首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We analyzed the transport of KCl solutions through the bacterial cellulose membrane and concentration boundary layers (CBLs) near membrane with pressure differences on the membrane. The membrane was located in horizontal-plane between two chambers with different KCL solutions. The membrane was located in horizontal-plane between two chambers with different KCL solutions. As results from the elaborated model, gradient of KCL concentration in CBLs is maximal at membrane surfaces in the case when pressure difference on the membrane equals zero. The amplitude of this maximum decreases with time of CBLs buildup. Application of mechanical pressure gradient in the direction of gradient of osmotic pressure on the membrane causes a shift of this maximum into the chamber with lower concentration. In turn, application of mechanical pressure gradient directed opposite to the gradient of osmotic pressure causes the appearance of maximum of concentration gradient in chamber with higher concentration. Besides, the increase of time of CBLs buildup entails a decrease of peak height and shift of this peak further from the membrane. Similar behavior is observed for distribution of energy dissipation in CBLs but for pressure difference on the membrane equal to zero the maximum of energy dissipation is observed in the chamber with lower concentration. We also measured time characteristics of voltage in the membrane system with greater KCl concentrations over the membrane. We can state that mechanical pressure difference on the membrane can suppress or strengthen hydrodynamic instabilities visible as pulsations of measured voltage. Additionally, time of appearance of voltage pulsations, its amplitude, and frequency depend on mechanical pressure differences on the membrane and initial quotient of KCl concentrations in chambers.  相似文献   

2.
When osmotic pressure across an artificial membrane, produced by a permeable electrically neutral solute on one side of it, is balanced by an external pressure difference so that there is no net volume flow across the membrane, it has been found that there will be a net flux of a second electrically neutral tracer solute, present at equal concentrations on either side of the membrane, in the direction that the "osmotic" solute diffuses. This has been ascribed to solute-solute interaction or drag between the tracer and the osmotic solutes. An alternative model, presented here, considers the membrane to have pores of different sizes. Under general assumptions, this "heteroporous" model will account for both the direction of net tracer flux and the observed linear dependence of unidirectional tracer fluxes on the concentration of the osmotic solute. The expressions for the fluxes of solutes and solvent are mathematically identical under the two models. An inequality is derived which must be valid if the solute interaction model and/or the heteroporous model can account for the data. If the inequality does not hold, then the heteroporous model alone cannot explain the data. It was found that the inequality holds for most published observations except when dextran is the osmotic solute.  相似文献   

3.
An effect of internal citrate ions on excitation-contraction coupling in skeletal muscle is described. The threshold for contraction was measured in rat extensor digitorum longus, (EDL), and soleus muscle fibers using a two microelectrode voltage clamp technique with either KCl-filled or K3 citrate-filled current electrodes. Contraction thresholds were stable for many minutes with KCl current electrodes. In contrast, thresholds fell progressively towards the resting membrane potential, by as much as -15 mV over a period of 10 to 20 min of voltage-clamp with citrate current electrodes. In addition, prepulse inhibition was suppressed, subthreshold activation enhanced and steady-state inactivation shifted to more negative potentials. Fibers recovered slowly from these effects when the citrate electrode was withdrawn and replaced with a KCl electrode. The changes in contraction threshold suggest that citrate ions act on the muscle activation system at an intracellular site, since the citrate permeability of the surface membrane is probably very low. An internal citrate concentration of 5 mM was calculated to result from citrate diffusion out of the microelectrode into the recording area for 20 min. 5 mM citrate added to an artificial cell lowered the free calcium concentration from 240 to 31 microM. It is suggested that citrate modifies excitation-contraction coupling either by acting upon an anion-dependent step in activation or by reducing the free calcium and/or free magnesium concentration in the myoplasm.  相似文献   

4.
Apparent streaming potentials were elicited across Necturus gallbladder epithelium by addition or removal of sucrose from the apical bathing solution. In NaCl Ringer's solution, the transepithelial voltage (Vms) change (reference, basolateral solution) was positive with sucrose addition and negative with sucrose removal. Bilateral Cl- removal (cyclamate replacement) had no effect on the polarity or magnitude of the Vms change elicited by addition of 100 mM sucrose. In contrast, bilateral Na+ removal (tetramethylammonium [TMA+] replacement) inverted the Vms change (from 2.7 +/- 0.3 to -3.2 +/- 0.2 mV). Replacement of Na+ and Cl- with TMA+ and cyclamate, respectively, abolished the change in Vms. Measurements of cell membrane voltages and relative resistances during osmotic challenges indicate that changes in cell membrane parameters do not explain the transepithelial voltage changes. The initial changes in Vms were slower than expected from concomitant estimates of the time course of sucrose concentration (and hence osmolality) at the membrane surface. Paired recordings of the time courses of paracellular bi-ionic potentials (partial substitution of apical Na+ with tetrabutylammonium [TBA+]) revealed much faster time courses than those produced by sucrose addition, although the diffusion coefficients of sucrose and TBACl are similar. Hyperosmotic and hypoosmotic challenges yielded initial Vms changes at the same rate; thereafter, the voltage increased with hypoosmotic solution and decreased with hyperosmotic solution. These late voltage changes appear to result from changes in width of the lateral intercellular spaces. The early time courses of the Vms changes produced by osmotic challenge are inconsistent with the expectations for water-ion flux coupling in the junctions. We propose that they are pseudo-streaming potentials, i.e., junctional diffusion potentials caused by salt concentration changes in the lateral intercellular spaces secondary to osmotic water flow.  相似文献   

5.
Internodal cells of a brackish water charophyte, Lamprothamnium succinctum, regulate turgor pressure in response to changes in external osmotic pressure by modifying vacuolar concentrations of KCl. An increase in cytosolic concentration of free Ca(2+) ([Ca(2+)](c)) is necessary for the progress of turgor regulation induced by hypotonic treatment. Initial changes in membrane potential and [Ca(2+)](c) upon hypotonic treatment were measured to examine the temporal relationship between the two parameters. Fura-dextran (potassium salt, M(r) 10,000, anionic) that had been injected into the cytosol was used to measure [Ca(2+)](c). Membrane potential and membrane conductance under a current-clamp condition were also measured. Decrease in external osmotic pressure by 0.16 Osm induced a simultaneous increase in [Ca(2+)](c) with both depolarization of the membrane and increase in the membrane conductance. Decrease in external osmotic pressure by 0.05 Osm induced a simultaneous increase in [Ca(2+)](c) with membrane depolarization but the increase in membrane conductance started later than the other two processes. There was a close temporal relationship between the increase in [Ca(2+)](c) and membrane depolarization on the initial response of turgor regulation induced by hypotonic treatment.  相似文献   

6.
The theoretical calculation about the dependence of the ionic current density across the cellular membrane on the intensity of the magnetic field applied to cellular tissue is presented. This interaction induces changes in the magnitude of the ionic current density across the cellular membrane and in the ionic concentration, and it also causes alterations in the osmotic pressure and in the capacity of the cellular tissues to absorb water. The magnetic field dependence of the ionic current densities J(p) (B) (positive ions) and J(n) (B) (negative ions), the membrane conductivity sigma (B), the ionic concentration in both membrane sides c(B), the osmotic pressure pi (B), and the water uptake rate by seeds k(w) (B) are presented. The increase in water uptake rate due to the applied magnetic field may be the explanation of the recently reported increase in the germination speed of the seeds treated with stationary magnetic fields.  相似文献   

7.
Influence of ionic strength on the stability of phage t2r to osmotic shock   总被引:1,自引:0,他引:1  
The authors assume that an increase in the ionic strength of the medium results in dissociation of the DNA-polyamine complex in the phage head. The released polyamines and internal protein molecules are unable to permeate into the external environment. Their thermal movement causes constant pressure within the phage; this contributes to rupture of the head by osmotic shock and probably plays a decisive role in injection of the phage DNA into the bacterium. Study of osmotic shock by glycerol in media of different ionic strengths showed that, as the ionic strength increases, the bacteriophage is at first destabihized by the action of the released polyamines and that only when the ionic strength is raised still further, it is restabilized by the influence of the ionic strength on the resistance of the membrane. The osmotic prossures required to rupture the phage head are practically the same for NaCl and KCl solutions, while for shock by glycerol solutions, considerably lower values were measured in media of low ionic strengths. The authors attribute these differences to differences in the rate of permeation of the shocking substance across the phage membrane. The equilibrium for NaCl and KCl is established in less than one minute and for glycerol in 5–10 min.  相似文献   

8.
The electrical potential difference across a plant or animalcell membrane can be caused by at least three different mechanisms,acting alone or in concert. First, a Donnan equilibrium canaccount for a sizable membrane potential without the participationof any active transport process. In a Donnan equilibrium themembrane potential is generated by the diffusion of permeatingions down their concentration gradients. The asymmetric distributionof permeating ions is caused by the presence of charged, nondiffusibleions, e.g., proteins inside the cell. The second mechanism isan electrically neutral ion pump, e.g., the coupled sodium-potassiumpump found in many types of cells. An electrically neutral pumpcan generate a large membrane potential if the membrane hasa high passive permeability to one of the actively transportedions, usually potassium. The third mechanism is an electrogenicion pump, which makes a substantial contribution to the membranepotential in several types of plant and animal cells. An electrogenicpump directly causes a net movement of charge across the cellmembrane. The membrane voltage generated by the pump then causesa passive flow of diffusible ions which partially short circuitsthe potential difference generated by the pump.  相似文献   

9.
When two solutions differing in solute concentration are separated by a porous membrane, the osmotic pressure will generate a net volume flux of the suspending fluid across the membrane; this is termed osmotic flow. We consider the osmotic flow across a membrane with circular cylindrical pores when the solute and the pore walls are electrically charged, and the suspending fluid is an electrolytic solution containing small cations and anions. Under the condition in which the radius of the pores and that of the solute molecules greatly exceed those of the solvent as well as the ions, a fluid mechanical and electrostatic theory is introduced to describe the osmotic flow in the presence of electric charge. The interaction energy, including the electrostatic interaction between the solute and the pore wall, plays a key role in determining the osmotic flow. We examine the electrostatic effect on the osmotic flow and discuss the difference in the interaction energy determined from the nonlinear Poisson-Boltzmann equation and from its linearized equation (the Debye-Hückel equation).  相似文献   

10.
Equations are derived for the total material flux, and the total electric current flux, across a complex membrane system with active transport. The equations describe the fluxes as linear functions of forces across the system, and specifically of electrical potential, hydrostatic pressure, chemical potentials, and active transport rates. The equations can be simplified for experimental studies by making one or more of the forces equal to zero. The osmotic pressure difference across a membrane system is shown to be a function of the electrical potential and chemical potential differences and of the active transport rates. The transmembrane potential is shown to be the sum of a diffusion potential and an active transport potential. A simple equation is derived describing the current across a membrane as a linear function of the electrical potential and the active transport rate. Specific examples of the application of the equations to nerve membrane potentials are considered.  相似文献   

11.
Two types of haemolytic activity of detergents   总被引:1,自引:0,他引:1  
The nonionic detergent Triton X-100 at concentrations of about 0.003 to 0.008% causes swelling followed by the haemolysis of erythrocytes suspended in 160 mM KCl. The rate of haemolysis increases with the increase in detergent concentration. Finally all the erythrocytes are haemolysed. The resistance of erythrocytes to this detergent decreases with an increase in temperature. The effect of Triton X-100 is explained by increased membrane permeability to KCl and colloid osmotic haemolysis. The anionic detergent, sodium dodecyl sulfate (SDS), at concentrations of about 0.003 to 0.001% causes the haemolysis of a certain number of erythrocytes. This number increases with an increase in detergent concentration. The resistance of erythrocytes to SDS increases with an increase in temperature. The effect of SDS is explained by direct disruption of membranes by the detergent.  相似文献   

12.
Charge-pulse relaxation studies with the alamethicin-lipid membrane system reveal a triphasic decay of membrane voltage. At short times (resolution time 2 microseconds), where a voltage decay due to the orientation of alamethicin dipoles from the interface into the membranes interior ("gating current") could possibly be expected, only a slow decrease with a time constant determined by the bare membrane conductance occurs. After approximately 1 ms (depending on the experimental conditions) the formation of alamethicin pores starts, leading to an increase in the voltage decay rate. When the characteristic voltage Vcpc is approached, pores close and after passing Vcpc the voltage decreases slowly again according to the bare membrane conductance. Vcpc is determined as a function of the initially applied voltage Vo, alamethicin and KCl concentration. Since the membrane voltage decreases continuously, the system does not reach the equilibrium states obtained at constant voltages. Taking the presented experimental results into account the estimate of the electrical potential at the functional membrane of photosynthesis induced by a saturating single turnover flash of deltaphio approximately 105-135 mV (Zickler, Witt and Boheim (1976) FEBS Lett. 66, 142-148) is changed to deltaphio approximately 200 mV.  相似文献   

13.
The underlying Boltzmann characteristics of motility-related gating currents of the outer hair cell (OHC) are predicted to generate distortion components in response to sinusoidal transmembrane voltages. We studied this distortion since it reflects the mechanical activity of the cell that may contribute to peripheral auditory system distortion. Distortion components in the OHC electrical response were analyzed using the whole-cell voltage clamp technique, under conditions where ionic conductances were blocked. Single or double-sinusoidal transmembrane voltage stimulation was delivered at various holding voltages, and distortion components of the current responses were detected by Fourier analysis. Current response magnitude and phase of each distortion component as a function of membrane potential were compared with characteristics of the voltage-dependent capacitance, obtained by voltage stair-step transient analysis or dual-frequency admittance analysis. The sum distortion was most prominent among the distortion components at all holding voltages. Notches in the sum (f1+f2), difference (f2−f1) and second harmonic (2f) components occur at the voltage where peak voltage-dependent capacitance resides (V pkCm ). Rapid phase reversals also occurred at V pkCm , but phase remained fairly stable at more depolarized and hyperpolarized potentials. Thus, it is possible to extract Boltzmann parameters of the motility-related charge movement from these distortion components. In fact, we have developed a technique to follow changes in the voltage dependence of OHC motility and charge movement by tracking the voltage at phase reversal of the f2−f1 product. When intracellular turgor pressure was changed, V pkCm and distortion notch voltages shifted in the same direction. These data have important implications for understanding cochlear nonlinearity, and more generally, indicate the usefulness of distortion analysis to study displacement currents. Received: 31 December 1998/Revised: 12 March 1999  相似文献   

14.
Summary Fusion of phosphatidylserine vesicles induced by divalent cations, temperature and osmotic pressure gradients across the membrane was studied with respect to variations in vesicle size. Vesicle fusion was followed by two different methods: 1) the Tb/DPA fusion assay, whereby the fluorescent intensity upon mixing of the internal aqueous contents of fused lipid vesicles was monitored, and 2) measurement of the changes in turbidity of the vesicle suspension due to vesicle fusion. It was found that the threshold concentration of divalent cations necessary to induce vesicle fusion depended on the size of vesicles; as the diameter of the vesicle increased, the threshold value increased and the extent of fusion became less. For the osmotic pressure-induced vesicle fusion, the larger the diameter of vesicles, the smaller was the osmotic pressure gradient required to induce membrane fusion. Divalent cations, temperature increase and vesicle membrane expansion by osmotic pressure gradient all resulted in increase in surface energy (tension) of the membrane. The degree of membrane fusion correlated with the corresponding surface energy changes of vesicle membranes due to the above fusion-inducing agents. The increase in surface energy of 9.5 dyn/cm from the reference state corresponded to the threshold point of phosphatidylserine membrane fusion. An attempt was made to explain the factors influencing fusion phenomena on the basis of a single unifying theory.  相似文献   

15.
Abstract

Computer simulations of solutions of electrolytes (NaCl and KCl) in supercritical water undergoing membrane based separations have been carried out. These studies used a technique developed recently, in which the system is maintained at steady state by periodically recycling the solvent molecules that permeated the membrane. Our results showed that ionic clusters, formed as a result of water molecules surrounding the ions, play a significant role in these separations. The effect of the main osmotic driving forces, such as pressure, temperature, concentration, and electric fields on the rate of permeation across the membrane was studied. In addition, we also looked at the effect of changes in the pore size and the attractive force between the membrane and solvent/solute. Finally, we examined the stability of the ionic clusters in these simulations.  相似文献   

16.
Absorbance changes, caused by adding KCl to a suspension of broken chloroplasts in the presence of a low concentration of MgCl2, have been measured in the wavelength region 460–540 nm. The magnitude of the KCl-induced absorbance changes is shown to be proportional to the logarithm of the KCl concentration gradient initially induced across the thylakoid membrane. The difference spectrum of these absorbance changes is shown to be identical with the spectrum of the light-induced absorbance changes, which has been attributed to an electrochromic shift of P-515. This is interpreted as evidence that under these conditions salt-induced absorbance changes of P-515 occur in response to a membrane diffusion potential. The results indicate that the electrogenic potential across the thylakoid membrane, generated by a single turnover light flash, is in the range between 15 and 35 mV.  相似文献   

17.
We have devised an experimental system of perfusion througha hollow cylinder of a Vigna hypocotyl to examine the controlmechanism of plant stem elongation. When the cylinder was subjectedto osmotic stress, it began to shrink and then spontaneouslyresumed elongation. Not only the membrane potential differencebetween the parenchyma symplast and the central bore (Vpx),but also that between the parenchyma symplast and the organsurface (Vps), showed hyperpolarization a few minutes afterthe cylinder began to shrink. Removal of the stress caused animmediate increase in elongation rate followed by depolarizationof both membrane potentials a few minutes later. When the cylinderwas subjected to KCl stress, Vpx showed transient depolarizationand recovery, while Vps showed only immediate hyperpolarization.Increasing the KCl concentration caused Vpx to depolarize, andthe cylinder simultaneously to cease to elongate for about 5min,even when the osmotic concentration of the perfusion solutionwas kept almost constant. An inverse reaction was observed whenthe KCl concentration was decreased. These two reversible responses suggest that control of Vpx mayregulate the elongation of hollow cylinders, and that the xylempump plays an important role in the regulation of intact stemelongation. (Received January 7, 1987; Accepted April 30, 1987)  相似文献   

18.
With the help of a ribonucleoprotein it is possible to precipitate collagen in a layer of fibers with a 700 Å period. As collagen is a constituent of many membrane systems in the body, it seemed interesting to investigate the permeability of ions and water through a native collagen membrane.The experiments were carried out with the help of an acryl glass apparatus, where an osmotic pressure, a hydrostatic pressure difference or both can be maintained between the two bulk phases separated by the membrane. The diffusion coefficients for NaCl and KCl were found to be comparable with those in other biological membranes (Ds = 9 · 10−7cm2 · s−1) whereas there is difference of more than three orders of magnitude in the hydraulic permeability (Lp = 6 cm4 · J−1 · s−1).Volume flow measurements caused by an osmotic gradient indicated that the reflection coefficient for NaCl and KCl is very small. In hydrostatic pressure experiments, the membrane shows a preferred direction for volume flows which seems to have something to do with the mode of preparation of the membrane.  相似文献   

19.
The total osmotic flow of water across cell membranes generally exceeds diffusional flow measured with labeled water. The ratio of osmotic to diffusional flow has been widely used as a basis for the calculation of the radius of pores in the membrane, assuming Poiseuille flow of water through the pores. An important assumption underlying this calculation is that both osmotic and diffusional flow are rate-limited by the same barrier in the membrane. Studies employing a complex synthetic membrane show, however, that osmotic flow can be limited by one barrier (thin, dense barrier), and the rate of diffusion of isotopic water by a second (thick, porous) barrier in series with the first. Calculation of a pore radius is meaningless under these conditions, greatly overestimating the size of the pores determining osmotic flow. On the basis of these results, the estimation of pore radius in biological membranes is reassessed. It is proposed that vasopressin acts by greatly increasing the rate of diffusion of water across an outer barrier of the membrane, with little or no accompanying increase in pore size.  相似文献   

20.
The effect of ammonium ion concentration and osmotic pressure on growth of Ureaplasma urealyticum type VIII was determined by using a well-buffered broth medium containing 10 mM urea. The addition of NH4Cl to the medium at concentrations up to 10 mM did not affect growth; however, addition of larger quantities progressively decreased both the specific growth rate (mu) and the maximum yield of the culture, with concentrations of 80 mM completely inhibiting growth. Addition of either 150 mM KCl or NaCl to the medium did not inhibit growth, indicating that the growth-inhibitory effect was specific to NH4+ and was neither a result of increased Cl- concentration nor increased osmotic pressure. Concentrations of NH4Cl as high as 100 mM did not affect growth of either Acholeplasma laidlawii or Mycoplasma hominis. U. urealyticum was more sensitive to osmotic pressure: osmotic pressures of 710 to 780 mosmol/kg (with KCl, NaCl, or sucrose) resulted in both a substantially lower growth rate and a 5- to 10-fold lower peak yield of organisms. Both A laidlawii and M. hominis were less sensitive to increased osmotic pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号