首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The time-temperature profiles of selected starch-water systems subjected to microwave processing were established and the effect of microwave radiation on the physico-chemical properties and structure of potato and tapioca starches was studied. The experimental starch samples were examined by the Brabender rheological method, light microscopy, scanning electron microscopy and X-ray diffractometry. Microwave radiation was evidenced to affect the temperature and moisture contents of the experimental starches, with a strong correlation between the moisture content and the rate of temperature rise. An isothermal transformation was revealed with the samples of moisture contents over 20%, causing a rise in the gelatinisation temperature of the starch and a drop in its solubility in water. The most pronounced change was observed in the case of potato starch: its crystal structure changed from type B to type A. The tapioca starch underwent similar but less marked changes.  相似文献   

2.
Seven different starches from potato, rice, maize, waxymaize, amylomaize-VII, shoti, and tapioca, and potato amylose and potato amylopectin have been reacted with benzaldehyde, catalyzed by ZnCl2, to give new water-soluble starches and water soluble-amylose and soluble-amylopectin. In contrast to the native starches, aqueous solutions of the modified starches could not be precipitated with 2-, 3-, or 4-volumes of ethanol. β-Amylase gave no reaction with the modified starches, in contrast to the native starches, indicating that the modification occurred exclusively at the nonreducing-ends, giving 4,6-benzylidene-d-glucopyranose at the nonreducing-ends. Reactions of α-amylase with native and modified potato and rice starches gave a decrease in the triiodide blue color and an increase in the reducing-value that were similar for the native- and modified-starches, indicating the modified starches had not been significantly altered by the modification. The benzaldehyde-modified starches and benzaldehyde-modified potato amylose and potato amylopectin components, therefore, have a starch structure very much like their native counterparts, in contrast to the Lintner, Small, and the alcohol/acid-hydrolyzed soluble-starches that have undergone acid hydrolysis. The benzaldehyde-modified starches and starch components have significantly higher water solubility than their native counterparts even though the structures of the modified starches had only been slightly altered from the structures of their native counterparts. They all gave crystal-clear solutions that did not retrograde.  相似文献   

3.
The maximum water solubilities of eight native starches from potato, shoti, tapioca, maize, waxy maize, amylomaize-7, wheat, and rice and their acid-methanol and acid-ethanol modified analogues have been determined. Maximum solubilities of 18.7 and 17.4 mg/mL were obtained for waxy maize and tapioca and 12.4 mg/mL for potato and maize starches by autoclaving 220 mg/10 mL at 121 degrees C; 8.7 mg/mL was obtained for shoti starch by stirring in 85:15 (v/v) Me(2)SO-H(2)O at 20 degrees C; and 7.0 and 5.2mg/mL for rice and amylomaize-7 starches by stirring in 1M NaOH at 20 degrees C. The acid-alcohol treated starches were 4-9 times more soluble than their native starches. The compositions of the solubilized starches had, in general, much higher ratios of amylose to amylopectin than the ratios in their native granules. A major exception to this was the acid-methanol treated potato, shoti, and rice starches that had much lower ratios of amylose to amylopectin than the ratios in their granules.  相似文献   

4.
van der Sman  R. G. M.  Williams  J.  Bows  J. R. 《Food biophysics》2021,16(1):119-138

In this paper, we investigate the functionality of potato-based ingredients present in indirectly expanded snacks via careful analysis of their transformation during processing. This research is driven by the desire of industry to develop similar snacks for upcoming markets, where the potato-based ingredients are replaced by other starch sources, which are locally available and at a lower cost. For a range of reformulated snacks, the transformations of starchy ingredients are analysed with a wide variety of experimental methods, like DSC, XRD, and XRT. Our analysis shows that ingredients undergo little transformations during extrusion, which is indeed intended to be mild. During frying native tuber starches (potato and tapioca starch) fully gelatinize, while cereal starches show little gelatinization and swelling. Despite the gelatinization of tuber starches, the particulate character of ingredients is retained. Replacement of pregelatinized potato starch with other starches shows little change in structure. The evolution of the structure of the reformulated snacks are analysed with the CDS formalism. We conclude that gel formers and hard fillers present in the analysed formulations had little functionality regarding texture or structure. For texture, it appears to be required that the matrix composes of a bicontinuous structure of soft fillers, namely gelatinized tuber starches and potato dehydrates. Both these ingredients can be replaced by other tuber-starch sources if the aggregation of the two soft fillers can be prevented. Commercial availability of tuber flours can still be an issue.

  相似文献   

5.
Sorption of terpenoids (essential oil components) from aqueous solutions by six types of native food starches was studied by capillary gas chromatography. Sorption of volatile substances did not depend on amylose content in starch and specific surface of its granules. The degree of sorption was maximum (86%) for corn starch containing 25-28% amylose and decreased in the following order: tapioca starch (77%) > potato starch (74%) > wheat starch (70%) > high-amylose corn starch (58%) > amylopectin corn starch (57%). Amylopectin corn starch differed from other starches in the mechanism of sorption and selectivity to compounds with various functional groups.  相似文献   

6.
Sorption of terpenoids (essential oil components) from aqueous solutions by six types of native food starches was studied by capillary gas chromatography. Sorption of volatile substances did not depend on amylose content in starch and specific surface of its granules. The degree of sorption was maximum (86%) for corn starch containing 25–28% amylose and decreased in the following order: tapioca starch (77%) > potato starch (74%) > wheat starch (70%) > high-amylose corn starch (58%) > amylopectin corn starch (57%). Amylopectin corn starch differed from other starches in the mechanism of sorption and selectivity to compounds with various functional groups.  相似文献   

7.
Microbacterium aurum strain B8.A was isolated from the sludge of a potato starch-processing factory on the basis of its ability to use granular starch as carbon- and energy source. Extracellular enzymes hydrolyzing granular starch were detected in the growth medium of M. aurum B8.A, while the type strain M. aurum DSMZ 8600 produced very little amylase activity, and hence was unable to degrade granular starch. The strain B8.A extracellular enzyme fraction degraded wheat, tapioca and potato starch at 37 °C, well below the gelatinization temperature of these starches. Starch granules of potato were hydrolyzed more slowly than of wheat and tapioca, probably due to structural differences and/or surface area effects. Partial hydrolysis of starch granules by extracellular enzymes of strain B8.A resulted in large holes of irregular sizes in case of wheat and tapioca and many smaller pores of relatively homogeneous size in case of potato. The strain B8.A extracellular amylolytic system produced mainly maltotriose and maltose from both granular and soluble starch substrates; also, larger maltooligosaccharides were formed after growth of strain B8.A in rich medium. Zymogram analysis confirmed that a different set of amylolytic enzymes was present depending on the growth conditions of M. aurum B8.A. Some of these enzymes could be partly purified by binding to starch granules.  相似文献   

8.
A new approach for the determination of the botanical origin of starch is presented based on the formation of starch-triiodide complexes. The starch samples were extracted from wheat (Srpanjka), potato, maize, rye (Barun), barley (Conduct), rice, tapioca and a commercial modified starch. The amylose/amylopectin ratios of starches, among various other properties, differ between starches of different botanical origins. Triiodide ions bind characteristically to the amylose and amylopectin of the starch depending on the starch's origin. The new technique includes direct potentiometric measurements of the response of free triiodide ions in starch-triiodide solutions where the data is analysed by principal component analysis (PCA). PCA gave graphical results for statistical differentiation between starches of different botanical origins.  相似文献   

9.
In order to modify the properties of native starch granules, the formation of gelatinized granular forms (GGS) from normal, waxy, and high amylose maize, as well as potato and tapioca starches was investigated by treating granules with aqueous ethanol at varying starch:water:ethanol ratios and then heating in a rotary evaporator to remove ethanol. The modified starches were characterized using bright field, polarized and electron microscopy. Short/long range molecular order and enthalpic transitions on heating were also studied using infrared spectroscopy, X-ray diffractometry and differential scanning calorimetry respectively. A diffuse birefringence pattern without Maltese cross was observed for most GGS samples. Treatment with aqueous ethanol resulted in starch-specific changes in the surface of granules, most noticeably swelling and disintegration in waxy maize, surface wrinkling in normal maize and tapioca, swelling and opening-up in potato starches, and swelling and bursting in high amylose maize. The ratio of ethanol to water at which original granular order was disrupted also varied with starch type. GGS had less short range molecular order than native granules as inferred by comparing 1047/1022 wave number ratio from infrared spectroscopy. Similarly, A- and B-type diffraction reflections were either reduced or completely lost with evolution of V-type patterns in GGS.  相似文献   

10.
Ways to simulate the making of clear noodles from mung bran starch were investigated by studying the molecular structures of mung bean and tapioca starches. Scanning electron micrographs showed that tapioca starch granules were smaller than those of mung bean starch. X-ray diffraction patterns of mung bean and tapioca starch were A- and CA-patterns, respectively. Iodine affinity studies indicated that mung bean starch contained 37% of apparent amylose and tapioca starch contained 24%. Gel permeation chromatograms showed that mung bean amylopectin had longer peak chain-length of long-branch chains (DP 40) than that of tapioca starch (DP 35) but shorter peak chain-length of short-branch chains (DP 16) than that of tapioca starch (DP 21). P-31 n.m.r. spectroscopy showed that both starches contained phosphate monoesters, but only mung bean starch contained phospholipids. Physical properties, including pasting viscosity, gel strength, and thermal properties (gelatinization), were determined. The results of the molecular structure study and physical properties were used to develop acceptable products using mixtures of cross-linked tapioca and high-amylose maize starches. Tapioca starch was cross-linked by sodium trimetaphosphate (STMP) with various reaction times, pH values, and temperatures. The correlation between those parameters and the pasting viscosity were studied using a visco/amylograph. Starches, cross-linked with 0.1% STMP, pH 11.0, 3.5 h reaction time at 25, 35, and 45°C (reaction temperature), were used for making noodles. High-amylose maize starch (70% amylose) was mixed at varying ratios (9, 13, 17, 28, 37, and 44%) with the cross-linked tapioca starches. Analysis of the noodles included: tensile strength, water absorption, and soluble loss. Noodle sensory properties were evaluated using trained panelists. Noodles made from a mixture of cross-linked tapioca starch and 17% of a high-amylose starch were comparable to the clear noodles made from mung bean starch.  相似文献   

11.
Wheat and potato starches were hydrolysed with 2·2 n hydrochloric acid at 35°C for a period of time up to 15 days. The residues (lintnerised starches) were washed and freeze dried, and studied by differential scanning calorimetry (DSC), wide-angle X-ray scattering (WAXS), small-angle light scattering (SALS), small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS). These techniques showed that profound changes took place in the first day of hydrolysis (during which time the extent of hydrolysis was 7·7% for potato starch and 12·5% for wheat starch). In particular, the gelatinisation enthalpy (ΔH) decreased, the X-ray crystallinity increased and the SANS and SAXS peaks (indicative of a regular spacing between crystalline and amorphous regions) virtually disappeared. The reduction in ΔH is surprising and is discussed at length. It was also shown that freeze drying results in a considerable lowering of the gelatinisation temperature of potato starch (and also of ΔH) while that of wheat starch is only slightly affected.  相似文献   

12.
Production of an amylase-degrading raw starch by Gibberella pulicaris   总被引:1,自引:0,他引:1  
An endophytic fungus, Gibberella pulicaris, produced an amylase which degraded raw starches from cereals and other crops including raw potato, sago, tapioca, corn, wheat and rice starch. In each case, glucose was the main product. Among the raw starches used, raw potato starch gave the highest enzyme activity (85 units mg–1 protein) and raw wheat starch the lowest (49 units mg–1 protein). The highest amylase production (260 units mg–1 protein) was achieved when the concentration of raw potato starch was increased to 60 g l–1. Optimum hydrolysis was at 40°C and pH 5.5.  相似文献   

13.
Eight commercial starches, including common corn, waxy corn, wheat, tapioca, potato, Hylon V, Hylon VII, and mung bean starch, were annealed by a multiple-step process, and their gelatinization characteristics were determined. Annealed starches had higher gelatinization temperatures, reduced gelatinization ranges, and increased gelatinization enthalpies than their native starches. The annealed starches with the highest gelatinization enthalpies were subjected to acid hydrolysis with 15.3% H2SO4, and Naegeli dextrins were prepared after 10 days' hydrolysis. Annealing increased the acid susceptibility of native starches in the first (rapid) and the second (slow) phases with potato starch showing the greatest and high amylose starches showing the least changes. Starches with a larger shift in onset gelatinization temperature also displayed a greater percent hydrolysis. The increase in susceptibility to acid hydrolysis was proposed to result from defective and porous structures that resulted after annealing. Although annealing perfected the crystalline structure, it also produced void space, which led to porous structures and possible starch granule defects. The molecular size distribution and chain length distribution of Naegeli dextrins of annealed and native starches were analyzed. The reorganization of the starch molecule during annealing occurred mainly within the crystalline lamellae. Imperfect double helices in the crystalline lamellae improved after annealing, and the branch linkages at the imperfect double helices became protected by the improved crystalline structure. Therefore, more long chains were observed in the Naegeli dextrins of annealed starches than in native starches.  相似文献   

14.
Using small-angle X-ray scattering, the behaviour of corn and potato starches during gelatinization, swelling, and rétrogradation was investigated. The scattering patterns were analysed on the basis of the fractal concept. The main scattering source from low moisture starches could be interpreted as a ‘surface fractal’ obeying a power law with an exponent of ca —4. When the starch swelled, the surface fractal characteristic was recognised only at very low angles, and on heating it disappeared at ca 80 °C. For gelatinised starches, the whole scattering pattern obeyed the power law with the power around -2.0. This result suggests that the physical arrangement of gelatinised starch molecules is a ‘mass fractal’, i.e. a self-similar structure, in nature. Further, it was found that the scattering of the retrograded starch showed a shoulder like peak superimposed the background scattering representing the mass fractal. The corresponding Bragg spacing was estimated to be 31˜15nm.  相似文献   

15.
Starch modification by iterated syneresis   总被引:3,自引:0,他引:3  
Potato, tapioca, corn and wheat starches were solubilised in water and isolated from the solution by iterated syneresis and the effect of this physical modification on the physicochemical properties and structure was studied. The experimental starches were examined by chemical analysis, the Brabender rheological method, scanning electron or light microscopy, X-ray diffractometry, infrared spectroscopy, and differential scanning calorimetry. Physical modification was evidenced to the change starch–water interaction and the structure of starches. Pasting temperature shifted to lower values and the gelatinisation mechanism changed. All modified starches had a B-type of X-ray diffraction pattern. The melting temperature of starch crystallites was typical of retrograded starch, but the enthalpy change was higher. The correlation between the resistant starch content of modified starches and their crystal structure was discussed together with the thermal properties.  相似文献   

16.
The gelatinization of waxy rice, regular rice, and potato starch suspensions (66% w/w moisture) was investigated by real-time small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) during heating and by fast ramp differential scanning calorimetry (DSC). The high-angle tail of the SAXS patterns suggested the transition from surface to mass fractal structures in the DSC gelatinization range. Amylose plays a major role in determining the dimensions of the self-similar structures that develop during this process as the characteristic power-law scattering behavior extends to lower scattering angles for regular than for waxy starches. Crystallinity of A-type starches is lost in the temperature region roughly corresponding to the DSC gelatinization range. At the end of the gelatinization endotherm, the B-type potato starch showed residual crystallinity (WAXD), while SAXS-patterns exhibited features of remaining lamellar stacks. Results indicate that the melting of amylopectin crystallites during gelatinization is accompanied by the (exothermic) formation of amorphous networks.  相似文献   

17.
Starch biosynthesis: experiments on how starch granules grow in vivo   总被引:1,自引:0,他引:1  
Four varieties of starch granules from potato, wheat, maize, and rice were fractionated into homogeneous 10-μm-sized ranges. The size with the largest amount of granules was reacted with ADP-[14C]Glc, washed, and peeled into 7−9 layers, using a controlled peeling process, involving 90:10 volume proportions of Me2SO-H2O at 10 °C. All of the starches showed biosynthesis of starch throughout the granules. Starch synthase activities were determined for each of the layers. Three of the starches had a relatively large amount of synthase activity in the second layer, with only a small amount in the first layer. Potato starch had the largest amount of activity in the first layer. Starch synthase activity was found to alternate between higher and lower activities throughout all of the varieties of granules, showing that the synthesis was not uniform and also was not exclusively occurring at the surface of the starch granules, which had previously been hypothesized. From these results and our previous studies on the mechanism of starch chain elongation by the addition of d-glucose to the reducing end of a growing chain that is covalently attached to the active site of starch synthase, a hypothesis is proposed for how starch granules grow in vivo.  相似文献   

18.
A combined DSC–SAXS approach was employed to study the effects of amylose and phosphate esters on the assembly structures of amylopectin in B-type polymorphic potato tuber starches. Amylose and phosphate levels in the starches were specifically engineered by antisense suppression of the granule bound starch synthase (GBSS) and the glucan water dikinase (GWD), respectively. Joint analysis of the SAXS and DSC data for the engineered starches revealed that the sizes of amylopectin clusters, thickness of crystalline lamellae and the polymorphous structure type remained unchanged. However, differences were found in the structural organization of amylopectin clusters reflected in localization of amylose within these supramolecular structures. Additionally, data for annealed starches shows that investigated potato starches possess different types of amylopectin defects. The relationship between structure of investigated potato starches and their thermodynamic properties was recognized.  相似文献   

19.
A new insight into the gelatinization process of native starches   总被引:1,自引:0,他引:1  
The gelatinization characteristics of seven different food starches (regular corn, high-amylose corn, waxy corn, wheat, rice, potato, and tapioca) were investigated. Each starch sample type was heated to 35, 40, 45, etc. up to 85 °C at 5 °C intervals, and freeze-dried. The treated samples were analyzed using light microscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and high-performance size exclusion chromatography (HPSEC). When heated, granules underwent structural changes prior to the visible morphological changes that took place during gelatinization. The nature of these structural changes depended on starch type. These results indicate that the starch gelatinization process is more complex than a simple granular order-to-disorder transition.  相似文献   

20.
The molecular structure and physicochemical properties of acid–alcohol treated maize and potato starches (0.36% HCl in methanol at 25 °C for 1–15 days) were investigated. The yields of the modified starches were ranging from 91 to 100%. The average granule size of modified starches decreased slightly. The solubility of starches increased with the increase of treatment time, and the pasting properties confirmed the high solubility of modified starches. The gelatinization temperatures and range of gelatinization increased with the increase of treatment time except To (onset temperature) of maize starch. Molecular structures of modified starches suggested the degradation of starches occurred mostly within the first 5 days of treatment, and degradation rate of potato starch was higher than maize starch both in amylopectin and in amylose. Maize starch was found less susceptible to acid–alcohol degradation than potato starch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号