首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
1. The phosphate groups in the type-specific substance S. 10A from Pneumococcus type 10A (34) were shown to join the hydroxyl group at position 1 or 5 of ribitol and the hydroxyl group at position 5 or 6 of a d-galactofuranosyl residue in the next repeating unit. 2. A partial formula of the type-specific substance was derived.  相似文献   

2.
The type-specific substance from Pneumococcus type 13   总被引:3,自引:2,他引:1  
1. The type-specific substance, S.13, from Pneumococcus type 13 was subjected to hydrolysis with alkali, followed by enzymic dephosphorylation, to yield a pentasaccharide. 2. The pentasaccharide, corresponding to the dephosphorylated repeating unit of S.13, was shown to be O-beta-d-galactopyranosyl-(1-->4)-O-beta- d-glucopyranosyl-(1-->3)-O-beta-d- galactofuranosyl-(1-->4)-O-2-acetamido-2-deoxy-beta-d- glucopyranosyl-(1-->2)-ribitol. 3. The phosphodiester linkages in S.13 join the hydroxyl group at position 1 of ribitol and the hydroxyl group at position 4 of a galactopyranosyl residue in the next repeating unit. 4. Ester groups, presumably O-acetyl, are located on positions 2 or 3 of most glucopyranosyl residues in S.13. 5. A partial structure for S.13 is proposed.  相似文献   

3.
The type-specific substance from Pneumococcus type 11A(43)   总被引:1,自引:0,他引:1  
1. The type-specific substance from Pneumococcus type 11A(43) is a polymer containing d-glucose, d-galactose, glycerol, phosphate and O-acetyl in the approximate molecular proportions 2:2:1:1:2. 2. Removal of the O-acetyl groups with ammonia gave a compound no longer active towards type 11A antiserum. 3. Treatment of S.11A with sodium borohydride, followed by hydrolysis with alkali yielded a phosphorus-free polysaccharide, whose structure was studied by methylation and by degradation with periodate. 4. Examination of S.11A and its de-O-acetyl derivative by periodate oxidation led to the partial structure (XI) for the type-specific substance, which thus has several features in common with S.18.  相似文献   

4.
1. The type-specific substance, S. 33B, from Pneumococcus type 33B contains P, 2.89; hexose, 51; total sugar, 69; galactosamine, 18; and d-glucose, 20%. 2. After degradation with alkali, followed by enzymic dephosphorylation, S. 33B yielded a hexasaccharide. 3. The hexasaccharide was assigned the structure O-beta-d-glucopyranosyl- (1-->5)-O-beta-d-galactofuranosyl- (1-->3)-O-2-acetamido-2-deoxy-beta-d- galactopyranosyl-(1-->4)-O-[alpha-d- galactopyranosyl-(1-->2)]-alpha-d-galactopyranosyl- (1-->2)-ribitol. 4. Phosphate residues in S. 33B are located on the hydroxyl groups at position 5 of ribitol units and on the hydroxyl groups at position 6 of hexopyranose residues.  相似文献   

5.
The type-specific substance from Pneumococcus type 29   总被引:8,自引:4,他引:4       下载免费PDF全文
1. A pentasaccharide, corresponding to the dephosphorylated repeating unit of the specific substance, S.29, from Pneumococcus type 29, was obtained by hydrolysis with alkali followed by enzymic dephosphorylation. 2. The pentasaccharide was shown to be O-2-acetamido-2-deoxy-beta-d-galactopyranosyl-(1-->6)-O-beta-d-galactofuranosyl-(1-->3)-O-beta-d-galactopyranosyl-(1-->6)-O-beta-d-galactofuranosyl-(1-->1)-ribitol. 3. The phosphodiester linkages in S.29 join the hydroxyl group at position 5 of ribitol and the hydroxyl group at position 3 or 4 of a 2-acetamido-2-deoxy-d-galactose residue in the next repeating unit. 4. A partial structure for S.29 was deduced from these experiments.  相似文献   

6.
Mutants of Staphylococcus aureus were isolated which were unable to utilize d-galactose or lactose, but which were able to utilize all other carbohydrates tested. Growth of the mutants on a peptone-containing medium was inhibited by d-galactose. Of those mutants selected for further study, one (tagI2) was missing d-galactose 6-phosphate isomerase, one (tagK3) was missing d-tagatose 6-phosphate kinase, and one (tagA4) was missing d-tagatose 1, 6-diphosphate aldolase. Each of these mutants accumulated the substrate of the missing enzyme intracellularly. Spontaneous revertants of each of the mutants simultaneously regained their ability to utilize d-galactose and lactose, lost their sensitivity to d-galactose, regained the missing enzymatic activities, and no longer accumulated intermediates of the d-tagatose 6-phosphate pathway. These data support our previous contention that the physiologically significant route for the metabolism of d-galactose and the d-galactosyl moiety of lactose in S. aureus is the d-tagatose 6-phosphate pathway. Furthermore, a mutant constitutive for all three enzymes of this pathway was isolated, indicating that the products of the tagI, tagK, and tagA genes are under common genetic control. This conclusion was supported by the demonstration that d-galactose 6-phosphate isomerase, d-tagatose 6-phosphate kinase, and d-tagatose 1, 6-diphosphate aldolase are coordinately induced in the parental strain.  相似文献   

7.
We have determined the complete structure of a glycolipid (designated lipid X) previously found to accumulate in certain Escherichia coli mutants defective in phosphatidylglycerol synthesis (Nishijima, M., and Raetz, C.R.H. (1979) J. Biol. Chem. 254, 7837-7844). Based on fast atom bombardment mass spectrometry and proton nuclear magnetic resonance studies, this substance is an acylated metabolite of glucosamine 1-phosphate. Lipid X of E. coli has a Mr = 711.87 as the free acid (C34H66NO12P) and contains two beta-hydroxymyristate moieties, one attached as an amide at the 2 position and the other as an ester at the 3 position of the sugar. It has free hydroxyl groups at the 4 and 6 positions, and the anomeric configuration is alpha. The structure of lipid X from E. coli closely resembles the reducing end subunit of lipid A, and it might represent a very early precursor in the biosynthesis of lipid A. To our knowledge, fatty acyl derivatives of glucosamine 1-phosphate have not been reported previously.  相似文献   

8.
The sugar phosphate specificity of the active site of 6-phosphofructo-2-kinase and of the inhibitory site of fructose-2,6-bisphosphatase was investigated. The Michaelis constants and relative Vmax values of the sugar phosphates for the 6-phosphofructo-2-kinase were: D-fructose 6-phosphate, Km = 0.035 mM, Vmax = 1; L-sorbose 6-phosphate, Km = 0.175 mM, Vmax = 1.1; D-tagatose 6-phosphate, Km = 15 mM, Vmax = 0.15; and D-psicose 6-phosphate, Km = 7.4 mM, Vmax = 0.42. The enzyme did not catalyze the phosphorylation of 1-O-methyl-D-fructose 6-phosphate, alpha- and beta-methyl-D-fructofuranoside 6-phosphate, 2,5-anhydro-D-mannitol 6-phosphate, D-ribose 5-phosphate, or D-arabinose 5-phosphate. These results indicate that the hydroxyl group at C-3 of the tetrahydrofuran ring must be cis to the beta-anomeric hydroxyl group and that the hydroxyl group at C-4 must be trans. The presence of a hydroxymethyl group at C-2 is required; however, the orientation of the phosphonoxymethyl group at C-5 has little effect on activity. Of all the sugar monophosphates tested, only 2,5-anhydro-D-mannitol 6-phosphate was an effective inhibitor of the kinase with a Ki = 95 microM. The sugar phosphate specificity for the inhibition of the fructose-2,6-bisphosphatase was similar to the substrate specificity for the kinase. The apparent I0.5 values for inhibition were: D-fructose 6-phosphate, 0.01 mM; L-sorbose 6-phosphate, 0.05 mM; D-psicose 6-phosphate, 1 mM; D-tagatose 6-phosphate, greater than 2 mM; 2,5-anhydro-D-mannitol 6-phosphate, 0.5 mM. 1-O-Methyl-D-fructose 6-phosphate, alpha- and beta-methyl-D-fructofuranoside 6-phosphate, and D-arabinose 5-phosphate did not inhibit. Treatment of the enzyme with iodoacetamide decreased sugar phosphate affinity in the kinase reaction but had no effect on the sensitivity of fructose-2,6-bisphosphatase to sugar phosphate inhibition. The results suggest a high degree of homology between two separate sugar phosphate binding sites for the bifunctional enzyme.  相似文献   

9.
Group N streptococci possess enzymes for the metabolism of d-galactose through both the d-galactose 1-phosphate pathway (Leloir pathway) and the d-tagatose 6-phosphate pathway.  相似文献   

10.
Azotobacter vinelandii cell extracts reduced NAD and oxidized d-galactose to galactonate that subsequently was converted to 2-keto-3-deoxy-galactonate. Further metabolism of 2-keto-3-deoxy-galactonate required the presence of ATP and resulted in the formation of pyruvate and glyceraldehyde 3-P. Radiorespirometry indicated a preferential release of CO(2) at the first carbon position of the d-galactose molecule. This suggested that Azotobacter vinelandii metabolizes d-galactose via the DeLey-Doudoroff pathway. The first enzyme of this pathway, d-galactose dehydrogenase, was partially characterized. It has a molecular weight of about 74,000 Da and an isoelectric point of 6.15. The pH optimum of the galactose dehydrogenase was about 9. The apparent K(m)s for NAD and d-galactose were 0.125 and 0.56 mM, respectively. Besides d-galactose, the active fraction of this galactose dehydrogenase also oxidized l-arabinose effectively. The electron acceptor for d-galactose or l-arabinose oxidation, NAD, could not be replaced by NADP. These substrate specificities were different from those reported in Pseudomonas saccharophila, Pseudomonas fluorescens, and Rhizobium meliloti.  相似文献   

11.
The molecular structure and immunological properties of an antigenic glycan from the cell wall of Streptococcus bovis, strain C3, a member of the Group D Streptococci, have been determined by methylation analysis, periodate oxidation, and hapten inhibition methods. The glycan is shown to be a tetraheteroglycan composed of 6-deoxy-l-talose, l-rhamnose, d-galactose, and d-glucuronic acid. The sugar sequence and the types of glycosidic linkages of the glycan are: a main chain of l-rhamnosyl-(1,3)-d-galactosyl- (1,2)-l-rhamnosyl-(1,3)-6-deoxy-l-talosyl-(1,3)- units with d-glucuronosyl residues attached to position 4 of the first rhamnose of each repeating unit of the main chain. The d-glucuronic acid moiety is the primary immunodeterminant group of the glycan. On the basis of hapten inhibition data, it has been concluded that the binding of the antigen to the antibody occurs at the hydroxyl groups at positions 2 and 3 and the carboxyl group at position 6 of the d-glucuronic acid moieties. The antigen has been used to prepare antiserum with anti-glucuronic acid antibodies.  相似文献   

12.
The binding of beta-glycerophosphate (glycerol-2-P) to glycogen phosphorylase b in the crystal has been studied by X-ray diffraction at 3 A resolution. Glycerol-2-P binds to the allosteric effector site in a position close to that of AMP, glucose-6-P, UDP-Glc, and phosphate. In this position, glycerol-2-P is stabilized through interactions of its phosphate moiety with the guanidinium groups of Arg 309 and Arg 310 which undergo conformational changes, and the hydroxyl group of Tyr 75, while the same residues and solvent are involved in van der Waals interactions with the remaining part of the molecule. Kinetic experiments indicate that glycerol-2-P partially competes with both the activator (AMP) and the inhibitor (glucose 6-phosphate) of phosphorylase b. A comparison of the positions of glycerol-2-P, AMP, glucose 6-phosphate, UDP-Glc, and Pi at the allosteric site is presented.  相似文献   

13.
《Cellular signalling》2014,26(6):1258-1268
The class III phosphatidylinositol 3-kinase, VPS34, phosphorylates the D3 hydroxyl of inositol generating phosphatidylinositol 3-phosphate (ptdins(3)p) . Initial studies suggested that ptdins(3)p solely functioned as a component of vesicular and endosomal membranes and that VPS34 did not function in signal transduction. However, VPS34 has recently been shown to be required for insulin-mediated activation of S6 kinase 1 (S6K1). Whether VPS34 activity is directly regulated by insulin is unclear. It is also not known whether VPS34 activity can be spatially restricted in response to extracellular stimuli. Data presented here demonstrate that in response to insulin, VPS34 is activated and translocated to lamellipodia where it produces ptdins(3)p. The localized production of ptdins(3)p is dependent on Src phosphorylation of VPS34. In cells expressing VPS34 with mutations at Y231 or Y310, which are Src-phosphorylation sites, insulin-stimulated VPS34 translocation to the plasma membrane and lamellipodia formation are blocked. mTOR also colocalizes with VPS34 and ptdins(3)p at lamellipodia following insulin-stimulation. In cells expressing the VPS34-Y231F mutant, which blocks lamellipodia formation, mTOR localization at the plasma membrane and insulin-mediated S6K1 activation are reduced. This suggests that mTOR localization at lamellipodia is important for full activation of S6K1 induced by insulin. These data demonstrate that insulin can spatially regulate VPS34 activity through Src-mediated tyrosine phosphorylation and that this membrane localized activity contributes to lamellipodia formation and activation of mTOR/S6K1signaling.  相似文献   

14.
1. The specific compound from Pneumococcus type 34 was isolated from capsular material by ion-exchange chromatography. This separated it from a substance with chemical and serological properties corresponding to those reported for C-substance. 2. The configuration of the two galactofuranosyl linkages in the repeating unit of S.34 was determined and the configurations previously assigned to the other glycosidic linkages were confirmed. 3. The dephosphorylated deacetylated repeating unit is thus O-beta-d-galactofuranosyl-(1-->3)-O-alpha-d-glucopyranosyl-(1-->2)-O-beta-d-galactofuranosyl-(1-->3)-O-alpha-d-galactopyranosyl- (1-->2)-ribitol.  相似文献   

15.
Trisporic acids are end products of the sex-specific pheromones in mucoraceous fungi. We have found three new trisporic acids in cultures of Blakeslea trispora in which (+) and (-) mating types were separated by a membrane with 0.45-microns pores. Two of the trisporic acids were new compounds; the structure of the third [previously described by Miller and Sutter [(1984) J. Biol. Chem. 259, 6420] as methyl trisporate-E with a hydroxyl group at C-2] was revised. Trisporic acid-E(3R), trisporic acid-E(3S), and trisporic acid-D(2S) were in a 1:1:2 ratio, accounted for 9% of the total trisporic acids, and differed by the position and configuration of a hydroxyl group on the ring at C-2 or C-3, the conformation of the ring, the extent of rotation of the side chain relative to the ring, and either a carbonyl or hydroxyl group on the side chain at C-13. These three compounds accounted for only 0.5% of the total trisporic acids in combined mating type cultures. Since the combined cultures did not metabolize trisporic acid-E(3R), its biosynthesis apparently ceases when opposing mating types contact each other physically. We speculate that B. trispora and Phycomyces blakesleeanus utilize different pheromones to regulate an early event (possibly zygotropism) in sexual development.  相似文献   

16.
Glucoamylase from Rhizopus mold and β-glucosidase catalysed synthesis of dopamine-d-glucoside was optimized in terms of pH, buffer, enzyme, dopamine concentrations and incubation period in organic media. Under the optimum conditions, β-glucosidase showed regioselectivity by giving rise to 3-hydroxy-4-O-(β-d-glucopyranosyl)phenylethylamine 5b. Presence of hydroxyl group at 3rd and 4th position of phenyl ring showed only monoglycosylation/arylation products with d-glucose 2, d-galactose 3 and d-mannose 4 for both the enzymes. Synthesized glycosides also exhibited ACE inhibition and antioxidant activities.  相似文献   

17.
Previous reports have shown that coaggregation between Porphyromonas gingivalis and Fusobacterium nucleatum, two important periodontopathogens, is mediated by a galactoside on the surface of P. gingivalis and a lectin on F. nucleatum. In the present study, purified capsular polysaccharide (CPS) and lipopolysaccharide (LPS) of P. gingivalis PK 1924 (serotype K5) were found to be able to bind to F. nucleatum cells and to inhibit binding of F. nucleatum to P. gingivalis serotype K5. Sugar binding studies showed that the requirements for binding of P. gingivalis serotype K5 CPS and LPS to the F. nucleatum lectin are: the presence of a metal divalent ion, an axial free hydroxyl group at position 4 and free equatorial hydroxyl groups at position 3 and 6 of d-galactose. These data suggest that P. gingivalis serotype K5- CPS and LPS act as receptors mediating coaggregation between P. gingivalis and fusobacteria.  相似文献   

18.
Treatment of the Sabin strain of type 1 poliovirus with trypsin produced two stable fragments of capsid protein VP1 which remained associated with the virions. Trypsinized virus was fully infectious and was neutralized by type-specific antisera. The susceptible site in the Sabin 1 strain was between the lysine at position 99 and the asparagine at position 100. A similar tryptic cleavage occurred in the Leon and Sabin strains of type 3 poliovirus, probably at the arginine at position 100, but not in the type 1 Mahoney strain, which lacks a basic residue at either position 99 or position 100. Tryptic treatment of heat-treated virus and 14S assembly intermediates produced unique stable fragments which were different from those produced in virions. The implications of our results for future characterization of the surface structures of these particles and structural rearrangements in the poliovirus capsid are discussed.  相似文献   

19.
Structural analysis of MRP1-NBD1 revealed that the Walker A S685 forms hydrogen-bond with the Walker B D792 and interacts with magnesium and the β-phosphate of the bound ATP. We have found that substitution of the D792 with leucine resulted in misfolding of the protein. In this report we tested whether substitution of the S685 with residues that prevent formation of this hydrogen-bond would also cause misfolding. Indeed, substitution of the S685 with residues potentially preventing formation of this hydrogen-bond resulted in misfolding of the protein. In addition, some substitutions that might form hydrogen-bond with D792 also yielded immature protein. All these mutants are temperature-sensitive variants. However, these complex-glycosylated mature mutants prepared from the cells grown at 27 °C still significantly affect ATP binding and ATP-dependent solute transport. In contrast, substitution of the S685 with threonine yielded complex-glycosylated mature protein that is more active than the wild-type MRP1, indicating that the interaction between the hydroxyl group of 685 residue and the carboxyl group of D792 plays a crucial role for the protein folding and the interactions of the hydroxyl group at 685 with magnesium and the β-phosphate of the bound ATP play an important role for ATP-binding and ATP-dependent solute transport.  相似文献   

20.
Yang R  Scavetta R  Chang XB 《Biochemistry》2008,47(32):8456-8464
Structural analysis of human MRP1-NBD1 revealed that the Walker A S685 forms a hydrogen bond with the Walker B D792 and interacts with the Mg (2+) cofactor and the beta-phosphate of the bound Mg.ATP. We have found that substitution of the S685 with an amino acid that potentially prevents the formation of the hydrogen bond resulted in misfolding of the protein and significantly affect the ATP-dependent leukotriene C4 (LTC4) transport. In this report we tested whether the corresponding substitution in NBD2 would also result in misfolding of the protein. In contrast to the NBD1 mutations, none of the mutations in NBD2, including S1334A, S1334C, S1334D, S1334H, S1334N, and S1334T, caused misfolding of the protein. However, elimination of the hydroxyl group at S1334 in mutations including S1334A, S1334C, S1334D, S1334H, and S1334N drastically reduced the ATP binding and the ATP-enhanced ADP trapping at the mutated NBD2. Due to this low efficient ATP binding at the mutated NBD2, the inhibitory effect of ATP on the LTC4 binding is significantly decreased. Furthermore, ATP bound to the mutated NBD2 cannot be efficiently hydrolyzed, leading to almost completely abolishing the ATP-dependent LTC4 transport. In contrast, S1334T mutation, which retained the hydroxyl group at this position, exerts higher LTC4 transport activity than the wild-type MRP1, indicating that the hydroxyl group at this position plays a crucial role for ATP binding/hydrolysis and ATP-dependent solute transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号