首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Specific memory is a hallmark of the vertebrate adaptive immune system. However, recent experiments indicate that specific memory might also exist in the innate immune systems of invertebrates. At present, the underlying mechanisms are unknown; yet such phenomenological evidence is relevant for understanding the principles and evolution of immune defence.  相似文献   

2.
Galectins are a large family of structurally related beta-galactoside-binding proteins that play a pivotal role in the control of cell differentiation, proliferation, activation and apoptosis of many different cell types including immune cells. By crosslinking specific glycoconjugates, different members of the galectin family behave as pro-inflammatory or anti-inflammatory "cytokine-like" mediators, acting at different levels of innate and adaptive immune responses. Here we will review recent advances on the role of galectins in key events of the immune and inflammatory response, such as tolerance induction, cell cycle progression, cell adhesion, chemotaxis, antigen presentation and apoptosis. In particular we will examine the influence of individual members of the galectin family in the physiology of different immune cell types involved in innate and adaptive immune responses. Moreover, we will discuss the importance of these sugar-binding proteins as therapeutic targets in Th1- and Th2-mediated immune disorders, an exciting area for future research.  相似文献   

3.
Long before vertebrates first appeared, protists, plants andanimals had evolved diverse, effective systems of innate immunity.Ancestors of the vertebrates utilized components of the complementsystem, protease-inhibitors, metal-binding proteins, carbohydrate-bindingproteins and other plasma-born molecules as humoral agents ofdefense. In these same animals, immunocytes endowed with a repertoireof defensive behaviors expressed Toll-like receptors. They madeNADPH oxidase, superoxide dismutase and other respiratory burstenzymes to produce toxic oxygen radicals, and nitric oxide synthaseto produce nitric oxide. Antimicrobial peptides and lytic enzymeswere in their armory. Immune responses were orchestrated bycytokines. Furthermore, genes within the immunoglobulin superfamilywere expressed to meet a variety of needs possibly includingdefense. However, recombination activating genes played no role.With the acquisition of one or more transposases and the resultingcapacity to generate diverse receptors from immunoglobulin genefragments, the adaptive (lymphoid) arm of the immune systemwas born. This may have coincided with the elaboration of theneural crest. Naturally, the role of the adaptive arm was initiallysubservient to the defensive functions of the pre-existing innatearm. The strong selective advantages that stemmed from having"sharp-shooters" (cells making antigen-specific receptors) onthe defense team ensured their retention. Refined through evolution,adaptive immunity, even in mammals, remains dependent upon cellsof the innate series (e.g., dendritic cells) for signals drivingtheir functional maturation. This paper calls for some freshthinking leading to a clearer vision of the origins and co-evolutionof the two arms of modern immune systems, and suggests a possibleneural origin for the adaptive immune system.  相似文献   

4.
Secretory IgA (SIgA) is a multi-polypeptide complex consisting of a secretory component (SC) covalently attached to dimeric IgA containing one joining (J) chain. We present the analysis of both the N- and O-glycans on the individual peptides from this complex. Based on these data, we have constructed a molecular model of SIgA1 with all its glycans, in which the Fab arms form a T shape and the SC is wrapped around the heavy chains. The O-glycan regions on the heavy (H) chains and the SC N-glycans have adhesin-binding glycan epitopes including galactose-linked beta1-4 and beta1-3 to GlcNAc, fucose-linked alpha1-3 and alpha1-4 to GlcNAc and alpha1-2 to galactose, and alpha2-3 and alpha2-6-linked sialic acids. These glycan epitopes provide SIgA with further bacteria-binding sites in addition to the four Fab-binding sites, thus enabling SIgA to participate in both innate and adaptive immunity. We also show that the N-glycans on the H chains of both SIgA1 and SIgA2 present terminal GlcNAc and mannose residues that are normally masked by SC, but that can be unmasked and recognized by mannose-binding lectin, by disrupting the SC-H chain noncovalent interactions.  相似文献   

5.
Interleukin(IL)-18 is a pleiotrophic cytokine with functions in immune modulation, angiogenesis and bone metabolism. In this study, the potential of IL-18 as an immunotherapy for prostate cancer (PCa) was examined using the murine model of prostate carcinoma, RM1 and a bone metastatic variant RM1(BM)/B4H7-luc. RM1 and RM1(BM)/B4H7-luc cells were stably transfected to express bioactive IL-18. These cells were implanted into syngeneic immunocompetent mice, with or without an IL-18-neutralising antibody (αIL-18, SK113AE4). IL-18 significantly inhibited the growth of both subcutaneous and orthotopic RM1 tumors and the IL-18 neutralizing antibody abrogated the tumor growth-inhibition. In vivo neutralization of interferon-gamma (IFN-γ) completely eliminated the anti-tumor effects of IL-18 confirming an essential role of IFN-γ as a down-stream mediator of the anti-tumor activity of IL-18. Tumors from mice in which IL-18 and/or IFN-γ was neutralized contained significantly fewer CD4(+) and CD8(+) T cells than those with functional IL-18. The essential role of adaptive immunity was demonstrated as tumors grew more rapidly in RAG1(-/-) mice or in mice depleted of CD4(+) and/or CD8(+) cells than in normal mice. The tumors in RAG1(-/-) mice were also significantly smaller when IL-18 was present, indicating that innate immune mechanisms are involved. IL-18 also induced an increase in tumor infiltration of macrophages and neutrophils but not NK cells. In other experiments, direct injection of recombinant IL-18 into established tumors also inhibited tumor growth, which was associated with an increase in intratumoral macrophages, but not T cells. These results suggest that local IL-18 in the tumor environment can significantly potentiate anti-tumor immunity in the prostate and clearly demonstrate that this effect is mediated by innate and adaptive immune mechanisms.  相似文献   

6.
In contrast to Salmonella and Shigella, enteropathogenic Yersinia species are extracellular multiplying Gram-negative bacteria. This life style requires a sophisticated anti-host strategy, which is implemented by the Yersinia virulence plasmid. This plasmid encodes the type 3 secretion system (injectisome), at least six microinjected anti-host effector proteins, a trimeric coiled coil outer membrane protein (Yersinia adhesin) with cell adhesin and protective functions against complement and defensins, and the released V antigen, which has Toll-like receptor 2 agonist activity.  相似文献   

7.
Bacterial DNA and synthetic oligodeoxynucleotides (ODN) containing unmethylated CpG motifs (CpG DNA) can potently stimulate innate immunity. While the actions of CpG DNA resemble those of LPS, these molecules stimulate distinct Toll-like receptors as well as cell types. In a previous study, we showed that a CpG ODN could induce cytokine production but, unlike LPS, did not induce thymocyte apoptosis. In this study, we have further investigated these differences using as a model a second-generation immunostimulatory oligonucleotide called HYB2048. Following administration to normal BALB/c mice, HYB2048-induced IL-12 but not IL-6 production. Under conditions in which LPS induced thymocyte apoptosis, HYB2048 did not cause significant cell death and, furthermore, did not block apoptosis induced by LPS. The levels of corticosterone induced by HYB2048 were also significantly lower than those induced by LPS. This pattern of activation could distinguish CpG DNA from LPS in its effects on the immune system.  相似文献   

8.
9.
The ability of heat shock proteins to (1) chaperone peptides, including antigenic peptides; (2) interact with antigen-presenting cells through a receptor; (3) stimulate antigen-presenting cells to secrete inflammatory cytokines; and (4) mediate maturation of dendritic cells, makes them a unique starting point for generation of immune responses. These properties also permit the use of heat shock proteins for development of a new generation of prophylactic and therapeutic vaccines against cancers and infectious diseases.  相似文献   

10.
Macrophages and dendritic cells have been recognized as key players in the defense against mycobacterial infection. However, more recently, other cells in the lungs such as alveolar epithelial cells (AEC) have been found to play important roles in the defense and pathogenesis of infection. In the present study we first compared AEC with pulmonary macrophages (PuM) isolated from mice in their ability to internalize and control Bacillus Calmette-Guérin (BCG) growth and their capacity as APCs. AEC were able to internalize and control bacterial growth as well as present antigen to primed T cells. Secondly, we compared both cell types in their capacity to secrete cytokines and chemokines upon stimulation with various molecules including mycobacterial products. Activated PuM and AEC displayed different patterns of secretion. Finally, we analyzed the profile of response of AEC to diverse stimuli. AEC responded to both microbial and internal stimuli exemplified by TLR ligands and IFNs, respectively. The response included synthesis by AEC of several factors, known to have various effects in other cells. Interestingly, TNF could stimulate the production of CCL2/MCP-1. Since MCP-1 plays a role in the recruitment of monocytes and macrophages to sites of infection and macrophages are the main producers of TNF, we speculate that both cell types can stimulate each other. Also, another cell-cell interaction was suggested when IFNs (produced mainly by lymphocytes) were able to induce expression of chemokines (IP-10 and RANTES) by AEC involved in the recruitment of circulating lymphocytes to areas of injury, inflammation, or viral infection. In the current paper we confirm previous data on the capacity of AEC regarding internalization of mycobacteria and their role as APC, and extend the knowledge of AEC as a multifunctional cell type by assessing the secretion of a broad array of factors in response to several different types of stimuli.  相似文献   

11.
The innate immune system senses pathogens largely through signals initiated by a collection of phylogenetically related proteins known as "Toll-like receptors" (TLRs), of which 10 representatives are encoded in the human genome. Our understanding of the sensing role played by the TLRs began with the positional cloning of a spontaneous mutation (Lps(d)) in the gene encoding the mammalian lipopolysaccharide (LPS) receptor. Other key innate immunity proteins have been disclosed by germline mutagenesis, and are discussed in the present review.  相似文献   

12.
The major adenovirus (Ad) capsid proteins hexon, penton, and fiber influence the efficiency and tropism of gene transduction by Ad vectors. Fiber is the high-affinity receptor binding protein that serves to mediate cell attachment in vitro when using coxsackie-adenovirus receptor (CAR)-containing cell lines. This contrasts with transduction efficiency in macrophages or dendritic cells that lack high concentrations of CAR. To determine how fiber influences gene transduction and immune activation in a murine model, we have characterized Ad type 5 (Ad5) vectors with two classes of chimeric fiber, CAR binding and non-CAR binding. In a systemic infection, Ad5 fiber contributes to DNA localization and vector transduction in hepatic tissue. However, the majority of vector localization is due to Ad5 fiber-specific functions distinct from CAR binding. CAR-directed transduction occurs but at a modest level. In contrast to CAR binding vectors, the F7 and F7F41S non-CAR-binding vectors demonstrate a 2-log decrease in hepatic transduction, with a 10-fold decrease in the amount of vector DNA localizing to the hepatic tissue. To characterize the innate response to early infection using fiber chimeric vectors, intrahepatic cytokine and chemokine mRNAs were quantified 5 hours postinfection. Tumor necrosis factor alpha mRNA levels resulting from Ad5 fiber infections were elevated compared to viruses expressing serotype 7 or 41 fiber. Levels of chemokine mRNA (gamma interferon-inducible protein 10, T-cell activation gene 3, and macrophage inflammatory protein 1beta) were 10- to 20-fold higher with CAR binding vectors (Ad5 and F41T) than with non-CAR-binding vectors (F7 and F7F41S). In spite of quantitative differences in vector localization and innate activation, fiber pseudotyping did not significantly change the outcome of anti-Ad adaptive immunity. All vectors were cleared with the same kinetics as wild-type Ad5 vectors, and each induced neutralizing antibody. Although non-CAR-binding vectors were impaired in transduction by nearly 2 orders of magnitude, the level of antitransgene immunity was the same for each of the vectors. Using primary bone marrow-derived macrophages and dendritic cells, we demonstrate that transduction, induction of cytokine/chemokine, and phenotypic maturation of these antigen-presenting cells are independent of fiber content. Our data support a model where fiber-mediated hepatic localization enhances innate responses to virus infection but minimally impacts on adaptive immunity.  相似文献   

13.
Shi D  Das J  Das G 《Cell research》2006,16(1):70-74
Inflammatory bowl disease (IBD) is a type 1 T helper cell (Th1)-mediated autoimmune disease. Various studies have revealed that environmental pathogens also play a significant role in the initiation and progression of this disease. Interestingly, the pathogenesis of IBD has been shown to be related to nitric oxide (NO) released from innate immune cells. Although NO is known to be highly toxic to the gut epithelia, there is very little information about the regulation of NO production, One major question in the etiology of IBD is how Thl cells and pathogens interact in the induction of IBD. In present study, we focused on the regulation of NO. We show that macrophages require both interferon-γ, (IFN-γ)-mediated and TLR4-mediated signals for the production of NO, which causes inflammation in the intestine and subsequently IBD. Thus, IBD is the result of concerted actions of innate immune signals, such as the binding of LPS to TLR-4, and adaptive immune signals, such as IFN-γ produced by Thl cells.  相似文献   

14.
Both the brain and the immune system are energetically demanding organs, and when natural selection favours increased investment into one, then the size or performance of the other should be reduced. While comparative analyses have attempted to test this potential evolutionary trade-off, the results remain inconclusive. To test this hypothesis, we compared the tissue graft rejection (an assay for measuring innate and acquired immune responses) in guppies (Poecilia reticulata) artificially selected for large and small relative brain size. Individual scales were transplanted between pairs of fish, creating reciprocal allografts, and the rejection reaction was scored over 8 days (before acquired immunity develops). Acquired immune responses were tested two weeks later, when the same pairs of fish received a second set of allografts and were scored again. Compared with large-brained animals, small-brained animals of both sexes mounted a significantly stronger rejection response to the first allograft. The rejection response to the second set of allografts did not differ between large- and small-brained fish. Our results show that selection for large brain size reduced innate immune responses to an allograft, which supports the hypothesis that there is a selective trade-off between investing into brain size and innate immunity.  相似文献   

15.
The development of collateral circulation is an inherent compensatory mechanism to restore impaired blood perfusion following artery stenosis and/or occlusion. This process, termed arteriogenesis, is driven by inflammation and involves a complex remodeling of pre-existing conduit vessels running in parallel to the occluded artery. Recent studies have unveiled roles for different immune cell subsets as regulators of arteriogenesis, including natural killer (NK) cells, T helper 17 (Th17) cells, regulatory T lymphocytes (Tregs), and functional subsets of macrophages (e.g., M2 macrophages). This review summarizes recent findings and discusses future research needed to better define the time during which each cellular subset is active and reveal further critical regulatory switches.  相似文献   

16.
The evolution of adaptive immune systems   总被引:11,自引:0,他引:11  
Cooper MD  Alder MN 《Cell》2006,124(4):815-822
A clonally diverse anticipatory repertoire in which each lymphocyte bears a unique antigen receptor is the central feature of the adaptive immune system that evolved in our vertebrate ancestors. The survival advantage gained through adding this type of adaptive immune system to a pre-existing innate immune system led to the evolution of alternative ways for lymphocytes to generate diverse antigen receptors for use in recognizing and repelling pathogen invaders. All jawed vertebrates assemble their antigen-receptor genes through recombinatorial rearrangement of different immunoglobulin or T cell receptor gene segments. The surviving jawless vertebrates, lampreys and hagfish, instead solved the receptor diversification problem by the recombinatorial assembly of leucine-rich-repeat genetic modules to encode variable lymphocyte receptors. The convergent evolution of these remarkably different adaptive immune systems involved innovative genetic modification of innate-immune-system components.  相似文献   

17.
Both jawless vertebrates, such as lampreys and hagfish, and jawed vertebrates (encompassing species as diverse as sharks and humans) have an adaptive immune system that is based on somatically diversified and clonally expressed antigen receptors. Although the molecular nature of the antigen receptors and the mechanisms of their assembly are different, recent findings suggest that the general design principles underlying the two adaptive immune systems are surprisingly similar. The identification of such commonalities promises to further our understanding of the mammalian immune system and to inspire the development of new strategies for medical interventions targeting the consequences of faulty immune functions.  相似文献   

18.
Both antibodies and T cells contribute to immunity against influenza virus infection. However, the generation of strong Th1 immunity is crucial for viral clearance. Interestingly, we found that human dendritic cells (DCs) infected with influenza A virus have lower allospecific Th1-cell stimulatory abilities than DCs activated by other stimuli, such as lipopolysaccharide and Newcastle disease virus infection. This weak stimulatory activity correlates with a suboptimal maturation of the DCs following infection with influenza A virus. We next investigated whether the influenza A virus NS1 protein could be responsible for the low levels of DC maturation after influenza virus infection. The NS1 protein is an important virulence factor associated with the suppression of innate immunity via the inhibition of type I interferon (IFN) production in infected cells. Using recombinant influenza and Newcastle disease viruses, with or without the NS1 gene from influenza virus, we found that the induction of a genetic program underlying DC maturation, migration, and T-cell stimulatory activity is specifically suppressed by the expression of the NS1 protein. Among the genes affected by NS1 are those coding for macrophage inflammatory protein 1beta, interleukin-12 p35 (IL-12 p35), IL-23 p19, RANTES, IL-8, IFN-alpha/beta, and CCR7. These results indicate that the influenza A virus NS1 protein is a bifunctional viral immunosuppressor which inhibits innate immunity by preventing type I IFN release and inhibits adaptive immunity by attenuating human DC maturation and the capacity of DCs to induce T-cell responses. Our observations also support the potential use of NS1 mutant influenza viruses as live attenuated influenza virus vaccines.  相似文献   

19.
Heat shock protein 90 (Hsp90) is a molecular chaperone involved in folding and stabilizing multiple intracellular proteins that have roles in cell activation and proliferation. Many Hsp90 client proteins in tumor cells are mutated or overexpressed oncogenic proteins driving cancer cell growth, leading to the acceptance of Hsp90 as a potential therapeutic target for cancer. Because several signal transduction molecules that are dependent on Hsp90 function are also involved in activation of innate and adaptive cells of the immune system, we investigated the mechanism by which inhibiting Hsp90 leads to therapeutic efficacy in rodent models of inflammation and autoimmunity. EC144, a synthetic Hsp90 inhibitor, blocked LPS-induced TLR4 signaling in RAW 264.7 cells by inhibiting activation of ERK1/2, MEK1/2, JNK, and p38 MAPK but not NF-κB. Ex vivo LPS-stimulated CD11b(+) peritoneal exudate cells from EC144-treated mice were blocked from phosphorylating tumor progression locus 2, MEK1/2, and ERK1/2. Consequently, EC144-treated mice were resistant to LPS administration and had suppressed systemic TNF-α release. Inhibiting Hsp90 also blocked in vitro CD4(+) T cell proliferation in mouse and human MLRs. In vivo, semitherapeutic administration of EC144 blocked disease development in rat collagen-induced arthritis by suppressing the inflammatory response. In a mouse collagen-induced arthritis model, EC144 also suppressed disease development, which correlated with a suppressed Ag-specific Ab response and a block in activation of Ag-specific CD4(+) T cells. Our results describe mechanisms by which blocking Hsp90 function may be applicable to treatment of autoimmune diseases involving inflammation and activation of the adaptive immune response.  相似文献   

20.
Transplant rejection involves a coordinated attack of the innate and the adaptive immune systems of the host. To investigate this dynamic process and the contributions of both donor and host cells, we developed an ear skin graft model suitable for intravital imaging. We found that donor dermal dendritic cells (DCs) migrated rapidly from the graft and were replaced by host CD11b(+) mononuclear cells. The infiltrating host cells captured donor antigen, reached the draining lymph node and cross-primed graft-reactive CD8(+) T cells. Furthermore, we defined the mechanisms by which host T cells target graft cells. We found that primed T cells entered the graft from the surrounding tissue and localized selectively at the dermis-epidermis junction. Later, CD8(+) T cells disseminated throughout the graft and many became arrested. These results provide insights into the antigen presentation pathway and the stepwise progression of CD8(+) T cell activity, thereby offering a framework for evaluating how immunotherapy might abrogate the key steps in allograft rejection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号