首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential of photoaptamers as proteomic probes was investigated. Photoaptamers are defined as aptamers that bear photocross-linking functionality, in this report, 5-bromo-2'-deoxyuridine. A key question regarding the use of photoaptamer probes is the specificity of the cross-linking reaction. The specificity of three photoaptamers was explored by comparing their reactions with target proteins and non-target proteins. The range of target/non-target specificity varies from 100- to >10(6)-fold with most values >10(4)-fold. The contributions of the initial binding step and the photocross-linking step were evaluated for each reaction. Photocross-linking never degraded specificity and significantly increased aptamer specificity in some cases. The application of photoaptamer technology to proteomics was investigated in microarray format. Immobilized anti-human immunodeficiency virus-gp120 aptamer was able to detect subnanomolar concentrations of target protein in 5% human serum. The levels of sensitivity and specificity displayed by photoaptamers, combined with other advantageous properties of aptamers, should facilitate development of protein chip technology.  相似文献   

2.
Using DNA aptamers selectively recognizing anion-binding exosites 1 and 2 of thrombin as a model, it has been demonstrated that their conjugation by a poly-(dT)-linker (ranging from 5 to 65 nucleotides (nt) in length) to produce aptamer heterodimeric constructs results into affinity enhancement. At the linker lengths ranged from 35 to 55 nt the apparent dissociation constants (K Dapp) measured using the optical biosensor Biacore-3000 for complexes of thrombin with the heterodimeric constructs reached minimum values (K Dapp) = 0.2–0.4 nM), which were approximately 30-fold less than for the complexes with the initial aptamers. A photoaptamer heterodimeric construct was designed connecting photoaptamer and aptamer sequences with the poly-(dT)-linker of 35 nt long. The photoaptamer used could form photo-induced cross-links with the exosite 2 of thrombin and the aptamer could bind to the exosite 1. The (K Dapp value for the photoaptamer construct was approximately 40-fold less than that for the primary photoaptamer (5.3 and 190 nM, respectively). Upon exposure of the equimolar mixtures of thrombin with the photoaptamer construct to the UV radiation at 308 nm the equal yield of the crosslinked complexes was observed at concentrations, which were lower by two orders of magnitude than in the case of the primary photoaptamer. It was found that concurrently with crosslinking to thrombin a photo-induced inactivation of the photoaptamer occurs presumably due to formation of the intermolecular crosslinking.  相似文献   

3.
The effect of ligand binding on the environment near the SH2 and SH1 thiols in myosin subfragment 1 has been investigated by photocross-linking after specific labeling of these thiols individually with 4-(N-maleimido)benzophenone (MBP). On photolysis, cross-linking occurred from SH2-MBP to the middle 50-kDa segment, and subsequent immunopeptide mapping revealed that the cross-link was made to a peptide stretch 31-32 kDa from the N terminus in the absence of MgADP, whereas in its presence the cross-link occurred at about 60-61 kDa from the N terminus. Photolysis of SH1-MBP in the absence of MgADP resulted in a major cross-link to the 27-kDa N-terminal segment and minor cross-links to the 50-kDa middle segment. In the presence of MgADP, no new cross-link occurred but the amount of cross-linking to the 50-kDa segment increased at the expense of the other. Immunopeptide mapping indicated that the regions in the 27- and 50-kDa peptides that were cross-linked to SH1-MBP are at about 14-16 and 55-56 kDa from the N terminus respectively. These results indicate that when nucleotide binds to S1, SH2 is displaced relative to the 50-kDa segment, whereas the local environment around SH1 does not change significantly because photolysis in the presence of MgADP resulted in a change at the site of cross-linking for SH2-MBP but caused only a redistribution of the relative amounts of the cross-links formed from SH1-MBP.  相似文献   

4.
We have carried out an extensive protein-protein cross-linking study on the 50S ribosomal subunit of Escherichia coli using four different cross-linking reagents of varying length and specificity. For the unambiguous identification of the members of the cross-linked protein complexes, immunoblotting techniques using antisera specific for each individual ribosomal protein have been used, and for each cross-link, the cross-linking yield has been determined. With the smallest cross-linking reagent diepoxybutane (4 A), four cross-links have been identified, namely, L3-L19, L10-L11, L13-L21, and L14-L19. With the sulfhydryl-specific cross-linking reagent o-phenylenedimaleimide (5.2 A) and p-phenylenedimaleimide (12 A), the cross-links L2-L9, L3-L13, L3-L19, L9-L28, L13-L20, L14-L19, L16-L27, L17-L32, and L20-L21 were formed; in addition, the cross-link L23-L29 was exclusively found with the shorter o-phenylenedimaleimide. The cross-links obtained with dithiobis(succinimidyl propionate) (12 A) were L1-L33, L2-L9, L2-L9-L28, L3-L19, L9-L28, L13-L21, L14-L19, L16-L27, L17-L32, L19-L25, L20-L21, and L23-L34. The good agreement of the cross-links obtained with the different cross-linking reagents used in this study demonstrates the reliability of our cross-linking approach. Incorporation of our cross-linking results into the three-dimensional model of the 50S ribosomal subunit derived from immunoelectron microscopy yields the locations for 29 of the 33 proteins within the larger ribosomal subunit.  相似文献   

5.
The well-characterized RNA binding site of the bacteriophage R17 coat protein has been used to investigate the cross-linking of protein to 5-bromouridine (BrU)-substituted RNA using medium-wavelength UV light. We have demonstrated a specific RNA-protein cross-link and identified the site on the RNA of protein attachment. Formation of the covalent complex is dependent upon the presence of BrU at position -5 of the RNA and specific binding of the RNA by coat protein. The amount of cross-linking increases with time and depends on the light source and conditions used. Irradiations using a broad-spectrum UV transilluminator (peak at 312 nm) or monochromatic XeCl excimer laser (308 nm) gave levels of cross-linking exceeding 20 and 50%, respectively. The quantum yield of photo-cross-linking, determined with 308-nm excitation, was 0.003. While little strand breakage or debromination of the RNA occurred, significant protein photodamage was observed.  相似文献   

6.
Sites of arrestin action during the quench phenomenon in retinal rods   总被引:3,自引:0,他引:3  
The target proteins for arrestin (48 kDa protein) action during the quench of cGMP phosphodiesterase (PDE) activation in retinal rod disk membranes were identified by the use of a cross-linking reagent. A heterobifunctional, cleavable, photo-activatable cross-linker (sulfo-SADP) was coupled to purified arrestin. Under precise weak visible light bleach and nucleotide conditions of quench, the cross-linker was UV flash-activated at a time when quench was well established. The target proteins covalently linked to arrestin by cross-linker activation were identified by immunoblotting. In the presence of ATP arrestin cross-linked to both PDE and rhodopsin during the quench phenomenon. Removal of ATP from the reaction mixture essentially abolished the cross-link with PDE, just as ATP omission abolishes quench, but significantly increased the cross-link to rhodopsin. The absence of a cross-link to the plentiful beta-subunit of transductin, as well as the results of competition studies employing arrestin without attached cross-linker, suggest that the observed cross-links are specific and reflect true binding interactions of arrestin during quench. The data are consistent with a model of quench in which photolyzed rhodopsin (R*) catalyzes the formation of an activated form of arrestin, which dissociates from R* in the presence of ATP, and binds to PDEs, thereby deactivating them.  相似文献   

7.
UvrA, UvrB, and UvrC initiate nucleotide excision repair by incising a damaged DNA strand on each side of the damaged nucleotide. This incision reaction is substoichiometric with regard to UvrB and UvrC, suggesting that both proteins remain bound following incision and do not "turn over." The addition of only helicase II to such reaction mixtures turns over UvrC; UvrB turnover requires the addition of helicase II, DNA polymerase I, and deoxynucleoside triphosphates. Column chromatography and psoralen photocross-linking experiments show that following incision, the damaged oligomer remains associated with the undamaged strand, UvrB, and UvrC in a post-incision complex. Helicase II releases the damaged oligomer and UvrC from this complex, making repair synthesis possible; DNase I footprinting experiments show that UvrB remains bound to the resulting gapped DNA until displaced by DNA polymerase I. The specific binding of UvrB to a psoralen adduct in DNA inhibits psoralen-mediated DNA-DNA cross-linking, yet promotes the formation of UrvB-psoralen-DNA cross-links. The discovery of psoralen-UvrB photocross-linking offers the potential of active-site labeling.  相似文献   

8.
PI-SceI is an intein-encoded protein that belongs to the LAGLIDADG family of homing endonucleases. According to the crystal structure and mutational studies, this endonuclease consists of two domains, one responsible for protein splicing, the other for DNA cleavage, and both presumably for DNA binding. To define the DNA binding site of PI-SceI, photocross-linking was used to identify amino acid residues in contact with DNA. Sixty-three double-stranded oligodeoxynucleotides comprising the minimal recognition sequence and containing single 5-iodopyrimidine substitutions in almost all positions of the recognition sequence were synthesized and irradiated in the presence of PI-SceI with a helium/cadmium laser (325 nm). The best cross-linking yield (approximately 30%) was obtained with an oligodeoxynucleotide with a 5-iododeoxyuridine at position +9 in the bottom strand. The subsequent analysis showed that cross-linking had occurred with amino acid His-333, 6 amino acids after the second LAGLIDADG motif. With the H333A variant of PI-SceI or in the presence of excess unmodified oligodeoxynucleotide, no cross-linking was observed, indicating the specificity of the cross-linking reaction. Chemical modification of His residues in PI-SceI by diethylpyrocarbonate leads to a substantial reduction in the binding and cleavage activity of PI-SceI. This inactivation can be suppressed by substrate binding. This result further supports the finding that at least one His residue is in close contact to the DNA. Based on these and published results, conclusions are drawn regarding the DNA binding site of PI-SceI.  相似文献   

9.
Structural analysis of the 16 S rRNA in the 30 S subunit and 70 S ribosome in the presence of ribosome-specific antibiotics was performed to determine whether they produced rRNA structural changes that might provide further insight to their action. An UV cross-linking procedure that determines the pattern and frequency of intramolecular 16 S RNA cross-links was used to detect differences reflecting structural changes. Tetracycline and spectinomycin have specific effects detected by this assay. The presence of tetracycline inhibits the cross-link C967xC1400 completely, increases the frequency of cross-link C1402x1501 twofold, and decreases the cross-link G894xU244 by one-half without affecting other cross-links. Spectinomycin reduces the frequency of the cross-link C934xU1345 by 60% without affecting cross-linking at other sites. The structural changes occur at concentrations at which the antibiotics exert their inhibitory effects. For spectinomycin, the apparent binding site and the affected cross-linking site are distant in the secondary structure but are close in tertiary structure in several recent models, indicating a localized effect. For tetracycline, the apparent binding sites are significantly separated in both the secondary and the three-dimensional structures, suggesting a more regional effect.  相似文献   

10.
A facile method for the formation of zero-length covalent cross-links between protein molecules in the lyophilized state without the use of chemical reagents has been developed. The cross-linking process is performed by simply sealing lyophilized protein under vacuum in a glass vessel and heating at 85 degrees C for 24 h. Under these conditions, approximately one-third of the total protein present becomes cross-linked, and dimer is the major product. Chemical and mass spectroscopic evidence obtained shows that zero-length cross-links are formed as a result of the condensation of interacting ammonium and carboxylate groups to form amide bonds between adjacent molecules. For the protein examined in the most detail, RNase A, the cross-linked dimer has only one amide cross-link and retains the enzymatic activity of the monomer. The in vacuo cross-linking procedure appears to be general in its applicability because five different proteins tested gave substantial cross-linking, and co-lyophilization of lysozyme and RNase A also gave a heterogeneous covalently cross-linked dimer.  相似文献   

11.
12.
Self-assembly of complex structures is commonplace in biology but often poorly understood. In the case of the actin cytoskeleton, a great deal is known about the components that include higher order structures, such as lamellar meshes, filopodial bundles, and stress fibers. Each of these cytoskeletal structures contains actin filaments and cross-linking proteins, but the role of cross-linking proteins in the initial steps of structure formation has not been clearly elucidated. We employ an optical trapping assay to investigate the behaviors of two actin cross-linking proteins, fascin and α-actinin, during the first steps of structure assembly. Here, we show that these proteins have distinct binding characteristics that cause them to recognize and cross-link filaments that are arranged with specific geometries. α-Actinin is a promiscuous cross-linker, linking filaments over all angles. It retains this flexibility after cross-links are formed, maintaining a connection even when the link is rotated. Conversely, fascin is extremely selective, only cross-linking filaments in a parallel orientation. Surprisingly, bundles formed by either protein are extremely stable, persisting for over 0.5 h in a continuous wash. However, using fluorescence recovery after photobleaching and fluorescence decay experiments, we find that the stable fascin population can be rapidly competed away by free fascin. We present a simple avidity model for this cross-link dissociation behavior. Together, these results place constraints on how cytoskeletal structures assemble, organize, and disassemble in vivo.  相似文献   

13.
Chemical cross-linking combined with mass spectrometry is a rapidly developing technique for structural proteomics. Cross-linked proteins are usually digested with trypsin to generate cross-linked peptides, which are then analyzed by mass spectrometry. The most informative cross-links, the interpeptide cross-links, are often large in size, because they consist of two peptides that are connected by a cross-linker. In addition, trypsin targets the same residues as amino-reactive cross-linkers, and cleavage will not occur at these cross-linker-modified residues. This produces high molecular weight cross-linked peptides, which complicates their mass spectrometric analysis and identification. In this paper, we examine a nonspecific protease, proteinase K, as an alternative to trypsin for cross-linking studies. Initial tests on a model peptide that was digested by proteinase K resulted in a "family" of related cross-linked peptides, all of which contained the same cross-linking sites, thus providing additional verification of the cross-linking results, as was previously noted for other post-translational modification studies. The procedure was next applied to the native (PrP(C)) and oligomeric form of prion protein (PrPβ). Using proteinase K, the affinity-purifiable CID-cleavable and isotopically coded cross-linker cyanurbiotindipropionylsuccinimide and MALDI-MS cross-links were found for all of the possible cross-linking sites. After digestion with proteinase K, we obtained a mass distribution of the cross-linked peptides that is very suitable for MALDI-MS analysis. Using this new method, we were able to detect over 60 interpeptide cross-links in the native PrP(C) and PrPβ prion protein. The set of cross-links for the native form was used as distance constraints in developing a model of the native prion protein structure, which includes the 90-124-amino acid N-terminal portion of the protein. Several cross-links were unique to each form of the prion protein, including a Lys(185)-Lys(220) cross-link, which is unique to the PrPβ and thus may be indicative of the conformational change involved in the formation of prion protein oligomers.  相似文献   

14.
In the presence of a suitable oxidizing agent, the Ni(II) complex of glycyl-glycyl-histidine (GGH) mediates efficient and specific oxidative protein cross-linking. The fusion of GGH to the N terminus of a protein allows for the cross-linking reagent to be delivered in a site-specific fashion, making this system extremely useful for analyzing protein-protein contacts in complicated mixtures of biomolecules. Tyrosine residues have been postulated to be the primary amino acid target of this reaction, and using the dimeric serine protease inhibitor ecotin, we previously demonstrated that engineering a tyrosine at the protein interface of a dimer dramatically increased cross-linking efficiency. Cross-linking increased four-fold for GGH-ecotin D137Y in comparison to wild-type GGH-ecotin, presumably through bityrosine formation at the dimer interface. Here we report the first complete structural analysis of the cross-linked GGH-ecotin D137Y dimer. Using a combination of mass spectrometric and chemical derivatization methods, a sole novel cross-link between the N-terminal glycine residues and the engineered tyrosine at position 137 has been characterized. The dimer cross-link is localized to a single site without other protein modifications, but different reaction pathways produce structurally related products. We propose a mechanism that involves covalent bond formation between the protein backbone and a dopaquinone moiety derived from a specific tyrosine residue. This finding establishes that it is not necessary to have two tyrosine residues within close proximity in the protein interface to obtain high protein cross-linking yields, and suggests that the cross-linking reagent may be of more general utility than previously thought.  相似文献   

15.
16.
The pathway of vesicular stomatitis virus N protein from synthesis to assembly into capsids was studied by use of detergent extraction of infected HeLa cells together with protein cross-linking. One half of the newly synthesized N protein was extracted with the soluble cell proteins and, when cross-linked, never formed the N-N dimer characteristic of mature nucleocapsids. In contrast, the cytoskeleton-bound N protein first showed a diffuse spectrum of protein-protein cross-links but, after a lag of 40 min, assumed the cross-link pattern of N protein in nucleocapsids. The efficiency of forming N-N cross-linked dimers is the same for N protein on the skeleton as in nucleocapsids derived from mature virus, suggesting very similar configurations. However, the N protein bound on the skeletal framework formed several additional cross-links that were not found in mature virus and were apparently formed to cellular proteins estimated to be ca. approximately 46,000 and 60,000 in molecular weight.  相似文献   

17.
Highly purified mammalian spliceosomal complex B contains more than 30 specific protein components. We have carried out UV cross-linking studies to determine which of these components directly contacts pre-mRNA in purified prespliceosomal and spliceosomal complexes. We show that heterogeneous nuclear ribonucleoproteins cross-link in the nonspecific complex H but not in the B complex. U2AF65, which binds to the 3' splice site, is the only splicing factor that cross-links in purified prespliceosomal complex E. U2AF65 and the U1 small nuclear ribonucleoprotein particle (snRNP) are subsequently destabilized, and a set of six spliceosome-associated proteins (SAPs) cross-links to the pre-mRNA in the prespliceosomal complex A. These proteins require the 3' splice site for binding and cross-link to an RNA containing only the branch site and 3' splice site. Significantly, all six of these SAPs are specifically associated with U2 snRNP. These proteins and a U5 snRNP component cross-link in the fully assembled B complex. Previous work detected an ATP-dependent, U2 snRNP-associated factor that protects a 30- to 40-nucleotide region surrounding the branchpoint sequence from RNase digestion. Our data indicate that the six U2 snRNP-associated SAPs correspond to this branchpoint protection factor. Four of the snRNP proteins that are in intimate contact with the pre-mRNA are conserved between Saccharomyces cerevisiae and humans, consistent with the possibility that these factors play key roles in mediating snRNA-pre-mRNA interactions during the splicing reaction.  相似文献   

18.
Single-pulse (approximately 8 ns) ultraviolet laser excitation of protein-nucleic acid complexes can result in efficient and rapid covalent cross-linking of proteins to nucleic acids. The reaction produces no nucleic acid-nucleic acid or protein-protein cross-links, and no nucleic acid degradation. The efficiency of cross-linking is dependent on the wavelength of the exciting radiation, on the nucleotide composition of the nucleic acid, and on the total photon flux. The yield of cross-links/laser pulse is largest between 245 and 280 nm; cross-links are obtained with far UV photons (200-240 nm) as well, but in this range appreciable protein degradation is also observed. The method has been calibrated using the phage T4-coded gene 32 (single-stranded DNA-binding) protein interaction with oligonucleotides, for which binding constants have been measured previously by standard physical chemical methods (Kowalczykowski, S. C., Lonberg, N., Newport, J. W., and von Hippel, P. H. (1981) J. Mol. Biol. 145, 75-104). Photoactivation occurs primarily through the nucleotide residues of DNA and RNA at excitation wavelengths greater than 245 nm, with reaction through thymidine being greatly favored. The nucleotide residues may be ranked in order of decreasing photoreactivity as: dT much greater than dC greater than rU greater than rC, dA, dG. Cross-linking appears to be a single-photon process and occurs through single nucleotide (dT) residues; pyrimidine dimer formation is not involved. Preliminary studies of the individual proteins of the five-protein T4 DNA replication complex show that gene 43 protein (polymerase), gene 32 protein, and gene 44 and 45 (polymerase accessory) proteins all make contact with DNA, and can be cross-linked to it, whereas gene 62 (polymerase accessory) protein cannot. A survey of other nucleic acid-binding proteins has shown that E. coli RNA polymerase, DNA polymerase I, and rho protein can all be cross-linked to various nucleic acids by the laser technique. The potential uses of this procedure in probing protein-nucleic acid interactions are discussed.  相似文献   

19.
20.
Chemical cross-linking of proteins in combination with mass spectrometric analysis of the reaction products has gained renewed interest as a method of obtaining distance constraints within a protein and determining a low-resolution three-dimensional structure. We present a method for identifying spatially close sulfhydryl groups in proteins employing chemical cross-linking with the fluorogenic, homobifunctional cross-linker dibromobimane, which cross-links thiol pairs within approximately 3-6A. The applicability of our strategy was demonstrated by cross-linking the sulfhydryl groups of Cys-18 and Cys-78 in gamma-crystallin F, which are within a distance of 3.57A according to the X-ray structure. Intramolecularly cross-linked gamma-crystallin was first separated from reaction side products by reversed-phase chromatography on a C-4 column. Subsequently, the fraction containing the reacted protein was enzymatically digested with trypsin, and the resulting peptide mixture was separated by a second reversed-phase chromatographic step on a C-18 column, in which the cross-linked peptides were tracked by their fluorescence. The cross-linking product between Cys-18 and Cys-78 in gamma-crystallin F was identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. This strategy presents a rapid method for mapping sulfhydryl groups separated by a distance of approximately 3-6A within a protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号