首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of metronidazole, CO, methanogens, and CO(2) on the fermentation of glucose by the anaerobic fungus Neocallimastix sp. strain L2 were investigated. Both metronidazole and CO caused a shift in the fermentation products from predominantly H(2), acetate, and formate to lactate as the major product and caused a lower glucose consumption rate and cell protein yield. An increased lactate dehydrogenase activity and a decreased hydrogenase activity were observed in cells grown under both culture conditions. In metronidazole-grown cells, the amount of hydrogenase protein was decreased compared with the amount in cells grown in the absence of metronidazole. When Neocallimastix sp. strain L2 was cocultured with the methanogenic bacterium Methanobrevibacter smithii, the fermentation pattern changed in the opposite direction: H(2) and acetate production increased at the expense of the electron sink products lactate, succinate, and ethanol. A concomitant decrease in the enzyme activities leading to these electron sink products was observed, as well as an increase in the glucose consumption rate and cell protein yield, compared with those of pure cultures of the fungus. Low levels of CO(2) in the gas phase resulted in increased H(2) and lactate formation and decreased production of formate, acetate, succinate, and ethanol, a decreased glucose consumption rate and cell protein yield, and a decrease in most of the hydrogenosomal enzyme activities. None of the tested culture conditions resulted in changed quantities of hydrogenosomal proteins. The results indicate that manipulation of the pattern of fermentation in Neocallimastix sp. strain L2 results in changes in enzyme activities but not in the proliferation or disappearance of hydrogenosomes.  相似文献   

2.
The effects of metronidazole, CO, methanogens, and CO2 on the fermentation of glucose by the anaerobic fungus Neocallimastix sp. strain L2 were investigated. Both metronidazole and CO caused a shift in the fermentation products from predominantly H2, acetate, and formate to lactate as the major product and caused a lower glucose consumption rate and cell protein yield. An increased lactate dehydrogenase activity and a decreased hydrogenase activity were observed in cells grown under both culture conditions. In metronidazole-grown cells, the amount of hydrogenase protein was decreased compared with the amount in cells grown in the absence of metronidazole. When Neocallimastix sp. strain L2 was cocultured with the methanogenic bacterium Methanobrevibacter smithii, the fermentation pattern changed in the opposite direction: H2 and acetate production increased at the expense of the electron sink products lactate, succinate, and ethanol. A concomitant decrease in the enzyme activities leading to these electron sink products was observed, as well as an increase in the glucose consumption rate and cell protein yield, compared with those of pure cultures of the fungus. Low levels of CO2 in the gas phase resulted in increased H2 and lactate formation and decreased production of formate, acetate, succinate, and ethanol, a decreased glucose consumption rate and cell protein yield, and a decrease in most of the hydrogenosomal enzyme activities. None of the tested culture conditions resulted in changed quantities of hydrogenosomal proteins. The results indicate that manipulation of the pattern of fermentation in Neocallimastix sp. strain L2 results in changes in enzyme activities but not in the proliferation or disappearance of hydrogenosomes.  相似文献   

3.
The plant secondary metabolites coumarin and sparteine reduced attachment to cellulose, cellulose solubilization, and the proportion of lactate in the fermentation products of the anaerobic fungus Neocallimastix frontalis RE1. Neither compound directly inhibited the endoglucanase or lactate dehydrogenase activities of cell extracts of the fungus.  相似文献   

4.
The effects of bacterial fermentation products on cellulose degradation by the rumen fungus Neocallimastix frontalis have been investigated. H2, formate, lactate and ethanol were strong inhibitors, particularly at high concentrations. Acetate and malate also inhibited, whereas succinate had a variable effect. Butyrate and propionate had no inhibitory effects.  相似文献   

5.
Abstract The disappearance of mannose and the formation of formate, acetate, lactate, ethanol and succinate by Neocallimastix frontalis strain RE1 occurred slowly when mannose was the only substrate present. When an equal quantity of glucose was present, the fermentation of mannose increased. Incubations with 13C-labelled mannose and glucose confirmed that the presence of both substrates resulted in increased product formation from mannose and reduced product formation from glucose. The relative proportions of products formed from the two substrates varied, possibly in part due to differences in the rates of growth of the fungus. The strains of N. frontalis able to utilize mannose may have a competitive advantage in the rumen ecosystem.  相似文献   

6.
Neocallimastix sp. NC71 and Piromyces sp. PC12 isolated from the calf remen grew optimally at 39 degrees C and pH 6.5-6.7, utilized a wide range of mono-, oligo- and polysaccharides and exhibited CMCase, Avicelase, cellobiase, amylase and xylanase activities. The end-products of wheat straw fermentation by both strains were acetate, formate, ethanol and lactate. The number of Neocallimastix sp. zoospores in the rumen of cows in the first 3 h after feeding with hay-silage-concentrate diets varied from 7 x 10(3) to 5.4 x 10(5) ml-1; the number of uniflagellate zoospores varied from 10(4) to 10(5) ml-1. Fungal zoosporgenesis and colonization of plant substrates in the rumen were induced by feed intake and were favoured by increased levels of crude fibre in the diet.  相似文献   

7.
An anaerobic fungus was isolated from llama faeces. Based on its morphological characteristics, polyflagellated zoospores, extensive rhizoid system and the formation of monocentric colonies, the fungus is assigned to the genus Neocallimastix. Neocallimastix sp. L2 is able to grow on several poly-, oligo- and monosaccharides. It differs from other Neocallimastix isolates in its inability to ferment inulin. Neocallimastix sp. L2 requires CO2 for growth. In the presence of 100% CO2 in the gas phase glucose is fermented to H2, CO2, formate, acetate, lactate, succinate and ethanol (33.8, 15.4, 74.3, 69.2, 26.7, 8.2, and 28.7 mmol per 100 mmol glucose, respectively). Reduced sulphur compounds can be used as sulphur source and ammonium or amino acids as nitrogen source. The temperature range for glucose fermentation is from 37 to 42 degrees C with an optimum of around 38 degrees C. The pH range for glucose fermentation is from pH 6 to pH 8 with a broad optimum between pH 6.5 and pH 7.5. The zoospores of Neocallimastix sp. L2 contain ribosomal 'globules' and hydrogenosomes. In the kinetosomes of the zoospores spurs, scoops and skirts are visible. In both the rhizoids and the sporangia 'crystal bodies' and hydrogenosomes are present. Mitochondria were not detected in either of these life stages.  相似文献   

8.
Anaerobic chytridiomycete fungi possess hydrogenosomes, which generate hydrogen and ATP, but also acetate and formate as end-products of a prokaryotic-type mixed-acid fermentation. Notably, the anaerobic chytrids Piromyces and Neocallimastix use pyruvate:formate lyase (PFL) for the catabolism of pyruvate, which is in marked contrast to the hydrogenosomal metabolism of the anaerobic parabasalian flagellates Trichomonas vaginalis and Tritrichomonas foetus, because these organisms decarboxylate pyruvate with the aid of pyruvate:ferredoxin oxidoreductase (PFO). Here, we show that the chytrids Piromyces sp. E2 and Neocallimastix sp. L2 also possess an alcohol dehydrogenase E (ADHE) that makes them unique among hydrogenosome-bearing anaerobes. We demonstrate that Piromyces sp. E2 routes the final steps of its carbohydrate catabolism via PFL and ADHE: in axenic culture under standard conditions and in the presence of 0.3% fructose, 35% of the carbohydrates were degraded in the cytosol to the end-products ethanol, formate, lactate and succinate, whereas 65% were degraded via the hydrogenosomes to acetate and formate. These observations require a refinement of the previously published metabolic schemes. In particular, the importance of the hydrogenase in this type of hydrogenosome has to be revisited.  相似文献   

9.
The presence of methanogens Methanobacterium arboriphilus, Methanobacterium bryantii, or Methanobrevibacter smithii increased the level of cellulose fermentation by 5 to 10% in cultures of several genera of anaerobic fungi. When Neocallimastix sp. strain L2 was grown in coculture with methanogens the rate of cellulose fermentation also increased relative to that for pure cultures of the fungus. Methanogens caused a shift in the fermentation products to more acetate and less lactate, succinate, and ethanol. Formate transfer in cocultures of anaerobic fungi and M. smithii did not result in further stimulation of cellulolysis above the level caused by H2 transfer. When Selenomonas ruminatium was used as a H2-consuming organism in coculture with Neocallimastix sp. strain L2, both the rate and level of cellulolysis increased. The observed influence of the presence of methanogens is interpreted to indicate a shift of electrons from the formation of electron sink carbon products to H2 via reduced pyridine nucleotides, favoring the production of additional acetate and probably ATP. It is not known how S. ruminantium exerts its influence. It might result from a lowered production of electron sink products by the fungus, from consumption of electron sink products or H2 by S. ruminantium, or from competition for free sugars which in pure culture could exert an inhibiting effect on cellulolysis.  相似文献   

10.
The presence of methanogens Methanobacterium arboriphilus, Methanobacterium bryantii, or Methanobrevibacter smithii increased the level of cellulose fermentation by 5 to 10% in cultures of several genera of anaerobic fungi. When Neocallimastix sp. strain L2 was grown in coculture with methanogens the rate of cellulose fermentation also increased relative to that for pure cultures of the fungus. Methanogens caused a shift in the fermentation products to more acetate and less lactate, succinate, and ethanol. Formate transfer in cocultures of anaerobic fungi and M. smithii did not result in further stimulation of cellulolysis above the level caused by H2 transfer. When Selenomonas ruminatium was used as a H2-consuming organism in coculture with Neocallimastix sp. strain L2, both the rate and level of cellulolysis increased. The observed influence of the presence of methanogens is interpreted to indicate a shift of electrons from the formation of electron sink carbon products to H2 via reduced pyridine nucleotides, favoring the production of additional acetate and probably ATP. It is not known how S. ruminantium exerts its influence. It might result from a lowered production of electron sink products by the fungus, from consumption of electron sink products or H2 by S. ruminantium, or from competition for free sugars which in pure culture could exert an inhibiting effect on cellulolysis.  相似文献   

11.
The degradation of cell walls isolated from stems and leaves of perennial ryegrass by the anaerobic fungus Neocallimastix sp. strain CS3b was studied in a defined medium. The combined cellulose and hemicellulose fraction represented 53.1 (wt/wt) and 63.3% (wt/wt) of the dry weight of control grass leaf and stem cell walls, respectively. In both leaf and stem cell walls, glucose was the major neutral monosaccharide, followed by xylose, arabinose, and galactose. After 2 days of fermentation with Neocallimastix sp. strain CS3b, treated cell walls contained smaller amounts of neutral sugars compared with those of undigested cell walls. These results were more evident for glucose, xylose, and arabinose than for galactose. Furthermore, the sugar content of leaf cell walls decreased before a decline in the sugar content of stem cell walls was observed. Data from formate and hydrogen production indicated that the growth of Neocallimastix sp. strain CS3b was completed in 4 days in the culture system used. During this period, the fungus liberated about 95% of the fermentable sugars in untreated material. On a percentage basis, no significant differences were found in final extent of degradation of glucose, xylose, and arabinose. Galactose, however, was degraded to a lesser extent.  相似文献   

12.
A mitochondrial-type ADP/ATP carrier (AAC) has been identified in the hydrogenosomes of the anaerobic chytridiomycete fungus Neocallimastix sp. L2. Biochemical and immunocytochemical studies revealed that this ADP/ATP carrier is an integral component of hydrogenosomal membranes. Expression of the corresponding cDNA in Escherichia coli confers the ability on the bacterial host to incorporate ADP at significantly higher rates than ATP--similar to isolated mitochondria of yeast and animals. Phylogenetic analysis of this AAC gene (hdgaac) confirmed with high statistical support that the hydrogenosomal ADP/ATP carrier of Neocallimastix sp. L2 belongs to the family of veritable mitochondrial-type AACs. Hydrogenosome-bearing anaerobic ciliates possess clearly distinct mitochondrial-type AACs, whereas the potential hydrogenosomal carrier Hmp31 of the anaerobic flagellate Trichomonas vaginalis and its homologue from Trichomonas gallinae do not belong to this family of proteins. Also, phylogenetic analysis of genes encoding mitochondrial-type chaperonin 60 proteins (HSP 60) supports the conclusion that the hydrogenosomes of anaerobic chytrids and anaerobic ciliates had independent origins, although both of them arose from mitochondria.  相似文献   

13.
The effects of Aspergillus oryzae fermentation extract, Amaferm, on the rumen fungus Neocallimastix frontalis EB188 were studied. The secretion of cellulase was increased by 67% and rhyzoid development was increased 3.8-fold in the presence of extract. Strength of fungal response increased in a dose-dependent manner and demonstrated a positive correlation between cell surface area and enzyme secretion. Above certain concentrations of extract, however, the development of the fungus and enzyme secretions remained at control values or slightly diminished. Supernatant fluid appearance of the intracellular enzyme, malate dehydrogenase, paralleled the secretion of cellulase both in the presence and absence of extract. Ether solubilization of extract demonstrated that the active component(s) possessed a moderately polar value between 2.7 and 2.8. Thin layer chromatography separated extract into inert, inhibitory and intensely stimulating fractions. These results support the idea that by accelerating fungal growth and metabolism, Amaferm increases the rate (or extent) of fibre degradation caused by rumen fungi and that this, in turn, may contribute to enhanced animal performance.  相似文献   

14.
In this investigation, the effects of feeding encapsulated cells (rhizomycelia and zoospores) of a fibrolytic isolate from an anaerobic fungus (Neocallimastix sp. CF 17) on nutrient digestion, ruminal fermentation, microbial populations, enzyme profile and growth performance were evaluated in buffaloes. In three in vitro studies, the true digestibility of wheat straw was increased after addition of CF 17 to buffalo rumen fluid (p < 0.05). In Exp. 1, three groups of six buffaloes each (initial BW [body weight] 148 +/- 12.0 kg) were allotted to three dosing regimes: Group 1 received 200 ml of liquid culture of Neocallimastix sp. CF 17 (about 10(6) TFU [thallus-forming units]/ml); Group 2 received an encapsulated culture of the same fungi prepared from 200 ml liquid culture; Group 3: received 200 ml of autoclaved culture (Control). The supplementations were given weekly for four weeks (on days 1,7, 14 and 21). During the dosing period, the average daily gain of Group 2 was higher than in the Control group (444 g/d compared with 264 g/d; p < 0.05). Furthermore, the digestibility of organic matter increased in Group 1 and 2 compared with the Control (64.8, 64.0 and 60.4% respectively; p < 0.05), resulting in an increase in the total digestible nutrient (TDN) percent of ration (p < 0.05). But these effects disappeared post-dosing. There were also an increase in concentration of volatile fatty acids, trichloroacetic acid precipitable N and number of fibrolytic microbes in the rumen during the dosing period (p < 0.05), but these effects declined post-dosing. Results of Exp 2., where the encapsulated culture was applied at intervals of 4 d or 8 d for 120 d, showed that a shorter dosing frequency did not improve growth performance or feed intake. However, independent of the dosing frequency the growth rate of both groups fed the encapsulated culture were about 20% higher than in the Control group (p < 0.05). The present study showed that encapsulated fungi have a high potential to be used as feed additive at the farmers' level and that weekly dosing can increase growth performance of wheat straw based diets.  相似文献   

15.
The effects of phenolic monomers (i.e. rho-coumaric acid, ferulic acid, rho-hydroxybenzaldehyde and vanillin) on the enzymes and fermentation activities of Neocallimastix frontalis B9 grown in ball-milled filter paper and guinea grass media were studied. The enzymes studied were carboxymethylcellulase (CMCase), filterpaperase (FPase), xylanase and beta-glucosidase. At 96 h of incubation, N. frontalis grown in ball-milled filter paper medium produced comparable xylanase and CMCase activities (0.41, 0.5 micromol/min/mg protein) while in guinea grass medium, N. frontalis produced higher xylanase activity than that of CMCase activity (2.35, 0.05 micromol/min/mg protein). The other enzymes activities were low. When N. frontalis was grown in ball-milled filter paper medium, only acetic acid was produced. However, when grown in guinea grass medium, the major end-product was acetate, but propionic, butyric and isovaleric were also produced in lesser amount. Vanillin showed the least inhibitory effects to enzyme activities of N. frontalis B9 grown in both ball-milled filter paper and guinea grass media. For total volatile fatty acid production, all phenolic monomers showed inhibitory effects, but rho-coumaric and ferulic acids were the stronger inhibitors than rho-hydroxybenzaldehyde and vanillin.  相似文献   

16.
Proteolytic activity of two rumen fungal isolates Neocallimastix sp. strain N1 and Piromyces sp. strain P1 was examined. Proteases are active between pH 6.5 and 9.0 with maximum at 7.9 for isolate N1 and between 6.5 and 10.5 with maximum at 8.8 for isolate P1. Proteolytic activity increased as temperature increased until 50°C and a sudden decrease at 60°C was observed in both isolates. EDTA, 1,10-phenanthroline, p -chloromercuribenzoate (PCMB), merthiolate and phenylmethylsulphonyl fluoride (PMSF) were effective proteolytic inhibitors against both isolates.  相似文献   

17.
According to the Davies–Roberts hypothesis, plants primarily respond to oxygen limitation by a burst of lactate production and the resulting pH drop in the cytoplasm activates ethanolic fermentation. To evaluate this system in lettuce ( Lactuca sativa L.), seedlings were subjected to anoxia and in vitro activities of alcohol dehydrogenase (ADH, EC 1.1.1.1), pyruvate decarboxylase (PDC, EC 4.1.1.1) and lactate dehydrogenase (LDH, EC 1.1.1.27) and concentrations of ethanol, acetaldehyde and lactate were determined in roots of the seedlings. The in vitro activities of ADH and PDC in the roots increase in anoxia, whereas no significant increase was measured in LDH activity. At 6 h, the ADH and PDC activities in the roots kept in anoxia were 2.8- and 2.9-fold greater than those in air, respectively. Ethanol and acetaldehyde in the roots accumulated rapidly in anoxia and increased 8- and 4-fold compared with those in air by 6 h, respectively. However, lactate concentration did not increase and an initial burst of lactate production was not found. Thus, ethanol and acetaldehyde production occurred without an increase in lactate synthesis. Treatments with antimycin A and salicylhydroxamic acid, which are respiratory inhibitors, to the lettuce seedlings in the presence of oxygen increased the concentrations of ethanol and acetaldehyde but not of lactate. These results suggest that ethanolic fermentation may be activated without preceding activation of lactate fermentation and may be not regulated by oxygen concentration directly.  相似文献   

18.
The anaerobic fungus Neocallimastix sp. strain L2, isolated from the feces of a llama, was tested for growth on a range of soluble and insoluble carbohydrate substrates. The fungus was able to ferment glucose, cellobiose, fructose, lactose, maltose, sucrose, soluble starch, inulin, filter paper cellulose, and Avicel. No growth was observed on arabinose, galactose, mannose, ribose, xylose, sorbitol, pectin, xylan, glycerol, citrate, soya, and wheat bran. The fermentation products after growth were hydrogen, formate, acetate, ethanol, and lactate. The fermentation pattern was dependent on the carbon source. In general, higher hydrogen production resulted in decreased formation of lactate and ethanol. Recovery of the fermented carbon in products at the end of growth ranged from 50% to 80%. (Hemi)cellulolytic enzyme activities were affected by the carbon source. Highest activities were found in filtrates from cultures grown on cellulose. Growing the fungus on inulin and lactose yielded the lowest cellulolytic activities. Highest specific activities for avicelase, endoglucanase, β-glucosidase, and xylanase were obtained with Avicel as the substrate for growth (0.29, 5.9, 0.57, and 13 IU · mg−1 protein, respectively). Endoglucanase activity banding patterns after SDS-PAGE were very similar for all substrates. Minor differences indicated that enzyme activities may in part be the result of secretion of different sets of isoenzymes. Received: 10 July 1996 / Accepted: 22 July 1996  相似文献   

19.
J Webb  M K Theodorou 《Bio Systems》1988,21(3-4):393-401
The ultrastructure of the zoosporic, rumen fungal anaerobe, Neocallimastix sp. R1, was determined and compared to that of the two known species of Neocallimastix. Zoospores of the new isolate were generally ovoid in shape, but without the waisted appearance of N. frontalis zoospores. They possessed similar organelles to the other two species, but with different localisation. The flagellar rootlet system was broadly similar to N. frontalis and N. patriciarum, however, a previously undescribed, large organelle was found to be associated near the kinetosomal apparatus in some Neocallimastix sp. R1 zoospores. Well developed flagella, complete with basal bodies, were observed in young thalli.  相似文献   

20.
In the anaerobic fungus Neocallimastix sp. L2 fermentation of glucose proceeds via the Embden-Meyerhof-Parnas pathway. Enzyme activities leading to the formation of succinate, lactate, ethanol, and formate are associated with the cytoplasmic fraction. The enzymes malic enzyme, NAD(P)H: ferredoxin oxidoreductase, pyruvate: ferredoxin oxidoreductase, hydrogenase, acetate: succinate CoA transferase and succinate thiokinase leading to the formation of H2, CO2, acetate, and ATP are localized in microbodies. Thus, these organelles are identified as hydrogenosomes. In addition, the microbodies contain the O2-scavenging enzymes NADH- and NADPH oxidase, while NAD(P)H peroxidase, catalase, or superoxide dismutase could not be detected. In cell-free extracts from zoospores of Neocallimastix sp. L2 the specific activities of hydrogenosomal enzymes as well as the quantities of these proteins are 2- to 6-fold higher than in mycelium extracts. These findings suggest that hydrogenosomes perform an important role-especially in zoospores — as H2-evolving, ATP-generating and O2-scavenging organelles.Abbrevations DTT Dithiotreitol - PEP Phosphoenol pyruvate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号