this active-site feature is closely linked to the loss of an N-terminal 17 amino acid prosequence. When copper and oxygen are added to this pro-form of GO (pro GO), purified in copper-free conditions from the heterologous host Aspergillus nidulans, mature GO is formed by an autocatalytic process. Structural comparison of pro GO with mature GO reveals overall structural similarity, but with some regions showing significant local differences in main-chain position. Some side chains of the active-site residues differ significantly from their positions in the mature enzyme. These structural effects of the prosequence suggest that it may act as an intramolecular chaperone to provide an open active-site structure conducive to copper binding and chemistry associated with cofactor formation. The prosequence is not mandatory for processing, as a recombinant form of GO lacking this region and purified under copper-free conditions can also be processed in an autocatalytic copper- and oxygen-dependent manner. 相似文献
9.
O V Koroleva M L Rabinovich T T Buglova A I Iaropolov 《Prikladnaia biokhimiia i mikrobiologiia》1983,19(5):632-637
The kinetics and action mechanism of the galactose oxidase from Fusarium graminearum were studied. pH-optimum of the enzyme activity and stability was 7.0, the activity and stability of the galactose oxidase being decreased at any other values of pH. The enzyme is destabilized at acidic pH that is connected with protonization of its ionogenic group with pK 4.7. The temperature optimum of the galactose oxidase is 35 degrees C. When studying the enzyme thermoinactivation, it was found that at temperatures below 30 degrees C the energy of activation of denaturation was about 40 kcal/mole and at temperatures ranging from 30 to 70 degrees C - 13 kcal/mole. On the basis of the data obtained it was concluded that a low-temperature form of the galactose oxidase, possessing a higher energy of activation of denaturation, is more active than a high-temperature form. The value of Km for the enzyme in respect to galactose was 0.19 M, and the value of Vmax = 360 mumole/min per g of the preparation. 相似文献
10.
Why do proteins adopt the conformations that they do, and what determines their stabilities? While we have come to some understanding of the forces that underlie protein architecture, a precise, predictive, physicochemical explanation is still elusive. Two obstacles to addressing these questions are the unfathomable vastness of protein sequence space, and the difficulty in making direct physical measurements on large numbers of protein variants. Here, we review combinatorial methods that have been applied to problems in protein biophysics over the last 15 years. The effects of hydrophobic core composition, the most important determinant of structure and stability, are still poorly understood. Particular attention is given to core composition as addressed by library methods. Increasingly useful screens and selections, in combination with modern high-throughput approaches borrowed from genomics and proteomics efforts, are making the empirical, statistical correlation between sequence and structure a tractable problem for the coming years. 相似文献
11.
12.
The fungal enzyme galactose oxidase is a radical copper oxidase that catalyzes the oxidation of a broad range of primary alcohols to aldehydes. Previous mechanistic studies have revealed a large substrate deuterium kinetic isotope effect on galactose oxidase turnover whose magnitude varies systematically over a series of substituted benzyl alcohols, reflecting a change in the character of the transition state for substrate oxidation. In this work, these detailed mechanistic studies have been extended using a series of stereospecifically monodeuterated substrates, including 1-O-methyl-alpha-D-galactose as well as unsubstituted benzyl alcohol and 3- and 4-methoxy and 4-nitrobenzyl derivatives. Synthesis of all of these substrates was based on oxidation of the alpha,alpha'-dideuterated alcohol to the corresponding (2)H-labeled aldehyde, followed by asymmetric hydroboration using alpha-pinene/9-BBN reagents to form the stereoisomeric alcohols. Products from enzymatic oxidation of each of these substrates were characterized by mass spectrometry to quantitatively evaluate the substrate dependence of the stereoselectivity of the catalytic reaction. For all of these substrates, the selectivity for pro-S hydrogen abstraction was at least 95%. This selectivity appears to be a direct consequence of constraints imposed by the enzyme on the orientation of substrates bearing a branched beta-carbon. Steady state analysis of kinetic isotope effects on V/K has resolved individual contributions from primary and alpha-secondary kinetic isotope effects in the reaction, providing a test for the involvement of an electron transfer redox equilibrium in the oxidation process. Multiple isotope effect measurements utilizing simultaneous labeling of the substrate and solvent have contributed to refinement of the relation between proton transfer and hydrogen atom transfer steps in substrate oxidation. 相似文献
13.
Whittaker JW 《Archives of biochemistry and biophysics》2005,433(1):227-239
Galactose oxidase is a free radical metalloenzyme containing a novel metalloradical complex, comprised of a protein radical coordinated to a copper ion in the active site. The unusually stable protein radical is formed from the redox-active side chain of a cross-linked tyrosine residue (Tyr-Cys). Biochemical studies on galactose oxidase have revealed a new class of oxidation mechanisms based on this free radical coupled-copper catalytic motif, defining an emerging family of enzymes, the radical-copper oxidases. Isotope kinetics and substrate reaction profiling have provided insight into the elementary steps of substrate oxidation in these enzymes, complementing structural studies on their active site. Galactose oxidase is remarkable in the extent to which free radicals are involved in all aspects of the enzyme function: serving as a key feature of the active site structure, defining the characteristic reactivity of the complex, and directing the biogenesis of the Tyr-Cys cofactor during protein maturation. 相似文献
14.
G Avigad 《Analytical biochemistry》1978,86(2):470-476
A galactose oxidase (EC 1.1.3.9); NADH-peroxidase (EC 1.11.1.1) coupled assay system is used for the estimation of galactose oxidase activity. Spectrophotometric measurement of NADH consumption yields direct quantitative value of enzymic activity or can be used for the end-point determination of the amount of galactose oxidase substrate present in test solutions. Use of similar coupled systems is suggested for the assay of other H2O2-producing enzymes and their substrates. 相似文献
15.
Galactose oxidase is a remarkable enzyme containing a metalloradical redox cofactor capable of oxidizing a variety of primary alcohols during enzyme turnover. Recent studies using 1-O-methyl alpha-D-galactopyranoside have revealed an unusually large kinetic isotope effect (KIE) for oxidation of the alpha-deuterated alcohol (kH/kD = 22), demonstrating that cleavage of the 6,6'-di[2H]hydroxymethylene C-H bond is fully rate-limiting for oxidation of the canonical substrate. This step is believed to involve hydrogen atom transfer to the tyrosyl phenoxyl in a radical redox mechanism for catalysis [Whittaker, M. M., Ballou, D. P., and Whittaker, J. W. (1998) Biochemistry 37, 8426-8436]. In the work presented here, the enzyme's unusually broad substrate specificity has allowed us to extend these investigations to a homologous series of benzyl alcohol derivatives, in which remote (meta or para) substituents are used to systematically perturb the properties of the hydroxyl group undergoing oxidation. Quantitative structure-activity relationship (QSAR) correlations over the steady state rate data reveal a shift in the character of the transition state for substrate oxidation over this series, reflected in a change in the magnitude of the observed KIE for these reactions. The observed KIE values have been shown to obey a log-linear correlation over the substituent parameter, Hammett sigma. For the relatively difficult to oxidize nitro derivative, the KIE is large (kH/kD = 12.3), implying rate-limiting C-H bond cleavage for the oxidation reaction. This contribution becomes less important for more easily oxidized substrates (e.g., methoxy derivatives) where a much smaller KIE is observed (kH/kD = 3.6). Conversely, the solvent deuterium KIE is vanishingly small for 4-nitrobenzyl alcohol, but becomes significant for the 4-methoxy derivative (kH2O/kD2O = 1.2). These experiments have allowed us to develop a reaction profile for substrate oxidation by galactose oxidase, consisting of three components (hydroxylic proton transfer, electron transfer, and hydrogen atom transfer) comprising a single-step proton-coupled electron transfer mechanism. Each component exhibits a distinct substituent and isotope sensitivity, allowing them to be identified kinetically. The proton transfer component is unique in being sensitive to the isotopic character of the solvent (H2O or D2O), while hydrogen atom transfer (C-H bond cleavage) is independent of solvent composition but is sensitive to substrate labeling. In contrast, electron transfer processes will in general be less sensitive to isotopic substitution. Our results support a mechanism in which initial proton abstraction from a coordinated substrate activates the alcohol toward inner sphere electron transfer to the Cu(II) metal center in an unfavorable redox equilibrium, forming an alkoxy radical which undergoes hydrogen atom abstraction by the tyrosine-cysteine phenoxyl free radical ligand to form the product aldehyde. 相似文献
16.
C M Moreno 《Journal of theoretical biology》1986,119(3):369-378
Several substrates and roles have been proposed for D-amino acid oxidase (E.C. 1.4.3.3.); however, there is no proof that they possess the required characteristics to account for the ubiquity, large amounts and great activity of the enzyme as found in diverse cells and tissues. Based on the similar stereoposition of identically charged atoms and lateral side chain (R) with respect to the alpha-hydrogen atoms in beta-sheet conformation and in D-amino acids, it is proposed that its substrates may include several membrane-related proteins, partially in beta-sheet conformation, whose alpha-hydrogen atoms would be the real object of D-amino acid oxidase catalysis. A monooxygenase-like enzymatic activity of D-amino acid oxidase with these novel substrates is considered, for which the final products are hypothesized to be protein alpha-carbon hydroxyls resulting from the incorporation of one atom of oxygen into the substrate, the other being reduced to water. Alternatively, it is also proposed that D-amino acid oxidase (and possibly other monooxygenase enzymes) would have a hydroperoxide-synthetase activity. In this case, protein alpha-carbon hydroperoxide and not water, but another reduced molecule, would be the final products. The new enzymatic performances of D-amino acid oxidase and the possible role of its potential final products in redox and other biochemical processes are discussed. 相似文献
17.
18.
19.
The development of an indirect anaerobic electrochemical regeneration of galactose oxidase (GOase) allows the prevention of the undesired production of the enzyme inhibitor hydrogen peroxide, which is generated under aerobic regeneration conditions during synthetic applications of GOase. The pH optimum for the electrochemical regeneration of GOase with polyethyleneglycol-modified ferrocene mediators in carbonate buffer is 10.8. Total turnover numbers achieved by either electrochemical or aerobic regeneration of GOase are almost the same. The electrochemical regeneration is half as fast as the aerobic regeneration. It is not necessary to work under anaerobic conditions, because at pH 10.8 the aerobic regeneration of GOase is prevented. The enzyme can be stabilized most effectively by immobilization on an aminopropylated polysiloxane (DELOXAN) via the glutaric dialdehyde procedure with good activity yields up to 37%. Buffers containing amino groups proved to be fatal for long-term GOase stability. 相似文献
20.
Three new o-thioetherphenol ligands have been synthesized: 1,2-bis(3,5-di-tert-butyl-2-hydroxyphenylsulfanyl)ethane (H2bse), 1,2-bis(3,5-di-tert-butyl-2-hydroxyphenylsulfanyl)benzene (H2bsb), and 4,6-di-tert-butyl-2-phenylsulfanylphenol (Hpsp). Their complexes with copper(II) were prepared and investigated by UV-Vis-, EPR-spectroscopy; their electro- and magnetochemistry have also been studied: [CuII(psp)2] (1), [CuII2(bse)2] (2), [CuII2(bsb)2] (3), [CuII(bsb)(py)2] (4). The crystal structures of the ligands H2bse, H2bsb, Hpsp and of the complexes 1, 2, 3, 4 have been determined by X-ray crystallography. 相似文献