首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
The MelB permease of Salmonella typhimurium (MelB-ST) catalyzes the coupled symport of melibiose and Na(+), Li(+), or H(+). In right-side-out membrane vesicles, melibiose efflux is inhibited by an inwardly directed gradient of Na(+) or Li(+) and stimulated by equimolar concentrations of internal and external Na(+) or Li(+). Melibiose exchange is faster than efflux in the presence of H(+) or Na(+) and stimulated by an inwardly directed Na(+) gradient. Thus, sugar is released from MelB-ST externally prior to the release of cation in agreement with current models proposed for MelB of Escherichia coli (MelB-EC) and LacY. Although Li(+) stimulates efflux, and an outwardly directed Li(+) gradient increases exchange, it is striking that internal and external Li(+) with no gradient inhibits exchange. Furthermore, Trp → dansyl FRET measurements with a fluorescent sugar (2'-(N-dansyl)aminoalkyl-1-thio-β-D-galactopyranoside) demonstrate that MelB-ST, in the presence of Na(+) or Li(+), exhibits (app)K(d) values of ~1 mM for melibiose. Na(+) and Li(+) compete for a common binding pocket with activation constants for FRET of ~1 mM, whereas Rb(+) or Cs(+) exhibits little or no effect. Taken together, the findings indicate that MelB-ST utilizes H(+) in addition to Na(+) and Li(+). FRET studies also show symmetrical emission maximum at ~500 nm with MelB-ST in the presence of 2'-(N-dansyl)aminoalkyl-1-thio-β-D-galactopyranoside and Na(+), Li(+), or H(+), which implies a relatively homogeneous distribution of conformers of MelB-ST ternary complexes in the membrane.  相似文献   

3.
H(+) symporter ProP serves as a paradigm for the study of osmosensing. ProP attains the same activity at the same osmolality when the medium outside cells or proteoliposomes is supplemented with diverse, membrane-impermeant solutes. The osmosensory mechanism of ProP has been probed by varying the solvent within membrane vesicles and proteoliposomes. ProP activation was not ion specific, did not require K(+), and could be elicited by large, uncharged solutes polyethylene glycols (PEGS). We hypothesized that ProP is an ionic strength sensor and lumenal macromolecules activate ProP by altering ion activities. The attainable range of lumenal ionic strength was expanded by lowering the phosphate concentration within proteoliposomes. ProP activity at high osmolality, but not the osmolality, yielding half-maximal activity (Π(½)/RT), decreased with the lumenal phosphate concentration. This was attributed to acidification of the proteoliposome lumen due to H(+)-proline symport. The ionic strength yielding half-maximal ProP activity was more anion-dependent than Π(½)/RT for proteoliposomes loaded with citrate, sulfate, phosphate, chloride, or iodide. The anion effects followed the Hofmeister series. Lumenal bovine serum albumin (BSA) lowered the lumenal ionic strength at which ProP became active. Osmolality measurements documented the non-idealities of solutions including potassium phosphate and other solutes. The impacts of PEGS and BSA on ion activities did not account for their impacts on ProP activity. The effects of the tested solutes on ProP appear to be non-coulombic in nature. They may arise from effects of preferential interactions and macromolecular crowding on the membrane or on ProP.  相似文献   

4.
Transporter ProP of Escherichia coli, a member of the major facilitator superfamily (MFS), acts as an osmosensor and an osmoregulator in cells and after purification and reconstitution in proteoliposomes. H(+)-osmoprotectant symport via ProP is activated when medium osmolality is elevated with membrane impermeant osmolytes. The three-dimensional structure of ProP was modeled with the crystal structure of MFS member GlpT as a template. This GlpT structure represents the inward (or cytoplasm)-facing conformation predicted by the alternating access model for transport. LacZ-PhoA fusion analysis and site-directed fluorescence labeling substantiated the membrane topology and orientation predicted by this model and most hydropathy analyses. The model predicts the presence of a proton pathway within the N-terminal six-helix bundle of ProP (as opposed to the corresponding pathway found within the C-terminal helix bundle of its paralogue, LacY). Replacement of residues within the N-terminal helix bundle impaired the osmotic activation of ProP, providing the first indication that residues outside the C-terminal domain are involved in osmosensing. Some residues that were accessible from the periplasmic side, as predicted by the structural model, were more susceptible to covalent labeling in permeabilized membrane fractions than in intact bacteria. These residues may be accessible from the cytoplasmic side in structures not represented by our current model, or their limited exposure in vivo may reflect constraints on transporter structure that are related to its osmosensory mechanism.  相似文献   

5.
Escherichia coli transporter ProP acts as both an osmosensor and an osmoregulator. As medium osmolality rises, ProP is activated and mediates H+-coupled uptake of osmolytes like proline. A homology model of ProP with 12-transmembrane (TM) helices and cytoplasmic termini was created, and the protein's topology was substantiated experimentally. Residues 468-497, at the end of the C-terminal domain and linked to TM XII, form an intermolecular, homodimeric alpha-helical coiled-coil that tunes the transporter's response to osmolality. We aim to further define the structure and function of ProP residues Q415-E440, predicted to include TM XII. Each residue was replaced with cysteine (Cys) in a histidine-tagged, Cys-less ProP variant (ProP*). Cys at positions 415-418 and 438-440 were most reactive with Oregon Green Maleimide (OGM), suggesting that residues 419 through 437 are in the membrane. Except for V429-I433, reactivity of those Cys varied with helical periodicity. Cys predicted to face the interior of ProP were more reactive than Cys predicted to face the lipid. The former may be exposed to hydrated polar residues in the protein interior, particularly on the periplasmic side. Intermolecular cross-links formed when ProP* variants with Cys at positions 419, 420, 422, and 439 were treated with DTME. Thus TM XII can participate, along its entire length, in the dimer interface of ProP. Cys substitution E440C rendered ProP* inactive. All other variants retained more than 30% of the proline uptake activity of ProP* at high osmolality. Most variants with Cys substitutions in the periplasmic half of TM XII activated at lower osmolalities than ProP*. Variants with Cys substitutions on one face of the cytoplasmic half of TM XII required a higher osmolality to activate. They included elements of a GXXXG motif that are predicted to form the interface of TM XII with TM VII. These studies define the position of ProP TM XII within the membrane, further support the predicted structure of ProP, reveal the dimerization interface, and show that the structure of TM XII influences the osmolality at which ProP activates.  相似文献   

6.
Fluorescence microscopy has revealed that the phospholipid cardiolipin (CL) and FlAsH-labeled transporters ProP and LacY are concentrated at the poles of Escherichia coli cells. The proportion of CL among E. coli phospholipids can be varied in vivo as it is decreased by cls mutations and it increases with the osmolality of the growth medium. In this report we compare the localization of CL, ProP, and LacY with that of other cytoplasmic membrane proteins. The proportion of cells in which FlAsH-labeled membrane proteins were concentrated at the cell poles was determined as a function of protein expression level and CL content. Each tagged protein was expressed from a pBAD24-derived plasmid; tagged ProP was also expressed from the chromosome. The osmosensory transporter ProP and the mechanosensitive channel MscS concentrated at the poles at frequencies correlated with the cellular CL content. The lactose transporter LacY was found at the poles at a high and CL-independent frequency. ProW (a component of the osmoregulatory transporter ProU), AqpZ (an aquaporin), and MscL (a mechanosensitive channel) were concentrated at the poles in a minority of cells, and this polar localization was CL independent. The frequency of polar localization was independent of induction (at arabinose concentrations up to 1 mM) for proteins encoded by pBAD24-derived plasmids. Complementation studies showed that ProW, AqpZ, MscS, and MscL remained functional after introduction of the FlAsH tag (CCPGCC). These data suggest that CL-dependent polar localization in E. coli cells is not a general characteristic of transporters, channels, or osmoregulatory proteins. Polar localization can be frequent and CL independent (as observed for LacY), frequent and CL dependent (as observed for ProP and MscS), or infrequent (as observed for AqpZ, ProW, and MscL).Modern developments in fluorescence microscopy have led to a new understanding of the organization of bacterial cells, particularly protein and lipid localization (21, 56). Analysis of the subcellular localization of diverse proteins and lipids has shown that they are not uniformly distributed. The phospholipid cardiolipin (CL) localizes at the poles and septal regions (36), and there is evidence for segregation of phosphatidylethanolamine (PE) from phosphatidylglycerol (PG) in the membranes of living Escherichia coli cells (69). Localization of many proteins that are integral or peripheral to the cytoplasmic membrane has been studied by fusing them to green fluorescent protein (GFP) (or its derivatives), and it is possible to classify the fusion proteins according to their subcellular localization. The first group, comprised of proteins that are concentrated at the cell poles, includes chemoreceptors (31, 62), the lactose permease LacY (43), and the metabolic sensor kinases DcuS and CitA (55). Members of the second group form helices that extend from pole to pole and include MreB (25), MinD (57), the Sec protein export system (58), and RNase E, which is the main component of the RNA degradosome in E. coli (67). Other proteins may appear to be similarly distributed due to their association with the Sec system (58). Members of the third group are uniformly distributed and include the mechanosensitive channel MscL (45) and the sensor kinase KdpD (32).The polar localization of proteins appears to be a critical feature of the complicated internal localization of bacteria. For example, it is important for temporally and spatially accurate placement of the septum during cell division (15). However, the mechanism of protein organization at bacterial cell poles is still unclear, and in many cases its functional role has not been determined. Do the poles merely serve as a receptacle for proteins, superstructures, or membrane domains with no functional effects, or is this location functionally important for membrane proteins and lipids?Recent evidence indicates that the subcellular localization of the transporter ProP in E. coli is related to membrane phospholipid composition, cardiolipin localization, and ProP function (51, 52). E. coli cells from cultures grown to exponential phase contain mostly the zwitterionic phospholipid PE (approximately 75 mol%) and the anionic phospholipids PG (approximately 20 mol%) and CL (approximately 5 mol%) (8). (Note that cardiolipin is diphosphatidylglycerol.) However, the phospholipid composition depends on the bacterial growth conditions. We found that the proportion of CL among E. coli lipids varies directly with growth medium osmolality (68), and increased CL synthesis was at least partially attributed to regulation of the cls locus encoding cardiolipin synthase (52). There is residual CL in cls bacteria, indicating that there is an alternative pathway for CL synthesis (51). The CL-specific fluorescent dye 10-N-nonyl-acridine orange (NAO) was used to show that CL clusters at the poles and septa in growing E. coli cells (36, 52). This result was corroborated by analyzing the phospholipid composition of E. coli minicells (DNA-free cells resulting from asymmetric cell division) (24, 51).ProP is an osmosensory transporter that senses increasing osmolality and responds by mediating the cytoplasmic accumulation of organic osmolytes (e.g., proline, glycine betaine, and ectoine). Biochemical regulation of the ProP protein ensures that ProP activity increases with increasing assay medium osmolality (49). We showed that ProP and CL colocalize at the poles and near the septa of dividing E. coli cells and that the polar concentration of ProP correlates with the polar concentration of CL (52). Moreover, we showed that the osmolality required to activate ProP increased in parallel to the CL content when E. coli was cultivated in media with increasing osmolality (51, 52, 68). The osmolality required to activate ProP was also a direct function of CL content in proteoliposomes reconstituted with purified ProP (51). We concluded that concentration at the cell poles controlled the osmoregulatory function of ProP by placing the transporter in a cardiolipin-rich environment.To determine whether CL-dependent membrane protein localization is a general phenomenon in E. coli, we compared the subcellular localization of ProP with that of its paralogue LacY, a well-characterized lactose transporter (16). LacY and ProP are both members of the major facilitator superfamily and H+ symporters. LacY transports the nutrient lactose, and LacY activity decreases while ProP activity increases with increasing osmolality (9). Nagamori et al. reported polar localization of a LacY-GFP fusion protein in E. coli (43). We confirmed this observation and demonstrated that, in contrast to the behavior of ProP, the polar concentration of LacY did not correlate with the polar concentration of CL (51).In this work we further explored the relationship between CL and protein localization in E. coli. We compared ProP with other proteins related to cellular osmoregulation. Bacteria use arrays of osmoregulatory mechanisms to survive and function when the osmotic pressure of their environment changes. In E. coli, the aquaporin AqpZ mediates transmembrane water flux, the transporters ProP, ProU, BetT, and BetU mediate organic osmolyte accumulation at high osmotic pressure, and the mechanosensitive (MS) channels MscL and MscS mediate solute efflux in response to osmotic downshock (71). Localization of these proteins might be expected since AqpZ might influence cell morphology changes by accelerating water flux at particular positions on the cell surface and the pressure sensitivities of MscL and MscS are known to depend on membrane curvature in vitro (18).For ProP and LacY, we labeled the inserted peptide tag CCPGCC with the biarsenical fluorescein reagent FlAsH-EDT2 (fluorescein arsenical helix binder, bis-EDT adduct) (1, 2) to examine the subcellular localization of AqpZ, the integral membrane component ProW of the osmoregulatory ATP-binding cassette (ABC) transporter ProU, and the MS channel proteins MscS and MscL in cls+ and cls bacteria. Fluorescence microscopy was used to determine the proportion of cells with labeled protein concentrated at the poles as a function of bacterial CL content and protein expression level. For ProP, the frequency with which MscS was concentrated at cell poles was proportional to the level and polar concentration of CL. LacY concentrated at the cell poles at a high and CL-independent frequency. The frequencies with which AqpZ, MscL, and ProW concentrated at the cell poles and septa were low (up to 12%) and CL independent.  相似文献   

7.
Na(+),K(+)-ATPase is inhibited by cardiac glycosides such as ouabain, and palytoxin, which do not inhibit gastric H(+),K(+)-ATPase. Gastric H(+),K(+)-ATPase is inhibited by SCH28080, which has no effect on Na(+),K(+)-ATPase. The goal of the current study was to identify amino acid sequences of the gastric proton-potassium pump that are involved in recognition of the pump-specific inhibitor SCH 28080. A chimeric polypeptide consisting of the rat sodium pump alpha3 subunit with the peptide Gln(905)-Val(930) of the gastric proton pump alpha subunit substituted in place of the original Asn(886)-Ala(911) sequence was expressed together with the gastric beta subunit in the yeast Saccharomyces cerevisiae. Yeast cells that express this subunit combination are sensitive to palytoxin, which interacts specifically with the sodium pump, and lose intracellular K(+) ions. The palytoxin-induced K(+) efflux is inhibited by the sodium pump-specific inhibitor ouabain and also by the gastric proton pump-specific inhibitor SCH 28080. The IC(50) for SCH 28080 inhibition of palytoxin-induced K(+) efflux is 14.3 +/- 2.4 microm, which is similar to the K(i) for SCH 28080 inhibition of ATP hydrolysis by the gastric H(+),K(+)-ATPase. In contrast, palytoxin-induced K(+) efflux from cells expressing either the native alpha3 and beta1 subunits of the sodium pump or the alpha3 subunit of the sodium pump together with the beta subunit of the gastric proton pump is inhibited by ouabain but not by SCH 28080. The acquisition of SCH 28080 sensitivity by the chimera indicates that the Gln(905)-Val(930) peptide of the gastric proton pump is likely to be involved in the interactions of the gastric proton-potassium pump with SCH 28080.  相似文献   

8.
ProP, an osmoprotectant symporter from the major facilitator superfamily was expressed, purified and reconstituted into proteoliposomes that are amenable to structural characterization using infrared spectroscopy. Infrared spectra recorded in both 1H2O and 2H2O buffers reveal amide I band shapes that are characteristic of a predominantly α-helical protein, and that are similar to those recorded from the well-characterized homolog, lactose permease (LacY). Curve-fit analysis shows that ProP and LacY both exhibit a high α-helical content. Both proteins undergo extensive peptide hydrogen-deuterium exchange after exposure to 2H2O, but are surprisingly thermally stable with denaturation temperatures greater than 60 °C. 25-30% of the peptide hydrogens in both ProP and LacY are resistant to exchange after 72 h in 2H2O at 4 °C. Surprisingly, these exchange resistant peptide hydrogens exchange completely for deuterium at temperatures below those that lead to denaturation. Our results show that ProP adopts a highly α-helical fold similar to that of LacY, and that both transmembrane folds exhibit unusually high temperature-sensitive solvent accessibility. The results provide direct evidence that ProP adopts a structure consistent with other major facilitator superfamily members.  相似文献   

9.
Racher KI  Culham DE  Wood JM 《Biochemistry》2001,40(24):7324-7333
Transporter ProP of Escherichia coli, a solute-H+ symporter, can sense and respond to osmotic upshifts imposed on cells, on membrane vesicles, or on proteoliposomes that incorporate purified ProP-(His)6. In this study, proline uptake catalyzed by ProP was used as a measure of its osmotic activation, and the requirements for osmosensing were defined using the proteoliposome system. The initial rate of proline uptake increased with decreasing external pH and increasing DeltaPsi, lumen negative. Osmotic upshifts increased DeltaPsi by concentrating lumenal K+, but osmotic activation of ProP could be distinguished from this effect. Osmotic activation of ProP resulted from changes in Vmax, though osmotic shifts also increased the KM for proline. Osmotic activation could be described as a reversible, osmotic upshift-dependent transition linking (at least) two transporter protein conformations. No correlation was observed between ProP activation and the position of the anions of activating sodium salts within the Hofmeister series of solutes. Both the magnitude of the osmotic upshift required to activate ProP and the ProP activity attained were similar for membrane-impermeant osmolytes, including NaCl, glucose, and PEG 600. The membrane-permeant osmolytes glycerol, urea, PEG 62, and PEG 106 failed to activate ProP. Two poly(ethylene glycol)s, PEG 150 and PEG 200, were membrane-permeant and did not cause liposome shrinkage, but they did partially activate ProP-(His)6.  相似文献   

10.
Enhanced Na(+)/H(+) exchange, measured as amiloride derivative-sensitive Na(+) and H(+) fluxes in cells with a preliminary acidified cytoplasm (Deltamu(H+)-induced Na(+)/H(+) exchange), is one of the most prominent intermediate phenotypes of altered vascular smooth muscle cell (VSMC) function in spontaneously hypertensive rats (SHR). Analysis of Na(+)/H(+) exchange in F(2) hybrids of SHR and normotensive rats seems to be the most appropriate approach in the search for the genetic determinants of abnormal activity of this carrier. However, the measurement of Deltamu(H+)-induced Na(+)/H(+) exchange is hardly appropriate for precise analysis of the carrier's activity in VSMC derived from several hundred F(2) hybrids. To overcome this problem, we compared the rate of (22)Na influx under baseline conditions and in Na(+)-loaded (ouabain-treated) VSMC. The dose-dependency of the rate of Deltamu(H+)-induced H(+) efflux as well as of (22)Na influx in control and ouabain-treated cells on ethylisopropylamiloride (EIPA) concentration were not different (K(0.5) approximately 0.3 microM), suggesting that these ion transport pathways are mediated by the same carrier. EIPA-sensitive (22)Na influx in Na(+)-loaded cells was approximately 6-fold higher than in ouabain-untreated VSMC and was increased by 50-70% in two different substrains of SHR. About the same increment of EIPA-sensitive (22)Na influx in Na(+)-loaded VSMC was observed in 5- to 6-week-old SHR (an age at which hypertension has not yet developed) as well as in stroke-prone SHR (SHRSP) with severe hypertension, indicating that the heightened activity of Na(+)/H(+) exchange is not a consequence of long-term blood pressure elevation. To examine whether or not the augmented activity of Na(+)/H(+) exchange in SHR is caused by mutation of NHE1, i.e. the only isoform of this carrier expressed in VSMC, we undertook single-stranded conformational polymorphism analysis of 23 NHE1 cDNA fragments from SHR and SHRSP and sequencing of the 456-2421 NHE1 cDNA fragment. This study did not reveal any mutation in the entire coding region of NHE1. The lack of mutation in the coding region of NHE1 indicates that the augmented activity of the ubiquitous Na(+)/H(+) exchanger in primary hypertension is caused by altered regulation of carrier turnover number or/and its plasma membrane content.  相似文献   

11.
The phospholipid composition of the membrane and transporter structure control the subcellular location and function of osmosensory transporter ProP in Escherichia coli. Growth in media of increasing osmolality increases, and entry to stationary phase decreases, the proportion of phosphatidate in anionic lipids (phosphatidylglycerol (PG) plus cardiolipin (CL)). Both treatments increase the CL:PG ratio. Transporters ProP and LacY are concentrated with CL (and not PG) near cell poles and septa. The polar concentration of ProP is CL-dependent. Here we show that the polar concentration of LacY is CL-independent. The osmotic activation threshold of ProP was directly proportional to the CL content of wild type bacteria, the PG content of CL-deficient bacteria, and the anionic lipid content of cells and proteoliposomes. CL was effective at a lower concentration in cells than in proteoliposomes, and at a much lower concentration than PG in either system. Thus, in wild type bacteria, osmotic induction of CL synthesis and concentration of ProP with CL at the cell poles adjust the osmotic activation threshold of ProP to match ambient conditions. ProP proteins linked by homodimeric, C-terminal coiled-coils are known to activate at lower osmolalities than those without such structures and coiled-coil disrupting mutations raise the osmotic activation threshold. Here we show that these mutations also prevent polar concentration of ProP. Stabilization of the C-terminal coiled-coil by covalent cross-linking of introduced Cys reverses the impact of increasing CL on the osmotic activation of ProP. Association of ProP C termini with the CL-rich membrane at cell poles may raise the osmotic activation threshold by blocking coiled-coil formation. Mutations that block coiled-coil formation may also block association of the C termini with the CL-rich membrane.  相似文献   

12.
GerN, a Bacillus cereus spore germination protein, exhibits homology to a widely distributed group of putative cation transporters or channel proteins. GerN complemented the Na(+)-sensitive phenotype of an Escherichia coli mutant that is deficient in Na(+)/H(+) antiport activity (strain KNabc). GerN also reduced the concentration of K(+) required to support growth of an E. coli mutant deficient in K(+) uptake (strain TK2420). In a fluorescence-based assay of everted E. coli KNabc membrane vesicles, GerN exhibited robust Na(+)/H(+) antiport activity, with a K(m) for Na(+) estimated at 1.5 mM at pH 8.0 and 25 mM at pH 7.0. Li(+), but not K(+), served as a substrate. GerN-mediated Na(+)/H(+) antiport was further demonstrated in everted vesicles as energy-dependent accumulation of (22)Na(+). GerN also used K(+) as a coupling ion without completely replacing H(+), as indicated by partial inhibition by K(+) of H(+) uptake into right-side-out vesicles loaded with Na(+). K(+) translocation as part of the antiport was supported by the stimulatory effect of intravesicular K(+) on (22)Na(+) uptake by everted vesicles and the dependence of GerN-mediated (86)Rb(+) efflux on the presence of Na(+) in trans. The inhibitory patterns of protonophore and thiocyanate were most consistent with an electrogenic Na(+)/H(+)-K(+) antiport. GerN-mediated Na(+)/H(+)-K(+) antiport was much more rapid than GerN-mediated Na(+)/H(+) antiport.  相似文献   

13.
Transporter ProP of Escherichia coli mediates the cellular accumulation of organic zwitterions in response to increased extracellular osmolality. We compared and characterized the osmoregulation of ProP activity in cells and proteoliposomes to define the osmotic shift-induced cellular change(s) to which ProP responds. ProP-(His)(6) activity in cells and proteoliposomes was correlated with medium osmolality, not osmotic shift, turgor pressure, or membrane strain. Both K(M) and V(max) for proline uptake via ProP-(His)(6) increased with increasing medium osmolality, as would be expected if osmolality controls the proportions of transporter with inactive and active conformations. The osmolality yielding half-maximal ProP-(His)(6) activity was higher in proteoliposomes than in cells. The osmolality response of ProP is also attenuated in bacteria lacking soluble protein ProQ. Indeed, the catalytic constant (k(cat)) for ProP-(His)(6) in proteoliposomes approximated that of ProP in intact bacteria lacking ProQ. Thus, the proteoliposome system may replicate a primary osmosensory response that can be further amplified by ProQ. ProP-(His)(6) is designated as an osmosensor because its activity is dependent on the osmolality, but not the composition, of the assay medium to which the cell surface is exposed. In contrast, ProP-(His)(6) activity was dependent on both the osmolality and the composition of the lumen in osmolyte-loaded proteoliposomes. For proteoliposomes containing inorganic salts, glucose, or poly(ethylene glycol) 503, transporter activity correlated with total lumenal cation concentration. In contrast, for proteoliposomes loaded with larger poly(ethylene glycol)s, the osmolality, the lumenal cation concentration, and the lumenal ionic strength at half-maximal transporter activity decreased systematically with poly(ethylene glycol) radius of gyration (range 0.8-1.8 nm). These data suggest that ProP-(His)(6) responds to osmotically induced changes in both cytoplasmic K(+) levels and the concentration of cytoplasmic macromolecules.  相似文献   

14.
The mechanism by which the intra-erythrocytic form of the human malaria parasite, Plasmodium falciparum, extrudes H(+) ions and thereby regulates its cytosolic pH (pH(i)), was investigated using saponin-permeabilized parasitized erythrocytes. The parasite was able both to maintain its resting pH(i) and to recover from an imposed intracellular acidification in the absence of extracellular Na(+), thus ruling out the involvement of a Na(+)/H(+) exchanger in both processes. Both phenomena were ATP-dependent. Amiloride and the related compound ethylisopropylamiloride caused a substantial reduction in the resting pH(i) of the parasite, whereas EMD 96785, a potent and allegedly selective inhibitor of Na(+)/H(+) exchange, had relatively little effect. The resting pH(i) of the parasite was also reduced by the sulfhydryl reagent N-ethylmaleimide, by the carboxyl group blocker N,N'-dicyclohexylcarbodiimide, and by bafilomycin A(1), a potent inhibitor of V-type H(+)-ATPases. Bafilomycin A(1) blocked pH(i) recovery in parasites subjected to an intracellular acidification and reduced the rate of acidification of a weakly buffered solution by parasites under resting conditions. The data are consistent with the hypothesis that the malaria parasite, like other parasitic protozoa, has in its plasma membrane a V-type H(+)-ATPase, which serves as the major route for the efflux of H(+) ions.  相似文献   

15.
Many protists use a H(+) gradient across the plasma membrane, the proton motive force, to drive nutrient uptake. This force is generated in part by the plasma membrane potential (DeltaPsi). We investigated the regulation of the DeltaPsi in Pneumocystis carinii using the potentiometric fluorescent dye bisoxonol. The steady state DeltaPsi in a buffer containing Na(+) and K(+) (standard buffer) was found to be -78+/-8 mV. In the absence of Na(+) and K(+) (NMG buffer) or Cl(-) (gluconate buffer), DeltaPsi was not significantly changed suggesting that cation and anion conductances do not play a significant role in the regulation of DeltaPsi in P. carinii. The DeltaPsi was also not affected by inhibitors of the Na(+)/K(+)-ATPase, ouabain (1 mM), and the K(+)/H(+)-ATPase, omeprazole (1 mM). In contrast, inhibitors of the plasma membrane H(+)-ATPase, dicyclohexylcarbodiimide (100 microM), N-ethylmaleimide (100 microM) and diethylstilbestrol (25 microM), significantly depolarized the DeltaPsi to -43+/-7, -56+/-5 and -40+/-12 mV, respectively. The data support that the plasma membrane H(+)-ATPase plays a significant role in the regulation of DeltaPsi in P. carinii.  相似文献   

16.
Zhang W  Kaback HR 《Biochemistry》2000,39(47):14538-14542
The temperature dependence of lactose active transport, efflux down a concentration gradient, and equilibrium exchange were analyzed in right-side-out membrane vesicles from Escherichia coli containing wild-type lactose permease and mutant Glu325 --> Ala. With respect to uphill transport and efflux down a concentration gradient, both of which involve H(+) symport, Arrhenius plots with wild-type permease exhibit a discontinuity at 18-19 degrees C with a 7-8-fold decrease in activation energy above the phase transition. For equilibrium exchange, which does not involve H(+) symport, the change in activation energy is much less pronounced (2-3-fold) than that observed for active transport or efflux. Strikingly, mutant Glu325 --> Ala, which catalyzes equilibrium exchange as well as wild-type permease but is defective in all translocation reactions that involve net H(+) translocation, exhibits no change whatsoever in activation energy. The findings are consistent with the conclusion that the primary effect of the lipid phase transition is to alter coupling between substrate and H(+) translocation rather than the conformational change(s) responsible for translocation across the membrane.  相似文献   

17.
Dietary potassium (K(+)) restriction and hypokalemia have been reported to change the abundance of most renal Na(+) and K(+) transporters and aquaporin-2 isoform, but results have not been consistent. The aim of this study was to reexamine Na(+), K(+) and H(2)O transporters' pool size regulation in response to removing K(+) from a diet containing 0.74% NaCl, as well as from a diet containing 2% NaCl (as found in American diets) to blunt reducing total diet electrolytes. Sprague-Dawley rats (n = 5-6) were fed for 6 days with one of these diets: 2% KCl, 0.74% NaCl (2K1Na, control chow) compared with 0.03% KCl, 0.74% NaCl (0K1Na); or 2% KCl, 2%NaCl (2K2Na) compared with 0.03% KCl, 2% NaCl (0K2Na, Na(+) replete). In both 0K1Na and 0K2Na there were significant decreases in: 1) plasma [K(+)] (<2.5 mM); 2) urinary K(+) excretion (<5% of control); 3) urine osmolality and plasma [aldosterone], as well as 4) an increase in urine volume and medullary hypertrophy. The 0K2Na group had the lowest [aldosterone] (172.0 ± 17.4 pg/ml) and lower blood pressure (93.2 ± 4.9 vs. 112.0 ± 3.1 mmHg in 2K2Na). Transporter pool size regulation was determined by quantitative immunoblotting of renal cortex and medulla homogenates. The only differences measured in both 0K1Na and 0K2Na groups were a 20-30% decrease in cortical β-ENaC, 30-40% increases in kidney-specific Ste20/SPS1-related proline/alanine-rich kinase, and a 40% increase in medullary sodium pump abundance. The following proteins were not significantly changed in both the 0 K groups: Na(+)/H(+) exchanger isoform 3; Na(+)-K(+)-Cl(-) cotransporter; Na(+)-Cl(-) cotransporter, oxidative stress response kinase-1; renal outer medullary K(+) channel; autosomal recessive hypercholesterolemia; c-Src, aquaporin 2 isoform; or renin. Thus, despite profound hypokalemia and renal K(+) conservation, we did not confirm many of the changes that were previously reported. We predict that changes in transporter distribution and activity are likely more important for conserving K(+) than changes in total abundance.  相似文献   

18.
Lactose permease of Escherichia coli (LacY) is highly dynamic, and sugar binding causes closing of a large inward-facing cavity with opening of a wide outward-facing hydrophilic cavity. Therefore, lactose/H(+) symport via LacY very likely involves a global conformational change that allows alternating access of single sugar- and H(+)-binding sites to either side of the membrane. Here, in honor of Stephan H. White's seventieth birthday, we review in camera the various biochemical/biophysical approaches that provide experimental evidence for the alternating access mechanism.  相似文献   

19.
Sugihara J  Smirnova I  Kasho V  Kaback HR 《Biochemistry》2011,50(51):11009-11014
The sucrose permease (CscB) and lactose permease (LacY) of Escherichia coli belong to the oligosaccharide/H(+) symporter subfamily of the major facilitator superfamily, and both catalyze sugar/H(+) symport across the cytoplasmic membrane. Thus far, there is no common substrate for the two permeases; CscB transports sucrose, and LacY is highly specific for galactopyranosides. Determinants for CscB sugar specificity are unclear, but the structural organization of key residues involved in sugar binding appears to be similar in CscB and LacY. In this study, several sugars containing galactopyranosyl, glucopyranosyl, or fructofuranosyl moieties were tested for transport with cells overexpressing either CscB or LacY. CscB recognizes not only sucrose but also fructose and lactulose, but glucopyranosides are not transported and do not inhibit sucrose transport. The findings indicate that CscB exhibits practically no specificity with respect to the glucopyranosyl moiety of sucrose. Inhibition of sucrose transport by CscB tested with various fructofuranosides suggests that the C(3)-OH group of the fructofuranosyl ring may be important for recognition by CscB. Lactulose is readily transported by LacY, where specificity is directed toward the galactopyranosyl ring, and the affinity of LacY for lactulose is similar to that observed for lactose. The studies demonstrate that the substrate specificity of CscB is directed toward the fructofuranosyl moiety of the substrate, while the specificity of LacY is directed toward the galactopyranosyl moiety.  相似文献   

20.
In this study we reveal regions of Na(+),K(+)-ATPase and H(+),K(+)-ATPase that are involved in cation selectivity. A chimeric enzyme in which transmembrane hairpin M5-M6 of H(+),K(+)-ATPase was replaced by that of Na(+),K(+)-ATPase was phosphorylated in the absence of Na(+) and showed no K(+)-dependent reactions. Next, the part originating from Na(+),K(+)-ATPase was gradually increased in the N-terminal direction. We demonstrate that chimera HN16, containing the transmembrane segments one to six and intermediate loops of Na(+),K(+)-ATPase, harbors the amino acids responsible for Na(+) specificity. Compared with Na(+),K(+)-ATPase, this chimera displayed a similar apparent Na(+) affinity, a lower apparent K(+) affinity, a higher apparent ATP affinity, and a lower apparent vanadate affinity in the ATPase reaction. This indicates that the E(2)K form of this chimera is less stable than that of Na(+),K(+)-ATPase, suggesting that it, like H(+),K(+)-ATPase, de-occludes K(+) ions very rapidly. Comparison of the structures of these chimeras with those of the parent enzymes suggests that the C-terminal 187 amino acids and the beta-subunit are involved in K(+) occlusion. Accordingly, chimera HN16 is not only a chimeric enzyme in structure, but also in function. On one hand it possesses the Na(+)-stimulated ATPase reaction of Na(+),K(+)-ATPase, while on the other hand it has the K(+) occlusion properties of H(+),K(+)-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号