首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The many similarities between arrested dauer larvae of free-living nematodes and infective L3 of parasitic nematodes has led to suggestions that they are analogous lifecycle stages. The control of the formation of dauer larvae in Caenorhabditis elegans is well understood, with a TGF-β-superfamily growth factor playing a central role. Recent analyses of the expression of homologous TGF-β genes in parasitic nematodes has allowed this analogy to be tested; but the results so far do not support it. Rather, the results imply that in the evolution of animal parasitism, parasitic nematodes have taken signalling pathways and molecules from their free-living ancestors and used them in different ways in the evolution of their parasitic lifestyles.  相似文献   

3.
Gao Z  Yang J  Huang Y  Yu Y 《Mutation research》2005,570(2):175-184
Many environmental factors, such as ultraviolet (UV) and arsenic, can induce the clustering of cell surface receptors, including epidermal growth factor receptor (EGFR). This is accompanied by the phosphorylation of the receptors and the activation of ensuing cellular signal transduction pathways, which are implicated in the various cellular responses caused by the exposure to these factors. In this study, we have shown that N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), an alkylating agent, also induced the clustering of EGFR in human amnion FL cells, which was similar in morphology to that of epidermal growth factor treatment. However, MNNG treatment did not activate Ras, the downstream mediator in EGFR signaling pathway, as compared to EGF treatment. The autophosphorylation of tyrosine residues Y1068 and Y1173 at the intracellular domain of EGFR, which is related to Ras activation under EGF treatment, was also not observed by MNNG exposure. Interestingly, although MNNG did not affect the binding of EGF to EGFR, MNNG can interfere with EGF function. For instance, pre-incubating FL cells with MNNG inhibited the autophosphorylation of EGFR by EGF treatment, as well as the activation of Ras. In addition, the phosphorylation of Y845 on EGFR by EGF, which is mediated through c-Src or related kinases but not autophosphorylation, was also affected by MNNG. Therefore, MNNG may influence the tyrosine kinase activity as well as the phosphorylation of EGFR through its interaction with EGFR.  相似文献   

4.
Signal transduction networks have only been studied at a small scale because large-scale reconstructions and suitable in silico analysis methods have not been available. Since reconstructions of large signaling networks are progressing well there is now a need to develop a framework for analysing structural properties of signaling networks. One such framework is presented here, one that is based on systemically independent pathways and a mass-balanced representation of signaling events. This approach was applied to a prototypic signaling network and it allowed for: (1) a systemic analysis of all possible input/output relationships, (2) a quantitative evaluation of network crosstalk, or the interconnectivity of systemically independent pathways, (3) a measure of the redundancy in the signaling network, (4) the participation of reactions in signaling pathways, and (5) the calculation of correlated reaction sets. These properties emerge from network structure and can only be derived and studied within a defined mathematical framework. The calculations presented are the first of their kind for a signaling network, while similar analysis has been extensively performed for prototypic and genome-scale metabolic networks. This approach does not yet account for dynamic concentration profiles. Due to the scalability of the stoichiometric formalism used, the results presented for the prototypic signaling network can be obtained for large signaling networks once their reconstruction is completed.  相似文献   

5.
We characterized the mechanism of transforming growth factor beta (TGF-beta) resistance in the VACO-411 human colon carcinoma line. VACO-411 is unique for several reasons, including having a novel mutator phenotype and wild-type p53. Like many colon tumors, VACO-411 is not growth inhibited by TGF-beta. However, VACO-411 represents a subset of colon tumors that are resistant to TGF-beta-mediated growth inhibition, despite the expression of functional TGF-beta receptors. VACO-411 expresses cell surface TGF-beta receptor types I and II, and the coding regions of these receptors are wild type. To further characterize the nature of the VACO-411 defect, we fused VACO-411 with the human breast carcinoma line MCF-7. MCF-7 is also resistant to TGF-beta-mediated growth inhibition. However, unlike VACO-411, MCF-7 lacks cell surface expression of TGF-beta receptor type II, but does contain an intact postreceptor signaling pathway, as shown by regeneration of TGF-beta sensitivity following wild-type TGF-beta receptor type II transfection. In contrast to parental VACO-411 and MCF-7, the morphologically distinct cell hybrids were growth inhibited by TGF-beta. Therefore, the TGF-beta defect in VACO-411 is a postreceptor, loss-of-function mutation which can be genetically complemented. The data suggest that the VACO-411 defect in TGF-beta signaling will be able to be further complemented by microcell-mediated chromosome transfer.  相似文献   

6.
Transforming growth factor beta 1 (TGF-beta 1) and insulin-like growth factor I (IGF-I) have contrasting effects on cell cycle regulation in thyroid cells and TGF-beta 1 induces a dramatic decrease in IGF-I-induced cell proliferation. The aim of the present study was to investigate the molecular mechanism of cross-talk between TGF-beta 1 and IGF-I in FRTL-5 cells. TGF-beta 1 affected IGF-I-stimulated insulin receptor substrate 1 (IRS-1) tyrosine phosphorylation and its association with Grb2 protein. Moreover, TGF-beta 1 decreased the IGF-I-induced tyrosine phosphorylation of the adaptor protein CrkII and its association with the IGF-I receptor. These results were accompanied by TGF-beta 1 inhibition of IGF-I-stimulated mitogen-activated protein kinase phosphorylation and activation. Conversely, TGF-beta 1 did not alter IGF-I-stimulated IRS-1-associated phosphatidylinositol 3-kinase activity, IGF-I-induced tyrosine phosphorylation of Shc, and its binding to Grb2. Taken together, these findings provide a molecular basis for the growth-inhibitory action of TGF-beta 1 on the IGF-I-induced mitogenic effect.  相似文献   

7.
Hepatocyte growth factor (HGF) is a potent mitogen for a variety of cells including hepatocytes. While rat oval cells are supposed to be one of hepatic stem cells, biological effects of HGF on oval cells and their relevant signal transduction pathways remain to be determined. We sought to investigate them on OC/CDE22 rat oval cells, which are established from the liver of rats fed a choline-deficient/DL-ethionine-supplemented diet. The oval cells were cultured on fibronectin-coated dishes and stimulated with recombinant HGF, transforming growth factor-alpha (TGF-alpha), and thrombopoietin (TPO) under the serum-free medium condition. HGF treatment enhanced [3H]thymidine incorporation into oval cells in a dose-dependent manner. On the contrary, treatment with TGF-alpha or TPO had no significant effects on [3H]thymidine incorporation into the oval cells. c-Met protein was phosphorylated at the tyrosine residues after the HGF treatment. AKT, extracellular signal-regulated kinase 1/2 (ERK1/2), and p70(s6k) were simultaneously activated after the HGF stimulation, peaking at 30min after the treatment. The activation of AKT, p70(s6k), and ERK1/2 induced by HGF was abolished by pre-treatment with LY294002, a phosphoinositide 3-OH kinase (PI3K) inhibitor, and U0126, a mitogen-activated protein kinase/ERK kinase (MEK) inhibitor, respectively. When the cells were pre-treated with LY294002 prior to the HGF stimulation, the proliferative action of HGF was completely abrogated, implying that the PI3K/AKT signaling pathway is responsible for the biological effect of HGF. These in vitro data indicate that HGF exerts a proliferative action on hepatic oval cells via activation of the PI3K/AKT signaling pathway.  相似文献   

8.
9.
The role of glomerular endothelial cells in kidney fibrosis remains incompletely understood. While endothelia are indispensable for repair of acute damage, they can produce extracellular matrix proteins and profibrogenic cytokines that promote fibrogenesis. We used a murine cell line with all features of glomerular endothelial cells (glEND.2), which dissected the effects of vascular endothelial growth factor (VEGF) on cell migration, proliferation, and profibrogenic cytokine production. VEGF dose-dependently induced glEND.2 cell migration and proliferation, accompanied by up-regulation of VEGFR-2 phosphorylation and mRNA expression. VEGF induced a profibrogenic gene expression profile, including up-regulation of TGF-beta1 mRNA, enhanced TGF-beta1 secretion, and bioactivity. VEGF-induced endothelial cell migration and TGF-beta1 induction were mediated by the phosphatidyl-inositol-3 kinase pathway, while proliferation was dependent on the Erk1/2 MAP kinase pathway. This suggests that differential modulation of glomerular angiogenesis by selective inhibition of the two identified VEGF-induced signaling pathways could be a therapeutic approach to treat kidney fibrosis.  相似文献   

10.
Integration of abscisic acid signalling into plant responses   总被引:7,自引:0,他引:7  
The phytohormone abscisic acid (ABA) plays a major role as an endogenous messenger in the regulation of plant's water status. ABA is generated as a signal during a plant's life cycle to control seed germination and further developmental processes and in response to abiotic stress imposed by salt, cold, drought, and wounding. The action of ABA can target specifically guard cells for induction of stomatal closure but may also signal systemically for adjustment towards severe water shortage. At the molecular level, the responses are primarily mediated by regulation of ion channels and by changes in gene expression. In the last years, the molecular complexity of ABA signal transduction surfaced more and more. Many proteins and a plethora of "secondary" messengers that regulate or modulate ABA-responses have been identified by analysis of mutants including gene knock-out plants and by applying RNA interference technology together with protein interaction analysis. The complexity possibly reflects intensive cross-talk with other signal pathways and the role of ABA to be part of and to integrate several responses. Despite the missing unifying concept, it is becoming clear that ABA action enforces a sophisticated regulation at all levels.  相似文献   

11.
The cytosolic pattern recognition receptor NOD2 is activated by the peptidoglycan fragment muramyl dipeptide to generate a proinflammatory immune response. Downstream effects include the secretion of cytokines such as interleukin 8, the upregulation of pro-interleukin 1β, the induction of autophagy, the production of antimicrobial peptides and defensins, and contributions to the maintenance of the composition of the intestinal microbiota. Polymorphisms in NOD2 are the cause of the inflammatory disorder Blau syndrome and act as susceptibility factors for the inflammatory bowel condition Crohn''s disease. The complexity of NOD2 signalling is highlighted by the observation that over 30 cellular proteins interact with NOD2 directly and influence or regulate its functional activity. Previously, the majority of reviews on NOD2 function have focused upon the role of NOD2 in inflammatory disease or in its interaction with and response to microbes. However, the functionality of NOD2 is underpinned by its biochemical interactions. Consequently, in this review, we have taken the opportunity to address the more ‘basic’ elements of NOD2 signalling. In particular, we have focused upon the core interactions of NOD2 with protein factors that influence and modulate the signal transduction pathways involved in NOD2 signalling. Further, where information exists, such as in relation to the role of RIP2, we have drawn comparison with the closely related, but functionally discrete, pattern recognition receptor NOD1. Overall, we provide a comprehensive resource targeted at understanding the complexities of NOD2 signalling.  相似文献   

12.
Syndecan-4-mediated signalling   总被引:7,自引:0,他引:7  
The paradigm of cell surface proteoglycan function has been centered on the role of the ectoplasmic heparan sulfate (HS) chains as acceptors of a wide array of ligands, including extracellular matrix (ECM) proteins and soluble growth factors. Within this picture, the core proteins were assigned only a passive role of carrying the glycosaminoglycan (GAG) chains without direct participation in mediating outside-in signals generated by the binding of the above ligands. It appears now, however, that, side by side with the integrins and the tyrosine kinase receptors, the core proteins of the syndecan family of transmembrane proteoglycans are involved in signaling. The highly conserved tails of all the four members of the syndecan family contain a carboxy-terminal PDZ (Postsynaptic density 95, Disk large, Zona occludens-1)-binding motif, capable of forming multimolecular complexes through the binding of PDZ adaptor proteins. The cytoplasmic tail of the ubiquitously expressed syndecan-4 is distinct from the other syndecans in its capacity to bind phosphatidylinositol 4, 5-bisphosphate (PIP2) and to activate protein kinase C (PKC) . These properties may confer on syndecan-4 specific and unique signaling functions.  相似文献   

13.
Epidermal growth factor receptor (EGFR) and its family members, ErbB2, ErbB3 and ErbB4, are receptor tyrosine kinases which send signals into the cell to regulate many critical processes including development, tissue homeostasis, and tumorigenesis. Central to the signaling of these receptors is their intracellular kinase domain, which is activated by ligand-induced dimerization of the receptor and phosphorylates several tyrosine residues in the C-terminal tail. The phosphorylated tail then recruits other signaling molecules and relays the signal to downstream pathways. A model of the autoinhibition, activation and feedback inhibition mechanisms for the ErbB kinase domain has emerged from a number of recent structural studies. Meanwhile, recent clinical studies have revealed the relationship between specific ErbB kinase mutations and the responsiveness to kinase inhibitor drugs. We will review these regulation mechanisms of the ErbB kinase domain, and discuss the binding specificity of kinase inhibitors and the effects of kinase domain mutations found in cancer patients from a structural perspective.  相似文献   

14.
Matrix metalloproteinases (MMPs) play an important role in cancer metastasis. Here, we investigated the effect of fibroblast growth factor-2 (FGF-2) and 12-O-tetradecanoylphorbol-13-acetate (TPA) on the secretion of type IV collagenases (MMP-2, MMP-9) in breast cancer MCF-7 cells. As shown by gelatin zymography, both FGF-2 and TPA stimulated the secretion of MMP-9 in MCF-7 cells while they did not change the level of MMP-2 secretion. Signaling cascade studies indicated that both FGF-2 and TPA induced Ras activation, c-Raf phosphorylation, mitogen-activated protein kinase/ERK kinase (MEK(1/2)) phosphorylation, and extracellular signal-regulated kinase (ERK(1/2)) phosphorylation. The FGF-2- and TPA-induced MMP-9 secretion was significantly inhibited by transient transfection of MCF-7 cells with dominant negative Ras (Ras-N17) and by treatment with MEK(1/2) inhibitor PD98059. A pan-protein kinase C (PKC) inhibitor, GF109203X, was found to totally abolish the FGF-2- and TPA-induced MMP-9 secretion and ERK(1/2) phosphorylation. Use of isoform-specific PKC inhibitors such as Rotllerin and G?6976 suggested, moreover, that the PKC-delta isoform is a likely component of FGF-2 and TPA trophic signaling. These results demonstrated that FGF-2 and TPA induce MMP-9 secretion in MCF-7 cells mainly through PKC-dependent activation of the Ras/ERK(1/2) signaling pathway.  相似文献   

15.
Neuronal and vascular cells share common chemical signals. Vascular endothelial growth factor (VEGF)-C and -D and their receptor VEGFR-3/Flt-4 mediate lymphangiogenesis, but they occur also in the brain. Quantitative RT-PCR of mouse brain tissues and cultivated cells showed that the VEGFR-3 gene is highest transcribed in postnatal brain and in glial precursor cells whereas VEGF-C and -D are variably produced by different neuronal and glial cells. In neurospheres (neural stem cells) VEGFR-3 was induced by differentiation with platelet-derived growth factor (PDGF). In functional studies with an A2B5- and nestin-positive, O4-negative murine glial precursor cell line, VEGF-C and -D stimulated phosphorylation of the kinases Erk1/2; this signal transduction was inhibited by UO126. Both peptides induced the proliferation of glial precursor cells which could be inhibited by UO126. Furthermore, VEGF-D considerably enhanced their migration into an open space in a wound-healing assay. These results show that VEGF-C/-D together with its receptor VEGFR-3 provides an auto-/paracrine growth and chemotactic system for glial precursors in the developing brain.  相似文献   

16.
Ethylene is a phytohormone that influences diverse processes in plants. Ethylene causes various changes in etiolated seedlings that differ between species and include reduced growth of shoots and roots, increased diameter of shoots, agravitropic growth, initiation of root hairs, and increased curvature of the apical hook. The inhibition of growth in etiolated seedlings has become widely used to screen for and identify mutants. This approach has led to an increased understanding of ethylene signaling. Most studies use end-point analysis after several days of exposure to assess the effects of ethylene. Recently, the use of time-lapse imaging has re-emerged as an experimental method to study the rapid kinetics of ethylene responses. This review outlines the historical use of ethylene growth kinetic studies and summarizes the recent use of this approach coupled with molecular biology to provide new insights into ethylene signaling.  相似文献   

17.
Bone morphogenetic proteins (BMPs) regulate many processes in the embryo, including cell type specification, patterning, apoptosis, and epithelial-mesenchymal interaction. They also act in soft and hard tissues in adult life. Their signals are transduced from the plasma membrane to the nucleus through a limited number of Smad proteins. The list of Smad-interacting proteins is however growing and it is clear that these partners determine the outcome of the signal. We summarize the present status in BMP/Smad signaling, with emphasis on recently identified Smad partners and how these proteins may cooperate in the regulation of the expression of BMP target genes.  相似文献   

18.
Basic fibroblast growth factor (FGF-2) promotes survival and/or neurite outgrowth from a variety of neurons in cell culture and regenerative processes in vivo. FGFs exert their effects by activating cell surface receptor tyrosine kinases. FGF receptor (FGFR) inhibitors have not been characterized on neuronal cell behaviors to date. In the present study, we show that the FGFR1 inhibitor PD 173074 potently and selectively antagonized the neurotrophic and neurotropic actions of FGF-2. Nanomolar concentrations of PD 173074 prevented FGF-2, but not insulin-like growth factor-1, support of cerebellar granule neuron survival under conditions of serum/K(+) deprivation; another FGF-2 inhibitor, SU 5402, was effective only at a 1,000-fold greater concentration. Neither PD 173074 nor SU 5402, at 100 times their IC(50) values, interfered with the survival of dorsal root ganglion neurons promoted by nerve growth factor, ciliary neurotrophic factor, or glial cell line-derived neurotrophic factor. PD 173074 and SU 5402 displayed 1,000-fold differential IC(50) values for inhibition of FGF-2-stimulated neurite outgrowth in PC12 cells and in granule neurons, and FGF-2-induced mitogen-activated protein kinase (p44/42) phosphorylation. The two inhibitors failed to disturb downstream signalling stimuli of FGF-2. PD 173074 represents a valuable tool for dissecting the role of FGF-2 in normal and pathological nervous system function without compromising the actions of other neurotrophic factors.  相似文献   

19.
Batistic O  Kudla J 《Planta》2004,219(6):915-924
Plant development and reproduction depend on a precise recognition of environmental conditions and the integration of this information with endogenous metabolic and developmental cues. Calcium ions have been firmly established as ubiquitous second messengers functioning in these processes. Calcium signal deciphering and signal-response coupling often involve calcium-binding proteins as responders or relays in this information flow. Here we review the calcineurin B-like protein (CBL) calcium sensor/CBL-interacting protein kinase (CIPK) network as a newly emerging signaling system mediating a complex array of environmental stimuli. We focus particularly on the mechanisms generating signaling specificity. Moreover, we emphasize the functional implications that are emerging from the analyses of CBL and CIPK loss-of-function mutants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号