首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
2.
Interleukin-1 receptor-associated kinase (IRAK) was first described as a signal transducer for the proinflammatory cytokine interleukin-1 (IL-1) and was later implicated in signal transduction of other members of the Toll-like receptor (TLR)/IL-1 receptor (IL-1R) family. In the meantime, four different IRAK-like molecules have been identified: two active kinases, IRAK-1 and IRAK-4, and two inactive kinases, IRAK-2 and IRAK-M. All IRAKs mediate activation of nuclear factor-kappaB (NF-kappaB) and mitogen-activated protein kinase (MAPK) pathways. Although earlier observations suggested that IRAKs have redundant functions, this hypothesis is now challenged by knockout studies. Furthermore, recent data imply a role for IRAK-1 in tumor necrosis factor receptor (TNFR) superfamily-induced signaling pathways as well. The scope of this review is to highlight the specific role of different IRAKs and to discuss several mechanisms that contribute to their activation and regulation.  相似文献   

3.
Toll-like receptor (TLR) signaling is known to involve interleukin-1 receptor-associated kinases (IRAKs), however the particular role of IRAK-2 has remained unclear. Further, although IRAK-1 was originally thought to be central for the TLR-NFkappaB signaling axis, recent data have shown that it is dispensable for NFkappaB activation for some TLRs and demonstrated an alternative role for it in interferon regulatory factor activation. Here we show that IRAK-2 is critical for the TLR-mediated NFkappaB activation pathway. The poxviral TLR antagonist A52 inhibited NFkappaB activation by TLR2, -3, -4, -5, -7, and -9 ligands, via its interaction with IRAK-2, while not affecting interferon regulatory factor activation. Knockdown of IRAK-2 expression by small interfering RNA suppressed TLR3, TLR4, and TLR8 signaling to NFkappaB in human cell lines, and importantly, TLR4-mediated chemokine production in primary human cells. IRAK-2 usage by different TLRs was distinct, because it acted downstream of the TLR adaptors MyD88 and Mal but upstream of TRIF. Expression of IRAK-2, but not IRAK-1, led to TRAF6 ubiquitination, an event critical for NFkappaB activation. Further, IRAK-2 loss-of-function mutants, which could not activate NFkappaB, were incapable of promoting TRAF6 ubiquitination. Thus we propose that IRAK-2 plays a more central role than IRAK-1 in TLR signaling to NFkappaB.  相似文献   

4.
IRAK-M is a negative regulator of Toll-like receptor signaling   总被引:62,自引:0,他引:62  
Toll-like receptors (TLRs) detect microorganisms and protect multicellular organisms from infection. TLRs transduce their signals through MyD88 and the serine/threonine kinase IRAK. The IRAK family consists of two active kinases, IRAK and IRAK-4, and two inactive kinases, IRAK-2 and IRAK-M. IRAK-M expression is restricted to monocytes/macrophages, whereas other IRAKs are ubiquitous. We show here that IRAK-M is induced upon TLR stimulation and negatively regulates TLR signaling. IRAK-M prevented dissociation of IRAK and IRAK-4 from MyD88 and formation of IRAK-TRAF6 complexes. IRAK-M(-/-) cells exhibited increased cytokine production upon TLR/IL-1 stimulation and bacterial challenge, and IRAK-M(-/-) mice showed increased inflammatory responses to bacterial infection. Endotoxin tolerance, a protection mechanism against endotoxin shock, was significantly reduced in IRAK-M(-/-) cells. Thus, IRAK-M regulates TLR signaling and innate immune homeostasis.  相似文献   

5.
6.
IRAK-4 plays an essential role in Toll-like receptor (TLR)/IL-1 receptor signaling. However, its signaling and regulation mechanisms have remained elusive. We have reported previously that stimulation of TLR2, TLR4 or TLR9, but not TLR3, leads to downregulation of IRAK-4 protein. Here, we show that expression of MyD88 leads to downregulation of endogenous as well as exogenously expressed IRAK-4 protein in HEK293 cells. Expression of TRIF did not cause IRAK-4 downregulation although it induced NF-kappaB activation. Expression of either a deletion mutant of MyD88 lacking its death domain or MyD88s, neither of which induced NF-kappaB activation, did not lead to IRAK-4 downregulation. MyD88-induced downregulation was observed in an IRAK-4 mutant lacking the kinase domain, but not in another mutant lacking the death domain. These results demonstrate that downregulation of IRAK-4 requires activation of the MyD88-dependent pathway and that the death domains of both MyD88 and IRAK-4 are important for this downregulation.  相似文献   

7.
8.
Dong W  Liu Y  Peng J  Chen L  Zou T  Xiao H  Liu Z  Li W  Bu Y  Qi Y 《The Journal of biological chemistry》2006,281(36):26029-26040
Our previous studies have revealed that the signaling protein BCL10 plays a major role in adaptive immunity by mediating NF-kappaB activation in the LPS/TLR4 pathway. In this study, we show that IRAK-1 acts as the essential upstream adaptor that recruits BCL10 to the TLR4 signaling complex and mediates signaling to NF-kappaB through the BCL10-MALT1-TRAF6-TAK1 cascade. Following dissociation from IRAK-1, BCL10 is translocated into the cytosol along with TRAF6 and TAK1, in a process bridged by a direct BCL10-Pellino2 interaction. RNA interference against MALT1 markedly reduced the level of NF-kappaB activation stimulated by lipopolysaccharide (LPS) in macrophages, which suggests that MALT1 plays a major role in the LPS/TLR4 pathway. MALT1 interacted with BCL10 and TRAF6 to facilitate TRAF6 self-ubiquitination in the cytosol, which was strictly dependent on the dissociation of BCL10 from IRAK-1. We show that BCL10 oligomerization is a prerequisite for BCL10 function in LPS signaling to NF-kappaB and that IRAK-1 dimerization is an important event in this process.  相似文献   

9.
Prior exposure to LPS induces a transient state of cell refractoriness to subsequent LPS restimulation, known as endotoxin tolerance. Induction of LPS tolerance has been reported to correlate with decreased cell surface expression of the LPS receptor complex, Toll-like receptor 4 (TLR4)/MD-2. However, other results have underscored the existence of mechanisms of LPS tolerance that operate downstream of TLR4/MD-2. In the present study we sought to delineate further the molecular basis of LPS tolerance by examining the TLR4 signaling pathway in endotoxin-tolerant cells. Pretreatment of human monocytes with LPS decreased LPS-mediated NF-kappaB activation, p38 mitogen-activated protein kinase phosphorylation, and TNF-alpha gene expression, documenting the induction of endotoxin tolerance. FACS and Western blot analyses of LPS-tolerant monocytes showed increased TLR2 expression, whereas TLR4 expression levels were not affected. Comparable levels of mRNA and protein for myeloid differentiation factor 88 (MyD88), IL-1R-associated kinase 1 (IRAK-1), and TNFR-associated factor-6 were found in normal and LPS-tolerant monocytes, while MD-2 mRNA expression was slightly increased in LPS-tolerant cells. LPS induced the association of MyD88 with TLR4 and increased IRAK-1 activity in medium-pretreated cells. In LPS-tolerant monocytes, however, MyD88 failed to be recruited to TLR4, and IRAK-1 was not activated in response to LPS stimulation. Moreover, endotoxin-tolerant CHO cells that overexpress human TLR4 and MD-2 also showed decreased IRAK-1 kinase activity in response to LPS despite the failure of LPS to inhibit cell surface expression of transfected TLR4 and MD-2 proteins. Thus, decreased TLR4-MyD88 complex formation with subsequent impairment of IRAK-1 activity may underlie the LPS-tolerant phenotype.  相似文献   

10.
11.
12.
IL-1R-associated kinase (IRAK) 4 is an essential component of innate immunity. IRAK-4 deficiency in mice and humans results in severe impairment of IL-1 and TLR signaling. We have solved the crystal structure for the death domain of Mus musculus IRAK-4 to 1.7 A resolution. This is the first glimpse of the structural details of a mammalian IRAK family member. The crystal structure reveals a six-helical bundle with a prominent loop, which among IRAKs and Pelle, a Drosophila homologue, is unique to IRAK-4. This highly structured loop contained between helices two and three, comprises an 11-aa stretch. Although innate immune domain recognition is thought to be very similar between Drosophila and mammals, this structural component points to a drastic difference. This structure can be used as a framework for future mutation and deletion studies and potential drug design.  相似文献   

13.
Tobacco smoking has been associated with impaired pulmonary functions and increased incidence of infections; however, mechanisms that underlie these phenomena are poorly understood. In this study, we examined whether smokers' alveolar macrophages (AM) exhibit impaired sensing of bacterial components via TLR2 and TLR4 and determined the effect of smoking on expression levels of TLR2, TLR4 and coreceptors, and activation of signaling intermediates. Smokers' AMs exhibited reduced gene expression and secretion of proinflammatory cytokines (TNF-alpha, IL-1beta, IL-6) and chemokines (RANTES and IL-8) upon stimulation with TLR2 and TLR4 agonists, S-[2,3-bis(palmitoyloxy)-(2-RS)-propyl]-N-palmitoyl-(R)-Cys-(S)-Ser-Lys4-OH trihydrochloride (Pam(3)Cys), and LPS, whereas expression of anti-inflammatory cytokines (IL-10 and IL-1 receptor antagonist) was not affected. TLR3 activation with polyinosinic-polycytidylic acid led to comparable or even higher cytokine responses in smokers' AMs, indicating that smoking-induced suppression does not affect all TLRs. Comparable expression of cytokines and chemokines was detected in PBMC and purified monocytes obtained from smokers and nonsmokers, demonstrating that the suppressive effect of smoking is restricted to the lung. TLR2/4-inducible IL-1R-associated kinase-1 (IRAK-1) and p38 phosphorylation and NF-kappaB activation was suppressed in smokers' AMs, whereas TLR2, TLR4, CD14, MD-2 mRNA levels, and TLR4 protein expression were not altered. These data suggest that changes in expression and/or activities of signaling intermediates at the postreceptor level account for smoking-induced immunosuppression. Thus, exposure of AMs to tobacco smoke induces a hyporesponsive state similar to endotoxin tolerance as manifested by inhibited TLR2/4-induced expression of proinflammatory cytokines, chemokines, and impaired activation of IRAK-1, p38, and NF-kappaB, resulting in suppressed expression of proinflammatory mediators.  相似文献   

14.
15.
Innate immune response after transient ischemia is the most common cause of myocardial inflammation and may contribute to injury, yet the detailed signaling mechanisms leading to such a response are not well understood. Herein we tested the hypothesis that myocardial ischemia activates interleukin receptor-associated kinase-1 (IRAK-1), a kinase critical for the innate immune signaling such as that of Toll-like receptors (TLRs), via a mechanism that involves heat shock proteins (HSPs) and TLRs. Coronary artery occlusion induced a rapid myocardial IRAK-1 activation within 30 min in wild-type (WT), TLR2(-/-), or Trif(-/-) mice, but not in TLR4(def) or MyD88(-/-) mice. HSP60 protein was markedly increased in serum or in perfusate of isolated heart following ischemia/reperfusion (I/R). In vitro, recombinant HSP60 induced IRAK-1 activation in cells derived from WT, TLR2(-/-), or Trif(-/-) mice, but not from TLR4(def) or MyD88(-/-) mice. Both myocardial ischemia- and HSP60-induced IRAK-1 activation was abolished by anti-HSP60 antibody. Moreover, HSP60 treatment of cardiomyocytes (CMs) led to marked activation of caspase-8 and -3, but not -9. Expression of dominant-negative mutant of Fas-associated death domain protein or a caspase-8 inhibitor completely blocked HSP60-induced caspase-8 activation, suggesting that HSP60 likely activates an apoptotic program via the death-receptor pathway. In vivo, I/R-induced myocardial apoptosis and cytokine expression were significantly attenuated in TLR4(def) mice or in WT mice treated with anti-HSP60 antibody compared with WT controls. Taken together, the current study demonstrates that myocardial ischemia activates an innate immune signaling via HSP60 and TLR4, which plays an important role in mediating apoptosis and inflammation during I/R.  相似文献   

16.
Tolerance to bacterial cell wall components including bacterial lipoprotein (BLP) represents an essential regulatory mechanism during bacterial infection. Reduced Toll-like receptor 2 (TLR2) and IL-1 receptor-associated kinase 1 (IRAK-1) expression is a characteristic of the downregulated TLR signaling pathway observed in BLP-tolerised cells. In this study, we attempted to clarify whether TLR2 and/or IRAK-1 are the key molecules responsible for BLP-induced tolerance. Transfection of HEK293 cells and THP-1 cells with the plasmid encoding TLR2 affected neither BLP tolerisation-induced NF-κB deactivation nor BLP tolerisation-attenuated pro-inflammatory cytokine tumor necrosis factor alpha (TNF-α) production, indicating that BLP tolerance develops despite overexpression of TLR2 in these cells. In contrast, overexpression of IRAK-1 reversed BLP-induced tolerance, as transfection of IRAK-1 expressing vector resulted in a dose-dependent NF-κB activation and TNF-α release in BLP-tolerised cells. Furthermore, BLP-tolerised cells exhibited markedly repressed NF-κB p65 phosphorylation and impaired binding of p65 to several pro-inflammatory cytokine gene promoters including TNF-α and interleukin-6 (IL-6). Overexpression of IRAK-1 restored the nuclear transactivation of p65 at both TNF-α and IL-6 promoters. These results indicate a crucial role for IRAK-1 in BLP-induced tolerance, and suggest IRAK-1 as a potential target for manipulation of the TLR-mediated inflammatory response during microbial sepsis.  相似文献   

17.
IL-18 is an important cytokine for both innate and adaptive immunity. NK T cells and Th1 cells depend on IL-18 for their divergent functions. The IL-18R, IL-1R, and mammalian Toll-like receptors (TLRs) share homologous intracellular domains known as the TLR/IL-1R/plant R domain. Previously, we reported that IL-1R-associated kinase (IRAK)-4 plays a critical role in IL-1R and TLR signaling cascades and is essential for the innate immune response. Because TLR/IL-1R/plant R-containing receptors mediate signal transduction in a similar fashion, we investigated the role of IRAK-4 in IL-18R signaling. In this study, we show that IL-18-induced responses such as NK cell activity, Th1 IFN-gamma production, and Th1 cell proliferation are severely impaired in IRAK-4-deficient mice. IRAK-4(-/-) Th1 cells also do not exhibit NF-kappaB activation or IkappaB degradation in response to IL-18. Moreover, AP-1 activation which is triggered by c-Jun N-terminal kinase activation is also completely inhibited in IRAK-4(-/-) Th1 cells. These results suggest that IRAK-4 is an essential component of the IL-18 signaling cascade.  相似文献   

18.
19.
Toll-like receptor 9 (TLR9) recognizes and binds unmethylated CpG motifs in DNA, which are found in the genomes of bacteria and DNA viruses. In fish, Tlr9 is highly diverse, with the number of introns ranging from 0 to 4. A fish Tlr9 gene containing two introns has been reported to express two alternatively spliced isoforms, namely gTLR9A (full-length) and gTLR9B (with a truncated Cʹ-terminal signal transducing domain), whose regulation and function remain unclear. Here, we report a unique regulatory mechanism of gTLR9 signaling in orange-spotted grouper (Epinephelus coioides), whose gTlr9 sequence also contains two introns. We demonstrated that the grouper gTlr9 gene indeed has the capacity to produce two gTLR9 isoforms via alternative RNA splicing. We found that gTLR9B could function as a negative regulator to suppress gTLR9 signaling as demonstrated by the suppression of downstream gene expression. Following stimulation with CpG oligodeoxynucleotide (ODN), gTLR9A and gTLR9B were observed to translocate into endosomes and co-localize with ODN and the adaptor protein gMyD88. Both gTLR9A and gTLR9B could interact with gMyD88; however, gTLR9B could not interact with downstream IRAK4 and TRAF6. Further analysis of the expression profile of gTlr9A and gTlr9B upon immune-stimulation revealed that the two isoforms were differentially regulated in a time-dependent manner. Overall, these data suggest that fish TLR9B functions as a negative regulator, and that its temporal expression is mediated by alternative RNA splicing. This has not been observed in mammalian TLR9s and might have been acquired relatively recently in the evolution of fish.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号