首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Toads dehydrated to 80% of their standard weight (% SW) were rehydrated during 3 hr in distilled water.2. Water permeability of the skin was positively correlated with the degree of dehydration in the range 80–100% SW.3. Systemic administration of the β-adrenergic agonist isoproterenol (5 mg/kg) 90 min after rehydration started (animals fully hydrated) increased skin permeability to the values observed in 80% SW dehydrated animals.4. The administration of the β-adrenergic blocker propranolol (5 mg/kg) 15 min before rehydration started produced a long-lasting decrease in water permeability during the 3 hr of rehydration.5. The results are consistent with the hypothesis of a β-adrenergic control of the water permeability of the skin during rehydration.  相似文献   

2.
1. Toads dehydrated to 80% of their standard weight (% SW) were rehydrated during 3 hr in distilled water. 2. Water permeability of the skin was positively correlated with the degree of dehydration in the range 80-100% SW. 3. Systemic administration of the beta-adrenergic agonist isoproterenol (5 mg/kg) 90 min after rehydration started (animals fully hydrated) increased skin permeability to the values observed in 80% SW dehydrated animals. 4. The administration of the beta-adrenergic blocker propranolol (5 mg/kg) 15 min before rehydration started produced a long-lasting decrease in water permeability during the 3 hr of rehydration. 5. The results are consistent with the hypothesis of a beta-adrenergic control of the water permeability of the skin during rehydration.  相似文献   

3.
Summary The water permeability of abdominal cuticle of the black widow spiderLatrodectus hesperus was examined using gravimetric, in situ and in vitro techniques. At 30 °C and 0% RH, water loss rates (WLR) of whole, living spiders were higher than in situ WLR measured with capsules secured to the cuticle surface, while in situ WLR of living spiders were greater than in situ WLR for dead spiders. Although these differences are not statistically significant, these results suggest that there may be important extracuticular water loss pathways in living animals, and that the living epidermis does not provide an active barrier to water efflux. In vitro WLR measured on excised pieces of cuticle, in contrast, were nearly 5 times greater than in situ WLR of dead spiders. Temperature/transpiration curves show that permeability increased exponentially with rising temperature, with rates increasing most rapidly between 45 and 51 °C. The WLR for spiders whose cuticle was scrubbed with chloroform: methanol was consistently and substantially (200x) higher than WLR for control or sham-treated spiders. Discussion focuses on the location and composition of the epicuticular lipid water barrier and the potential use of black widow cuticle for in vitro studies of lipid barrier effectiveness in arthropods in general.  相似文献   

4.
Life unfolds within a framework of constraining abiotic factors, yet some organisms are adapted to handle large fluctuations in physical and chemical parameters. Tardigrades are microscopic ecdysozoans well known for their ability to endure hostile conditions, such as complete desiccation – a phenomenon called anhydrobiosis. During dehydration, anhydrobiotic animals undergo a series of anatomical changes. Whether this reorganization is an essential regulated event mediated by active controlled processes, or merely a passive result of the dehydration process, has not been clearly determined. Here, we investigate parameters pivotal to the formation of the so-called "tun", a state that in tardigrades and rotifers marks the entrance into anhydrobiosis. Estimation of body volume in the eutardigrade Richtersius coronifer reveals an 87 % reduction in volume from the hydrated active state to the dehydrated tun state, underlining the structural stress associated with entering anhydrobiosis. Survival experiments with pharmacological inhibitors of mitochondrial energy production and muscle contractions show that i) mitochondrial energy production is a prerequisite for surviving desiccation, ii) uncoupling the mitochondria abolishes tun formation, and iii) inhibiting the musculature impairs the ability to form viable tuns. We moreover provide a comparative analysis of the structural changes involved in tun formation, using a combination of cytochemistry, confocal laser scanning microscopy and 3D reconstructions as well as scanning electron microscopy. Our data reveal that the musculature mediates a structural reorganization vital for anhydrobiotic survival, and furthermore that maintaining structural integrity is essential for resumption of life following rehydration.  相似文献   

5.
Eukaryotes able to withstand desiccation enter a state of suspended animation known as anhydrobiosis, which is thought to require accumulation of the non-reducing disaccharides trehalose (animals, fungi) and sucrose (plants), acting as water replacement molecules and vitrifying agents. We now show that clonal populations of bdelloid rotifers Philodina roseola and Adineta vaga exhibit excellent desiccation tolerance, but that trehalose and other disaccharides are absent from carbohydrate extracts of dried animals. Furthermore, trehalose synthase genes (tps) were not found in rotifer genomes. This first observation of animal anhydrobiosis without trehalose challenges our current understanding of the phenomenon and calls for a re-evaluation of existing models.  相似文献   

6.
The anhydrobiotic nematode Ditylenchus dipsaci is a fast-dehydration strategist, itself generating the slow rate of water loss necessary for survival. A permeability slump occurs during the initial phases of desiccation. This may be produced by changes in the nematode's cuticle. Two scanning electron microscopic techniques were used to follow changes in surface structures during desiccation. Freeze substitution and critical-point drying produced artifacts that obscured changes produced by the desiccation of the nematode. Low-temperature field emission scanning electron microscopy (FESEM) was successful in following changes that reflected those observed by light microscopy (LM). Significant changes in diameter, the lateral alae, and the cuticular annulations were demonstrated using this technique. Two types of annulations were observed: the major annulations, which extended to meet the margins of the lateral alae, and the minor annulations, which did not. With desiccation the prominence of the annulations increased, their spacing decreased, and the minor annulations extended closer to the margins of the lateral alae. These observations are consistent with the permeability slump resulting from a decrease in the width of the annulation groove and an increase in its depth. However, this requires confirmation using techniques that can follow annulation changes in individual nematodes.  相似文献   

7.
Wharton DA  Lemmon J 《Tissue & cell》1998,30(3):312-323
Ultrastructural changes during desiccation of the anhydrobiotic nematode Ditylenchus dipsaci were followed and quantified after preparation of material at different levels of hydration using freeze substitution techniques. Some shrinkage was caused by processing in the more hydrated specimens but the changes observed correspond to those observed in live nematodes by light microscopy, indicating that the technique is useful for following changes during desiccation. The overall pattern of changes was a rapid decrease in the magnitude of the measured parameter during the first 5 min of desiccation, followed by a slower rate of decrease upon further desiccation. This was observed in the cuticle, the lateral hypodermal cords and the muscle cells and is consistent with the pattern of water loss of the nematode. The contractile region of the muscle cells, however, proved an exception and the muscle fibres appear to resist shrinkage and packing until water loss becomes severe. The mitochondria swell and then shrink during desiccation, which may indicate disruption of the permeability of the mitochondrial membrane. A decrease in the thickness of the cortical zone was the most prominent change in the cuticle and this may be related to the permeability slump which occurs during the first 5 min of desiccation.  相似文献   

8.
Changes in lipid content of infective third-stage larvae of Necator americanus were investigated after short periods of induced desiccation and revival. A fall in lipid reserve from an outset level of 86% to 74% was recorded in the first 2 h of desiccation. With increased desiccation, lipid reserves did not show significant decline, probably as a result of decreased lipid metabolism in the desiccated larvae. During revival, there was a drastic fall in lipid reserves as a result of increased lipid utilisation by the reviving larvae. The results showed that desiccated larvae with lipid levels less than 10% did not revive. The presence of lipid did not appear to prevent desiccation but was an essential factor for revival. The ecological significance of these findings in field larvae is discussed.  相似文献   

9.
科尔沁沙地樟子松能否发生冬季“生理干旱”伤害   总被引:1,自引:1,他引:0  
在内蒙古东部半干旱地区分别测定了春、秋两季栽植的樟子松苗越冬期间针叶含水量和蒸腾强度的变化,测定了针叶的致死临界含水量并在室内模拟了生理干旱伤害症状以探讨发生冬季生理干旱伤害的可能性.结果表明秋植苗针叶含水量1月份就已降到初始致死含水量以下而春植苗针叶含水量始终显著高于初始致死含水量并顺利越冬.含水量与蒸腾强度的对比表明甚至在冻土期内,针叶仍有某种水分补充来源.模拟实验中出现的针叶伤害症状和秋植苗野外伤害症状一致.结论认为该地区已正常成活的春季造林苗不大可能发生冬季生理干旱伤害.  相似文献   

10.
Relationship of epidermal lipogenesis to cutaneous barrier function   总被引:15,自引:0,他引:15  
Although the lipids of mammalian stratum corneum are known to be important for the cutaneous permeability barrier, the factors that regulate epidermal lipid biosynthesis are poorly understood. Recent studies suggest that cutaneous sterol synthesis is regulated by cutaneous barrier requirements, while the levels of circulating sterols do not play a role. Whether cutaneous barrier requirements regulate epidermal lipogenesis in general and the nature of the signal that activates the lipid biosynthetic apparatus are unknown. We determined whether alterations of the cutaneous permeability barrier, induced by treatment with a solvent (acetone), a surfactant, sodium dodecyl sulfate (SDS), or essential fatty acid deficiency (EFAD), provoked a discrete versus global stimulation of epidermal and dermal lipid biosynthesis. Acetone treatment increased epidermal, but not dermal, sterol and fatty acid biosynthesis approximately threefold over controls at 1-4 hr, which returned to normal after 12 hr. SDS treatment likewise stimulated epidermal sterol and fatty acid biosynthesis, but the increase was less dramatic than in acetone-treated animals. Since plastic occlusion blocked the expected increase in de novo lipid biosynthesis in acetone-treated animals, it is possible that water flux provides the molecular signal for de novo synthesis. Finally, EFAD mice also demonstrated enhanced epidermal sterol and fatty acid biosynthesis in comparison to normals, an effect that also was abolished when transepidermal water loss was normalized by occlusion, despite the presence of ongoing EFAD. These results demonstrate that disruption of the cutaneous permeability barrier stimulates a parallel, global boost in both sterol and fatty acid biosynthesis that is limited to the epidermis. Since such stimulation is reversed by restoration of barrier function, transcutaneous water gradients may regulate epidermal lipogenesis.  相似文献   

11.
The effect of high irradiance (HI) during desiccation and subsequent rehydration of the homoiochlorophyllous desiccation-tolerant shade plant Haberlea rhodopensis was investigated. Plants were irradiated with a high quantum fluence rate (HI; 350 μmol m−2 s−1 compared to ca. 30 μmol m−2 s−1 at the natural rock habitat below trees) and subjected either to fast desiccation (tufts dehydrated with naturally occurring thin soil layers) or slow desiccation (tufts planted in pots in peat-soil dehydrated by withholding irrigation). Leaf water content was 5 % of the control after 4 d of fast and 19 d of slow desiccation. Haberlea was very sensitive to HI under all conditions. After 19 d at HI, even in well-watered plants there was a strong reduction of rates of net photosynthesis and transpiration, contents of chlorophyll (Chl) and carotenoids, as well as photosystem 2 activity (detected by the Chl fluorescence ratio RFd). Simultaneously, the blue/red and green/red fluorescence ratios increased considerably suggesting increased synthesis of polyphenolic compounds. Desiccation of plants in HI induced irreversible changes in the photosynthetic apparatus and leaves did not recover after rehydration regardless of fast or slow desiccation. Only young leaves survived desiccation.  相似文献   

12.
Tardigrades survive exposure to space in low Earth orbit   总被引:2,自引:0,他引:2  
Vacuum (imposing extreme dehydration) and solar/galactic cosmic radiation prevent survival of most organisms in space [1]. Only anhydrobiotic organisms, which have evolved adaptations to survive more or less complete desiccation, have a potential to survive space vacuum, and few organisms can stand the unfiltered solar radiation in space. Tardigrades, commonly known as water-bears, are among the most desiccation and radiation-tolerant animals and have been shown to survive extreme levels of ionizing radiation [2-4]. Here, we show that tardigrades are also able to survive space vacuum without loss in survival, and that some specimens even recovered after combined exposure to space vacuum and solar radiation. These results add the first animal to the exclusive and short list of organisms that have survived such exposure.  相似文献   

13.
Ultrastructural and cell fractionation studies implicate lipid droplets in the storage of cholesterol and in the secretion of steroids. To evaluate the role of the lipid droplet in steroidogenesis, a discontinuous gradient centrifugation method has been developed for the isolation of both lipid droplet and non-lipid fractions from decapsulated rat adrenal homogenates. Steroids were extracted from the fractions with chloroform/methanol; the cholesterol ester, cholesterol and corticosterone in each extract were purified using a single chromatogram and the purified steroid and sterols were assayed fluorometrically. The lipid droplet fraction contained 85% of the esterified cholesterol and 32% of the free cholesterol found in whole gland extracts. Although adrenal lipid droplet fractions isolated from non-stimulated control animals contained 65–79% of the total corticosterone assayed in extracts of the whole gland, in vivo injections of ACTH did not increase corticosterone 1n this fraction. On the other hand, the corticosterone measured in non-lipid fraction extracts increased significantly following ACTH treatment. These results suggest that the synthesis/release mechanism for corticosterone is not associated with the lipid droplets but may involve specific components in the non-lipid fraction. The function of lipid droplet corticosterone is unknown.  相似文献   

14.
Drosophila busckii is more abundant under colder and drier montane habitats in the western Himalayas as compared to Drosophila melanogaster but the mechanistic basis of such climatic adaptations is largely unknown. We tested the hypothesis whether genetic variation or phenotypic plasticity of cuticular traits confer adaptive protection against desiccation stress in two melanic Drosophila species living under drier montane localities. For D. melanogaster, changes in melanisation are known to be associated with reduced water loss but there are no data on D. busckii. We investigated changes in body melanisation, cuticular lipids, desiccation resistance, water loss, extractable hemolymph volume (%), and dehydration tolerance in six sympatric populations of D. busckii and D. melanogaster over an altitudinal range of 640-2236 m. D. busckii is a melanic species but changes in cuticular water loss are negatively correlated with cuticular lipid mass and not with body melanisation. In D. melanogaster, there are no plastic effects (14-28 °C) for cuticular lipid mass but variation in body melanisation is associated with desiccation-related traits. Effects of organic solvents (hexane or chloroform: methanol), developmental plasticity and seasonal variation in cuticular lipids affect body water loss in D. busckii but no such changes occur in D. melanogaster. Thus, sympatric populations of D. busckii and D. melanogaster have evolved different water balance mechanisms under shared environmental conditions in the western Himalayas. Multiple measures of desiccation resistance in these species show clinal variation with altitude, consistent with adaptation to increased desiccation stress.  相似文献   

15.
Parkash R  Kalra B  Sharma V 《Fly》2008,2(4):189-197
We investigated within as well as between population variability in desiccation resistance, cuticular lipid mass per fly and cuticular water loss in nine geographical populations of a tropical drosophilid, Zaprionus indianus. Interestingly, the amount of cuticular lipids and desiccation resistance in this non-melanic species are significantly higher as compared with melanic Drosophila melanogaster. On the basis of isofemale line analysis, within population trait variability in cuticular lipid mass per fly is positively correlated with desiccation resistance and negatively correlated with cuticular water loss but show lack of correlation with body size. We observed geographical variation in the amount of cuticular lipid mass per fly in Zaprionus indianus but no such divergence was found in D.melanogaster. In both the species, geographical variations in desiccation resistance are negatively correlated with cuticular water loss but the underlying mechanisms for changes in cuticular permeability are quite different. Thus, we may suggest that body melanisation and cuticular lipids may represent alternative strategies for coping with dehydration stress in melanic versus non-melanic drosophilids. For both the species, desiccation resistance and cuticular water loss are correlated with regular increase in aridity in the northern subtropical localities as compared with southern peninsular humid tropical localities. The role of climatic selection is evident from multiple regression analysis with seasonal changes in temperature and humidity (Tcv and RHcv) of the sites of origin of populations of Zaprionus indianus along latitude.  相似文献   

16.
A method of preparing bone or teeth for sectioning is described which involves the following steps: 48 hr. in 1:10 formalin; 24 hr. in 70% alcohol; decalcification for several days in 10% HNO3; rinsing and transferring to 2% potassium alum for 12 hr.; rinsing and treating with 5% NaHCO3 (or Li2CO3) for 24 hr.; washing for 12-24 hr.; then passing through ascending grades of alcohol to xylene. In the case of developing teeth, a slightly different procedure is recommended: fixation in Heidenhain's Susa till hard tissue is decalcified; 24 hr. in 96% alcohol (with three changes); 24 hr. in absolute alcohol (with one change); clearing in xylene or chloroform, and embedding in paraffin.  相似文献   

17.
Summary The importance of high winter winds and plant temperatures as causes of winter desiccation damage at the alpine treeline were studied in the Austrian Alps. Samples of 1- and 2-year twigs of Picea abies and Pinus cembra were collected from the valley bottom (1,000 m a.s.l.), forestline (1,940 m a.s.l.), kampfzone (2.090 m a.s.l.), wind-protected treeline (2,140 m a.s.l.), and wind-exposed treeline (2,140 m a.s.l.). Cuticular transpiration was measured at three different levels of wind speed (4, 10, and 15 ms-1) and temperature (15°, 20°, and 25° C). At elevated wind speeds slight increases in water loss were observed, whereas at higher temperatures much greater increases occurred. Studies on winter water relations show a significant decline in the actual moisture content and osmotic potentials of twigs, especially in the kampfzone and at treeline. The roles of high winds and temperatures in depleting the winter water economy and causing desiccation damage in the alpine treeline environment are discussed.  相似文献   

18.
Desiccation and thermal stress are among the primary factors limiting terrestriality in crustaceans. Water loss was estimated as weight change in five sympatric species of Uca from south Texas for periods up to 7 hr in dry air. Simultaneously, corporal temperature was measured with a thermocouple placed under the carapace. To estimate integumental permeability to water, 115 mm2 portions of dorsal carapace were glued to U-shaped tubes containing a crab Ringer's solution. These were exposed to dry air and water permeability was estimated from weight change. In whole-animal studies, most rapid weight loss occurred in the first 5 min of exposure to dry air as the body temperature fell below ambient (25 degrees C) in all species. The three most terrestrial species exhibited significant survival over more aquatic congeners after prolonged desiccation. The greatest rate of water loss was observed in Uca subcylindrica which lost 22.9+/-3.0% body weight. Uca panacea and Uca spinicarpa lost 14.1+/-1.6% and 18.5+/-1.8%, respectively. Based on blood osmolarity changes, Uca longisignalis and Uca rapax were more resistant to water loss than Uca subcylindrica under these conditions. Water loss from sections of the dorsal carapace were highest in Uca spinicarpa (10.4 mg/hr/cm2) and Uca longisignalis (8.9 mg/ hr/cm2). Uca subcylindrica and Uca panacea were intermediate (4.5 and 4.2 mg/hr/cm2) while Uca rapax expressed the lowest value (2.9 mg/hr/cm2). These observations support the notion that water loss can effectively lower body temperature in fiddler crabs. However, an inverse relationship between terrestriality and integumental permeability was not evident in these sympatric congeners. Ultimately a balance between physiological and behavioral mechanisms must be achieved for adaptation to the semi-arid habitats in south Texas.  相似文献   

19.
The wood of the plant Sesbania sesban, is reported to have antinociceptive activity. To validate its folk use in the treatment of pain, wood was extracted successively with petroleum ether, chloroform, ethyl acetate, ethanol, and water to produce respective extracts. The extracts (50 and 100 mg/kg, ip) were screened for antinociceptive activity using hot plate test and acetic acid-induced writhing test in mice. Petroleum ether, chloroform, and ethyl acetate extracts showed significant and dose-dependent activity in both the tests. In order to find out the involvement of opioid receptors, effect of naloxone (1 mg/kg, sc) on the action of extracts was checked in hot plate test. Petroleum ether, chloroform, and ethyl acetate extracts showed significant and dose dependant antinociceptive activity. The antinociceptive action of the extracts was blocked by naloxone, suggesting involvement of opioid receptors in the action.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号