首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Despite the existence of certain differences between yeast and higher eukaryotic cells a considerable part of our knowledge on chromatin structure and function has been obtained by experimenting on Saccharomyces cerevisiae. One of the peculiarities of S. cerevisiae cells is the unusual and less abundant linker histone, Hho1p. Sparse is the information about Hho1p involvement in yeast higher-order chromatin organization. In an attempt to search for possible effects of Hho1p on the global organization of chromatin, we have applied Chromatin Comet Assay (ChCA) on HHO1 knock-out yeast cells. The results showed that the mutant cells exhibited highly distorted higher-order chromatin organization. Characteristically, linker histone depleted chromatin generally exhibited longer chromatin loops than the wild-type. According to the Atomic force microscopy data the wild-type chromatin appeared well organized in structures resembling quite a lot the "30-nm" fiber in contrast to HHO1 knock-out yeast.  相似文献   

2.
Efficient and rapid fermentation of all sugars present in cellulosic hydrolysates is essential for economic conversion of renewable biomass into fuels and chemicals. Xylose is one of the most abundant sugars in cellulosic biomass but it cannot be utilized by wild type Saccharomyces cerevisiae, which has been used for industrial ethanol production. Therefore, numerous technologies for strain development have been employed to engineer S. cerevisiae capable of fermenting xylose rapidly and efficiently. These include i) optimization of xylose-assimilating pathways, ii) perturbation of gene targets for reconfiguring yeast metabolism, and iii) simultaneous co-fermentation of xylose and cellobiose. In addition, the genetic and physiological background of host strains is an important determinant to construct efficient and rapid xylose-fermenting S. cerevisiae. Vibrant and persistent researches in this field for the last two decades not only led to the development of engineered S. cerevisiae strains ready for industrial fermentation of cellulosic hydrolysates, but also deepened our understanding of operational principles underlying yeast metabolism.  相似文献   

3.
Monoterpene geraniol, a compound obtained from aromatic plants, has wide applications. In this study, geraniol was synthesized in Saccharomyces cerevisiae through the introduction of geraniol synthase. To increase geraniol production, the mevalonate pathway in S. cerevisiae was genetically manipulated to enhance the supply of geranyl diphosphate, a substrate used for the biosynthesis of geraniol. Identification and optimization of the key regulatory points in the mevalonate pathway in S. cerevisiae increased geraniol production to 36.04 mg L−1. The results obtained revealed that the IDI1-encoded isopentenyl diphosphate isomerase is a rate-limiting enzyme in the biosynthesis of geraniol in S. cerevisiae, and overexpression of MAF1, a negative regulator in tRNA biosynthesis, is another effective method to increase geraniol production in S. cerevisiae.  相似文献   

4.
CK2 is a highly conserved protein kinase controlling different cellular processes. It shows a higher activity in proliferating mammalian cells, in various types of cancer cell lines and tumors. The findings presented herein provide the first evidence of an in vivo modulation of CK2 activity, dependent on growth rate, in Saccharomyces cerevisiae. In fact, CK2 activity, assayed on nuclear extracts, is shown to increase in exponential growing batch cultures at faster growth rate, while localization of catalytic and regulatory subunits is not nutritionally modulated. Differences in intracellular CK2 activity of glucose- and ethanol-grown cells appear to depend on both increase in molecule number and kcat. Also in chemostat cultures nuclear CK2 activity is higher in faster growing cells providing the first unequivocal demonstration that growth rate itself can affect CK2 activity in a eukaryotic organism.  相似文献   

5.
The effect of aqueous extract from R. rosea root on lifespan and the activity of antioxidant enzymes in budding yeast Saccharomyces cerevisiae have been studied. The supplementation of the growth medium with R. rosea extract decreased survival of exponentially growing S. cerevisiae cells under H2O2-induced oxidative stress, but increased viability and reproduction success of yeast cells in stationary phase. The extract did not significantly affect catalase activity and decreased SOD activity in chronologically aged yeast population. These results suggest that R. rosea acts as a stressor for S. cerevisiae cells, what sensitizes yeast cells to oxidative stress at exponential phase, but induces adaptation in stationary phase cells demonstrating the positive effect on yeast survival without activation of major antioxidant enzymes.  相似文献   

6.
We previously reported that the over-expression of KDX1 up-regulates RCK1 gene expression. To further understand the function of Rck1, microarray analysis was performed using a RCK1 over-expressing strain. Based on microarray and Northern blot analyses, we determined that the expression of KDX1 was down-regulated when RCK1 was over-expressed. Furthermore, we determined that phosphorylated forms of Slt2 and Mkk2 were down-regulated by the over-expression of RCK1. Ptp2, a phosphatase that is regulated by the Slt2 MAP kinase pathway, was down-regulated by the over-expression of RCK1. Ptp2 is a negative regulator of Hog1; thus, the phosphorylated form of Hog1 was up-regulated by RCK1 over-expression. A point mutation of lysine 152 to arginine resulted in a failure to up-regulate Hog1 and the subsequent down-regulation of CTT1, which is a Hog1 pathway target gene. Furthermore, using microarray and Northern blot analyses, we determined that genes that are regulated by Msn2/Msn4 were up-regulated by Rck1 and that this was the result of Hog1 activation by RCK1 over-expression. Together, our results suggest that Rck1 inhibits Slt2 MAP kinase pathway activity and then Ptp2, which subsequently activates Hog1.  相似文献   

7.
The OH stretch mode from water and organic hydroxyl groups have strong infrared absorption, the position of the band going to lower frequency with increased H-bonding. This band was used to study water in trehalose and glycerol solutions and in genetically modified yeast cells containing varying amounts of trehalose. Concentration-dependent changes in water structure induced by trehalose and glycerol in solution were detected, consistent with an increase of lower-energy H-bonds and interactions at the expense of higher-energy interactions. This result suggests that these molecules disrupt the water H-bond network in such a way as to strengthen molecule–water interactions while perturbing water–water interactions. The molecule-induced changes in the water H-bond network seen in solution do not translate to observable differences in yeast cells that are trehalose-deficient and trehalose-rich. Although comparison of yeast with low and high trehalose showed no observable effect on intracellular water structure, the structure of water in cells is different from that in bulk water. Cellular water exhibits a larger preference for lower-energy H-bonds or interactions over higher-energy interactions relative to that shown in bulk water. This effect is likely the result of the high concentration of biological molecules present in the cell. The ability of water to interact directly with polar groups on biological molecules may cause the preference seen for lower-energy interactions.  相似文献   

8.
Phosphoenolpyruvate (PEP) carboxykinases catalyse the reversible formation of oxaloacetate (OAA) and ATP (or GTP) from PEP, ADP (or GDP) and CO2. They are activated by Mn2+, a metal ion that coordinates to the protein through the ?-amino group of a lysine residue, the N?-2-imidazole of a histidine residue, and the carboxylate from an aspartic acid residue. Neutrality in the ?-amino group of Lys213 of Saccharomyces cerevisiae PEP carboxykinase is expected to be favoured by the vicinity of ionised Lys212. Glu272 and Glu284, located close to Lys212, should, in turn, electrostatically stabilise its positive charge and hence assist in keeping the ?-amino group of Lys213 in a neutral state. The mutations Glu272Gln, Glu284Gln, and Lys212Met increased the activation constant for Mn2+ in the main reaction of the enzyme up to seven-fold. The control mutation Lys213Gln increased this constant by ten-fold, as opposed to control mutation Lys212Arg, which did not affect the Mn2+ affinity of the enzyme. These observations indicate a role for Glu272, Glu284, and Lys212 in assisting Lys213 to properly bind Mn2+. In an unexpected result, the mutations Glu284Gln, Lys212Met and Lys213Gln changed the nucleotide-independent OAA decarboxylase activity of S. cerevisiae PEP carboxykinase into an ADP-requiring activity, implying an effect on the OAA binding characteristics of PEP carboxykinase.  相似文献   

9.
One of the defining features of the fermentation process used in the production of bioethanol from sugarcane feedstock is the dynamic nature of the yeast population. Minisatellite molecular markers are particularly useful for monitoring yeast communities because they produce polymorphic PCR products that typically display wide size variations. We compared the coding sequences derived from the genome of the sugarcane bioethanol strain JAY270/PE-2 to those of the reference Saccharomyces cerevisiae laboratory strain S288c, and searched for genes containing insertion or deletion polymorphisms larger than 24 bp. We then designed oligonucleotide primers flanking nine of these sites, and used them to amplify differentially sized PCR products. We analyzed the banding patterns in the most widely adopted sugarcane bioethanol strains and in several indigenous yeast contaminants, and found that our marker set had very good discriminatory power. Subsequently, these markers were used to successfully monitor the yeast cell populations in six sugarcane bioethanol distilleries. Additionally, we showed that most of the markers described here are also polymorphic among strains unrelated to bioethanol production, suggesting that they may be applied universally in S. cerevisiae. Because the relatively large polymorphisms are detectable in conventional agarose gels, our method is well suited to modestly equipped on-site laboratories at bioethanol distilleries, therefore providing both cost and time savings.  相似文献   

10.
A microplate screening method was used to assess anaerobic growth of 12 Saccharomyces cerevisiae strains in barley straw, spruce and wheat straw hydrolysate. The assay demonstrated significant differences in inhibitor tolerance among the strains. In addition, growth inhibition by the three hydrolysates differed so that wheat hydrolysate supported growth up to 70%, while barley hydrolysate only supported growth up to 50%, with dilute-acid spruce hydrolysate taking an intermediate position.  相似文献   

11.
Nitrosative stress has various pathophysiological implications. We here present a detailed characterization on the effect of nitrosative stress in Saccharomyces cerevisiae wild-type (Y190) and its isogenic flavohemoglobin mutant (Δyhb1) strain grown in presence of non fermentable carbon source. On addition of sub-toxic dose of nitrosating agent both the strains showed microbiostatic effect. Cellular respiration was found to be significantly affected in both the strains in presence sodium nitroprusside. Although there was no alteration in mitochondrial permeability potential changes and reactive oxygen species production in both the strains but the cellular redox status is differentially regulated in Δyhb1 strain both in cytosol and in mitochondria indicating cellular glutathione is the major player in absence of flavohemoglobin. We also found important role(s) of various redox active enzymes like glutathione reductase and catalase in protection against nitrosative stress. This is the first report of its kind where the effect of nitrosative stress has been evaluated in S. cerevisiae cytosol as well as in mitochondria under respiratory proficient conditions.  相似文献   

12.
Using S. cerevisiae as a eukaryotic cell model we have analyzed the involvement of both glutathione transferase isoforms, Gtt1 and Gtt2, in constitutive resistance and adaptive response to menadione, a quinone which can exert its toxicity as redox cycling and/or electrophiles. The detoxification properties, of these enzymes, have also been analyzed by the appearance of S-conjugates in the media. Direct exposure to menadione (20 mM/60 min) showed to be lethal for cells deficient on both Gtt1 and Gtt2 isoforms. However, after pre-treatment with a low menadione concentration, cells deficient in Gtt2 displayed reduced ability to acquire tolerance when compared with the control and the Gtt1 deficient strains. Analyzing the toxic effects of menadione we observed that the gtt2 mutant showed no reduction in lipid peroxidation levels. Moreover, measuring the levels of intracellular oxidation during menadione stress we have shown that the increase of this oxidative stress parameter was due to the capacity menadione possesses in generating reactive oxygen species (ROS) and that both GSH and Gtt2 isoform were required to enhance ROS production. Furthermore, the efflux of the menadione–GSH conjugate, which is related with detoxification of xenobiotic pathways, was not detected in the gtt2 mutant. Taken together, these results suggest that acquisition of tolerance against stress generated by menadione and the process of detoxification through S-conjugates are dependent upon Gtt2 activity. This assessment was corroborated by the increase of GTT2 expression, and not of GTT1, after menadione treatment.  相似文献   

13.
The mitochondrial permeability transition (PT) involves the opening of a mitochondrial unselective channel (MUC) resulting in membrane depolarization and increased permeability to ions. PT has been observed in many, but not all eukaryotic species. In some species, PT has been linked to cell death, although other functions, such as matrix ion detoxification or regulation of the rate of oxygen consumption have been considered. The identification of the proteins constituting MUC would help understand the biochemistry and physiology of this channel. It has been suggested that the mitochondrial phosphate carrier is a structural component of MUC and we decided to test this in yeast mitochondria. Mersalyl inhibits the phosphate carrier and it has been reported that it also triggers PT. Mersalyl induced opening of the decavanadate-sensitive Yeast Mitochondrial Unselective Channel (YMUC). In isolated yeast mitochondria from a phosphate carrier-null strain the sensitivity to both phosphate and mersalyl was lost, although the permeability transition was still evoked by ATP in a decavanadate-sensitive fashion. Polyethylene glycol (PEG)-induced mitochondrial contraction results indicated that in mitochondria lacking the phosphate carrier the YMUC is smaller: complete contraction for mitochondria from the wild type and the mutant strains was achieved with 1.45 and 1.1 kDa PEGs, respectively. Also, as expected for a smaller channel titration with 1.1 kDa PEG evidenced a higher sensitivity in mitochondria from the mutant strain. The above data suggest that the phosphate carrier is the phosphate sensor in YMUC and contributes to the structure of this channel.  相似文献   

14.
Trehalose and glycerol have been implicated as potential stress protectants that accumulate in yeasts during various stress conditions. We investigated the levels of glycerol and trehalose and the expression profiles of genes involved in their metabolism to determine their involvement in the response of Saccharomyces cerevisiae XQ1 to thermal, sorbitol and ethanol stresses. The results showed that the genes involved in the synthesis and degradation of trehalose and glycerol were stress induced, and that trehalose and glycerol were synthesized simultaneously during the initial stages (a sensitive response period) of diverse stress treatments. Trehalose accumulated markedly under heat treatment, but not under sorbitol or ethanol stress, whereas glycerol accumulated strikingly under sorbitol stress conditions. Interestingly, extracellular trehalose seemed to be involved in protecting cells from damage under unfavorable conditions. Moreover, our results suggest that the stress-activated futile ATP cycles of trehalose and glycerol turnover are of general importance during cellular stress adaptation.  相似文献   

15.
This work describes a quick semi-quantitative colony immunoassay (QSCI) method for immunoblot detection of intracellularly expressed proteins in both yeast and bacterial cells. After induction of protein expression, only 4.5 h is required for cell breakage, protein detection, and data analysis. This protocol was used to screen and unambiguously identify Saccharomyces cerevisiae cells efficiently overexpressing glutathione S-transferase (GST)-tagged Yih1 in addition to cells expressing the myc-tagged large 297-kDa Gcn1 protein. In addition, the method was used to identify Escherichia coli cells efficiently expressing His6-tagged Yih1 and a GST-tagged Gcn1 fragment, respectively. The protocol allows the use of both epitope-specific and protein-specific antibodies. The same colony immunoassay can also be used to determine the minimal concentration of inducing agent sufficient for induction of optimal protein expression (e.g., galactose for yeast, isopropyl β-d-1-thiogalactopyranoside [IPTG] for E. coli). To our knowledge, this is the first report on a rapid low-cost procedure that allows the calibration of inducing agent on solid medium.  相似文献   

16.
Na+/H+ antiporters, integral membrane proteins that exchange protons for alkali metal cations, play multiple roles in probably all living organisms (preventing cells from excessive amounts of alkali metal cations, regulating intracellular pH and cell volume). In this work, we studied the functionality of rat plasma membrane NHE1–3 exchangers upon their heterologous expression in alkali-metal-cation sensitive Saccharomyces cerevisiae, and searched for conditions that would increase their level in the plasma membrane and improve their functionality. Though three tested exchangers were partially localized to the plasma membrane (and two of them (NHE2 and NHE3) in an active form), the bulk of the synthesized proteins were arrested along the secretory pathway, mainly in the ER. To increase the level of exchangers in the yeast plasma membrane several approaches (truncation of C-terminal regulatory sequences, expression in mutant yeast strains, construction of rat/yeast protein chimeras, various growth conditions and chemical chaperones) were tested. The only increase in the amount of NHE exchangers in the plasma membrane was obtained upon expression in a strain with the npi1 mutation, which significantly lowers the level of Rsp5 ubiquitin ligase in cells. This mutation helped to stabilize proteins in the plasma membrane.  相似文献   

17.
Human TAS2 receptors (hTAS2Rs) perceive bitter tastants, but few studies have explored the structure-function relationships of these receptors. In this paper, we report our trials on the large-scale preparations of hTAS2Rs for structural analysis. Twenty-five hTAS2Rs were expressed using a GFP-fusion yeast system in which the constructs and the culture conditions (e.g., the signal sequence, incubation time and temperature after induction) were optimized by measuring GFP fluorescence. After optimization, five hTAS2Rs (hTAS2R7, hTAS2R8, hTAS2R16, hTAS2R41, and hTAS2R48) were expressed at levels greater than 1 mg protein/L of culture, which is a preferable level for purification and crystallization. Among these five bitter taste receptors, hTAS2R41 exhibited the highest detergent solubilization efficiency of 87.1% in n-dodecyl-β-d-maltopyranoside (DDM)/cholesteryl hemisuccinate (CHS). Fluorescence size-exclusion chromatography showed that hTAS2R41 exhibited monodispersity in DDM/CHS without aggregates, suggesting that hTAS2R41 is a good target for future crystallization trials.  相似文献   

18.
The hydrophobic estradiol-derivative RU49953 inhibits the energy-dependent interaction of yeast multidrug-transporter Pdr5p with its fluorescent drug-substrate rhodamine 6G. The potent inhibition is competitive towards drug binding (Ki=23±6 nM), whereas nucleoside-triphosphate hydrolysis is two-orders-of-magnitude less sensitive. RU49953 constitutes the most efficient inhibitor of drug binding to a yeast multidrug ABC exporter reported so far.  相似文献   

19.
Giant protoplasts of Saccharomyces cerevisiae of 10-35 µm in diameter were generated by multi-cell electrofusion. Thereby two different preparation strategies were evaluated with a focus on size distribution and “patchability” of electrofused protoplasts. In general, parental protoplasts were suitable for electrofusion 1-12 h after isolation. The electrophysiological properties of electrofused giant protoplasts could be analyzed by the whole-cell patch clamp technique. The area-specific membrane capacitance (0.66 ± 0.07 µF/cm2) and conductance (23-44 µS/cm2) of giant protoplasts were consistent with the corresponding data for parental protoplasts. Measurements with fluorescein-filled patch pipettes allowed to exclude any internal compartmentalisation of giant protoplasts by plasma membranes, since uniform (diffusion-controlled) dye uptake was only observed in the whole-cell configuration, but not in the cell-attached formation. The homogeneous structure of giant protoplasts was further confirmed by the observation that no plasma membrane associated fluorescence was seen in the interior of giant cells after electrofusion of protoplasts expressing the light-activated cation channel Channelrhodopsin-2 (ChR2) linked to yellow fluorescent protein (YFP). Patch clamp analysis of the heterologously expressed ChR2-YFP showed typical blue light dependent, inwardly-directed currents for both electrofused giant and parental protoplasts. Most importantly, neither channel characteristics nor channel expression density was altered by electric field treatment. Summarising, multi-cell electrofusion increases considerably the absolute number of membrane proteins accessible in patch clamp experiments, thus presumably providing a convenient tool for the biophysical investigation of low-signal transporters and channels.  相似文献   

20.
Cell growth in the yeast Saccharomyces cerevisiae depends on polarization of the actin cytoskeleton. In this study, we investigated how the cell regulates the distribution of actin in response to low pH conditions, focusing on the role of mitogen-activated protein kinases, Hog1 and Slt2. Changing the extracellular pH from 6.0 to 3.0 caused a transient depolarization of the actin cytoskeleton. Actin cables were no longer visible, and actin patches appeared randomly distributed after 30 min at pH 3.0. The deletion strain hog1Δ did not show this low-pH phenotype, suggesting that Hog1 is involved in depolarization of the actin cytoskeleton in response to low-pH stress. Yeast cells incubated at pH 3.0 also showed markedly increased endocytosis compared with the control at neutral pH, as indicated by the uptake of Lucifer Yellow (LY). Both the hog1Δ and slt2Δ mutants took up LY into the vacuole to a similar extent as the wild-type strain. In addition, cells grown at pH 3.0 showed a 2-fold increase in phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) levels, as did the hog1Δ or slt2Δ cells. Efficient uptake of LY and actin repolarization at pH 3.0 might therefore require activation of PI(4,5)P2 synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号