首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Activation loop tyrosine autophosphorylation is an essential requirement for full kinase activation of receptor tyrosine kinases (RTKs). However, mechanisms involved are not fully understood. In general, kinase domains of RTKs are folded into two main lobes, NH2- and COOH-terminal lobes. The COOH-terminal lobe of vascular endothelial growth factor receptor-2 (VEGFR-2) is folded into seven alpha-helices (alphaD-alphaI). In the studies presented here we demonstrate that leucine residues of helix I (alphaI) regulate tyrosine autophosphorylation and phosphotransferase activity of VEGFR-2. The presence of leucines 1158, 1161, and 1162 are essential for tyrosine autophosphorylation and kinase activation of VEGFR-2 and are involved in helix-helix packing via hydrophobic interactions. The presence of leucine 1158 is critical for kinase activation of VEGFR-2 and appears to interact with alphaE, alphaF, alphaH, and beta7. The analogous residue, leucine 957 on platelet-derived growth factor receptor-beta and leucine 910 on colony stimulating factor-1R are also found to be critical for tyrosine autophosphorylation of these receptors. Leucines 1161 and 1162 are also involved in helix-helix packing but they play a less critical role in VEGFR-2 activation. Thus, we conclude that leucine motif-mediated helix-helix interactions are critical for kinase regulation of type III RTKs. This mechanism is likely to be shared with other kinases and might provide a basis for the design of a novel class of tyrosine kinase inhibitors.  相似文献   

2.
A critical aspect of understanding the regulation of signal transduction is not only to identify the protein-protein interactions that govern assembly of signaling pathways, but also to understand how those pathways are regulated in time and space. In this report, we have applied both gain-of-function and loss-of-function analyses to assess the role of the non-receptor protein tyrosine kinase FER in activation of the HGF Receptor protein tyrosine kinase MET. Overexpression of FER led to direct phosphorylation of several signaling sites in MET, including Tyr1349, but not the activation loop residues Tyr1234/5; in contrast, suppression of FER by RNAi revealed that phosphorylation of both a C-terminal signaling site (Tyr1349) and the activation loop (Tyr1234/5) were influenced by the function of this kinase. Adaptin β, a component of the adaptor protein complex 2 (AP-2) that links clathrin to receptors in coated vesicles, was recruited to MET following FER-mediated phosphorylation. Furthermore, we provide evidence to support a role of FER in maintaining plasma membrane distribution of MET and thereby delaying protein-tyrosine phosphatase PTP1B-mediated inactivation of the receptor. Simultaneous up-regulation of FER and down-regulation of PTP1B observed in ovarian carcinoma-derived cell lines would be expected to contribute to persistent activation of HGF-MET signaling, suggesting that targeting of both FER and MET may be an effective strategy for therapeutic intervention in ovarian cancer.  相似文献   

3.
Two novel sites of autophosphorylation were localized to the juxtamembrane segment of the human platelet-derived growth factor (PDGF) beta-receptor. To evaluate the importance of these phosphorylation sites, receptor mutants were made in which Tyr579, Tyr581 or both were replaced with phenylalanine residues; the receptor mutants were stably expressed in porcine aortic endothelial cells. Compared with the wild-type receptor, the Y579F and Y581F mutants were less able to mediate association with and activation of the Src family tyrosine kinases. The ability of these phosphorylation sites to mediate directly the binding of the Src family proteins was also demonstrated by using phosphotyrosine-containing synthetic peptides representing the juxtamembrane sequence of the receptor. Both the Y579F and Y581F mutants were similar to the wild-type receptor with regard to their protein tyrosine kinase activity and ability to induce mitogenicity in response to PDGF-BB. A conclusive evaluation of the role of the Src family members in signal transduction could, however, not be made since our attempt to prevent completely the association by mutation of both Tyr579 and Tyr581, resulted in loss of kinase activity and was therefore not informative. The present data, together with previous observations, demonstrate a high degree of specificity in the interaction between different autophosphorylation sites in the PDGF beta-receptor and downstream components in the signal transduction pathway.  相似文献   

4.
Nuclear and cytoplasmic location of the FER tyrosine kinase.   总被引:4,自引:3,他引:4       下载免费PDF全文
The location of the FER protein within the cell was investigated by using subcellular fractionation and immunofluorescence. FER was found in the cytoplasm and in the nucleus, where it was associated with the chromatin fraction. Its ubiquitous expression and its subcellular location indicate that it may be involved in key regulatory processes.  相似文献   

5.
Reactive oxygen species, including H2O2, O2*- and OH* are constantly produced in the human body and are involved in the development of cardiovascular diseases. Emerging evidence suggests that reactive oxygen species, besides their deleterious effects at high concentrations, may be protective. However, the mechanism underlying the protective effects of reactive oxygen species is not clear. Here, we reported a novel finding that H2O2 at low to moderate concentrations (50-250 microM) markedly inactivated Src family tyrosine kinases temporally and spatially in vivo but not in vitro. We further showed that Src family kinases localized to focal adhesions and the plasma membrane were rapidly and permanently inactivated by H2O2, which resulted from a profound reduction in phosphorylation of the conserved tyrosine residue at the activation loop. Interestingly, the cytoplasmic Src family kinases were activated gradually by H2O2, which partially compensated for the loss of total activities of Src family kinases but not their functions. Finally, H2O2 rendered endothelial cells resistant to growth factors and cytokines and protected the cells from inflammatory activation. Because Src family kinases play key roles in cell signaling, the rapid inactivation of Src family kinases by H2O2 may represent a novel mechanism for the protective effects of reactive oxygen species.  相似文献   

6.

Background

Cell proliferation is a hallmark of cancer and depends on complex signaling networks that are chiefly supported by protein kinase activities. Therapeutic strategies have been used to target specific kinases but new methods are required to identify combined targets and improve treatment. Here, we propose a small interfering RNA genetic screen and an integrative approach to identify kinase networks involved in the proliferation of cancer cells.

Results

The functional siRNA screen of 714 kinases in HeLa cells identified 91 kinases implicated in the regulation of cell growth, most of them never being reported in previous whole-genome siRNA screens. Based on gene ontology annotations, we have further discriminated between two classes of kinases that, when suppressed, result in alterations of the mitotic index and provoke cell-cycle arrest. Extinguished kinases that lead to a low mitotic index mostly include kinases implicated in cytosolic signaling. In contrast, extinguished kinases that result in a high mitotic index mostly include kinases implicated in cell division. By mapping hit kinases in the PhosphPOINT phosphoprotein database, we generated scale-free networks consisting of 449 and 661 protein-protein interactions for kinases from low MI and high MI groups, respectively. Further analyses of the kinase interactomes revealed specific modules such as FER- and CRKL-containing modules that connect three members of the epidermal growth factor receptor (EGFR) family, suggesting a tight control of the mitogenic EGF-dependent pathway. Based on experimental studies, we confirm the involvement of these two kinases in the regulation of tumor cell growth.

Conclusion

Based on a combined approach of large kinome-wide siRNA screens and ontology annotations, our study identifies for the first time two kinase groups differentially implicated in the control of cell proliferation. We further demonstrate that integrative analysis of the kinase interactome provides key information which can be used to facilitate or optimize target design for new therapeutic strategies. The complete list of protein-protein interactions from the two functional kinase groups will provide a useful database for future investigations.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1169) contains supplementary material, which is available to authorized users.  相似文献   

7.
p94(fer) and p51(ferT) are two tyrosine kinases that share identical SH2 and kinase domains but differ in their N-terminal regions. To further explore the cellular functions of these two highly related tyrosine kinases, their subcellular distribution profiles and in vivo phosphorylation activity were followed using double immunofluorescence assay. When combined with immunoprecipitation analysis, this assay showed that p94(fer) can lead to the tyrosine phosphorylation and activation of Stat3 but not of Stat1 or Stat2. Native p94(fer) exerted this activity when residing in the cytoplasm. However, modified forms of p94(fer), which are constitutively nuclear, could also lead to the phosphorylation of Stat3. Endogenous Stat3 and p94(fer) co-immunoprecipitated with each other, thus proving the interaction of these two proteins in vivo. Unlike p94(fer), p51(ferT) did not induce the phosphorylation of Stat3 but led to the phosphorylation of other nuclear proteins. Replacing the unique 43-amino acid-long N-terminal tail of p51(ferT) with a parallel segment from the N-terminal tail of p94(fer) did not change the subcellular localization of p51(ferT) but enabled it to activate Stat3. Thus the different N-terminal sequences of p94(fer) and p51(ferT) can affect their ability to induce phosphorylation of Stat3 and most probably direct their different cellular functions.  相似文献   

8.
Calcium-dependent protein kinases (CDPKs) are a novel class of signaling molecules that have been broadly implicated in relaying specific calcium-mediated responses to biotic and abiotic stress as well as developmental cues in both plants and protists. Calcium-dependent autophosphorylation has been observed in almost all CDPKs examined, but a physiological role for autophosphorylation has not been demonstrated. To date, only a handful of autophosphorylation sites have been mapped to specific residues within CDPK amino acid sequences. In an attempt to gain further insight into this phenomenon, we have mapped autophosphorylation sites and compared these phosphorylation patterns among multiple CDPK isoforms. From eight CDPKs and two CDPK-related kinases from Arabidopsis thaliana and Plasmodium falciparum, 31 new autophosphorylation sites were characterized, which in addition to the previously described sites, allowed the identification of five conserved loci. Of the 35 total sites analyzed approximately one-half were observed in the N-terminal variable domain. Homology models were generated for the protein kinase and calmodulin-like domains, each containing two of the five conserved sites, to allow intelligent speculation regarding subsequent lines of investigation.  相似文献   

9.
We previously demonstrated that src family tyrosine kinases associate with activated platelet-derived growth factor receptors. We have now investigated the requirement for tyrosine phosphorylation sites in the human platelet-derived growth factor receptor for this binding. Tyrosine 857, but not tyrosine 751, is required for efficient association. Furthermore, even though src family tyrosine kinases associate with receptors lacking tyrosine 751, they are not activated, implying that association does not invariably lead to activation.  相似文献   

10.
The microtubule-associated protein tau is impacted in neurodegeneration and dementia through its deposition in the form of paired helical filaments in Alzheimer's disease neurofibrillary tangles and through mutations linking it to the autosomal dominant disorder frontotemporal dementia with Parkinsonism. When isolated in solution tau is intrinsically unstructured and does not fold, while the conformation of the protein in the microtubule-bound state remains uncharacterized. Here we show that the repeat region of tau, which has been reported both to mediate tau microtubule interactions and to constitute the proteolysis-resistant core of disease-associated tau aggregates, associates with lipid micelles and vesicles and folds into an ordered structure upon doing so. In addition to providing the first structural insights into a folded state of tau, our results support a role for lipid membranes in mediating tau function and tau pathology.  相似文献   

11.
The crystal structures of three Src-family tyrosine kinases have been determined recently. The structure of the catalytic domain of Lck has been determined in the active autophosphorylated state. The structures of larger constructs of c-Src and Hck, containing the SH3, SH2 and catalytic domains, as well as a C-terminal regulatory tail, have been determined in the down-regulated state, phosphorylated in the C-terminal tail. A comparison of these structures leads to an unanticipated mechanism for the regulation of catalytic activity by cooperative interactions between the SH2, SH3 and catalytic domains.  相似文献   

12.
13.
Timeless was originally identified in Drosophila as an essential component of circadian cycle regulation, where its function is tightly controlled at the protein level by tyrosine phosphorylation and subsequent degradation. In mammals, Timeless has also been implicated in circadian rhythms as well as cell cycle control and embryonic development. Here we report that mammalian Timeless is an SH3 domain-binding protein and substrate for several members of the Src protein–tyrosine kinase family, including Fyn, Hck, c-Src and c-Yes. Co-expression of Tim with Fyn or Hck was followed by ubiquitylation and subsequent degradation in human 293 T cells. While c-Src and c-Yes also promoted Tim ubiquitylation, in this case ubiquitylation correlated with Tim protein accumulation rather than degradation. Both c-Src and c-Yes selectively promoted modification of Tim through Lys63-linked polyubiquitin, which may explain the differential effects on Tim protein turnover. These data show distinct and opposing roles for individual Src-family members in the regulation of Tim protein levels, suggesting a unique mechanism for the regulation of Tim function in mammals.  相似文献   

14.
15.
16.
Conserved N-terminal sequences in the flagellins of archaebacteria   总被引:6,自引:0,他引:6  
Methanococcus voltae produces two flagellins of molecular weight 31,000 and 33,000. Amino acid analysis as well as peptide mapping with cyanogen bromide, chymotrypsin and Staphylococcus aureus V-8 protease indicates that the two flagellins are distinct. N-terminal sequencing of the 31,000 Mc. voltae flagellin as well as the 24,000 and 25,000 molecular weight flagellins of Methanospirillum hungatei GP1 shows an extensive homology with the reported N-terminus of the flagellins from Halobacterium halobium, deduced from the nucleotide sequence of the cloned genes. However, the N-termini of all three sequenced methanogen flagellins lack a terminal methionine and start at position 13 from the N-terminus of H. halobium flagellins. This initial 12 amino acid stretch may be a leader peptide which is subsequently cleaved to generate the mature flagellin, which could suggest flagellar assembly in archaebacteria occurs by a mechanism distinct from that in eubacteria. The high degree of conservation of the N-terminus of the flagellins from Mc. voltae, Msp. hungatei and H. halobium suggests an important role for this sequence, and that the archaebacteria share a common mechanism for flagellar biosynthesis.  相似文献   

17.
18.
Type I and type II cyclic AMP-dependent protein kinases, present in the cytosol from each of five rat and two bovine tissues, were separated from one another by DEAE-cellulose column chromatography in order to study their possible autophosphorylation. In each of the tissues studied, autophosphorylation of the regulatory subunit of the cyclic AMP-dependent protein kinase by the catalytic subunit could be demonstrated with the type II enzyme but not with the type I enzyme.  相似文献   

19.
20.
A phylogenetic analysis ofsrc-related protein tyrosine kinases (PTKs) showed that one group of these genes is quite ancient in the animals, its divergence predating the divergence of the diploblast and triploblast phyla. Three other major groupings of genes were found to predate the divergence of protostome and deuterostome phyla. Most knownsrc-related PTKs of mammals were found to belong to five well-differentiated families: srcA, srcB, abl, csk, and tec. One srcA gene (fyn) has an alternatively spliced seventh exon which shows a different pattern of relationship from the remainder of the gene; this suggests that this exon may have been derived by a recombinational event with another gene, perhaps one related tofgr. The recently published claim that mammalian members of this family expressed in the nervous system evolve more slowly at nonsynonymous nucleotide sites than do those expressed in the immune system was not supported by an analysis of 13 pairs of human and mouse orthologues. Rather, T-cell-specificsrc-related PTKs were found to have higher rates of nonsynonymous substitution than were those having broader expression. This effect was particularly marked in the peptide binding site of the SH2 domain. While the SH2 binding site was highly conserved among paralogous mammalian members of the srcA and srcB subfamilies, no such effect was seen in the comparison of paralogous members of the csk and tec subfamilies. This suggests that, while the peptide binding function of SH2 is conserved within both srcA and srcB subfamilies, paralogous members of the csk and tec subfamilies have diverged functionally with respect to peptide recognition by SH2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号