首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ezrin/radixin/moesin (ERM) proteins are involved in actin filament/plasma membrane interaction that is regulated by Rho. We examined whether ERM proteins are directly phosphorylated by Rho- associated kinase (Rho-kinase), a direct target of Rho. Recombinant full-length and COOH-terminal half radixin were incubated with constitutively active catalytic domain of Rho-kinase, and ~30 and ~100% of these molecules, respectively, were phosphorylated mainly at the COOH-terminal threonine (T564). Next, to detect Rho-kinase–dependent phosphorylation of ERM proteins in vivo, we raised a mAb that recognized the T564-phosphorylated radixin as well as ezrin and moesin phosphorylated at the corresponding threonine residue (T567 and T558, respectively). Immunoblotting of serum-starved Swiss 3T3 cells with this mAb revealed that after LPA stimulation ERM proteins were rapidly phosphorylated at T567 (ezrin), T564 (radixin), and T558 (moesin) in a Rho-dependent manner and then dephosphorylated within 2 min. Furthermore, the T564 phosphorylation of recombinant COOH-terminal half radixin did not affect its ability to bind to actin filaments in vitro but significantly suppressed its direct interaction with the NH2-terminal half of radixin. These observations indicate that the Rho-kinase–dependent phosphorylation interferes with the intramolecular and/ or intermolecular head-to-tail association of ERM proteins, which is an important mechanism of regulation of their activity as actin filament/plasma membrane cross-linkers.  相似文献   

2.
Hypotonicity-induced cell swelling is characterized by a modification in cell architecture associated with actin cytoskeleton remodeling. The ezrin/radixin/moesin (ERM) family proteins are important signal transducers during actin reorganization regulated by the monomeric G proteins of the Rho family. We report here that in collecting duct CD8 cells hypotonicity-induced cell swelling resulted in deep actin reorganization, consisting of loss of stress fibers and formation of F-actin patches in membrane protrusions where the ERM protein moesin was recruited. Cell swelling increased the interaction between actin and moesin and induced the transition of moesin from an oligomeric to a monomeric functional conformation, characterized by both the COOH- and NH2-terminal domains being exposed. In this conformation, which is stabilized by phosphorylation of a conserved threonine in the COOH-terminal domain by PKC or Rho kinase, moesin can bind interacting proteins. Interestingly, hypotonic stress increased the amount of threonine-phosphorylated moesin, which was prevented by the PKC- inhibitor Gö-6976 (50 nM). In contrast, the Rho kinase inhibitor Y-27632 (1 µM) did not affect the hypotonicity-induced increase in phosphorylated moesin. The present data represent the first evidence that hypotonicity-induced actin remodeling is associated with phosphorylated moesin recruitment at the cell border and interaction with actin. ezrin/radixin/moesin; protein kinase C; Rho  相似文献   

3.
In its dormant state, the membrane cytoskeletal linker protein ezrin takes on a NH2 terminal-to-COOH terminal (N-C) binding conformation. In vitro evidence suggests that eliminating the N-C binding conformation by Thr567 phosphorylation leads to ezrin activation. Here, we found for resting gastric parietal cells that the levels of ezrin phosphorylation on Thr567 are low and can be increased to a small extent (40%) by stimulating secretion via the cAMP pathway. Treatment of cells with protein phosphatase inhibitors led to a rapid, dramatic increase in Thr567 phosphorylation by 400% over resting levels, prompting the hypothesis that ezrin activity is regulated by turnover of phosphorylation on Thr567. In vitro and in vivo fluorescence resonance energy transfer analysis demonstrated that Thr567 phosphorylation opens the N-C interaction. However, even in the closed conformation, ezrin localizes to membranes by an exposed NH2 terminal binding site. Importantly, the opened phosphorylated form of ezrin more readily cosediments with F-actin and binds more tightly to membrane than the closed forms. Furthermore, fluorescence recovery after photobleaching analysis in live cells showed that the Thr567Asp mutant had longer recovery times than the wild type or the Thr567Ala mutant, indicating the Thr567-phosphorylated form of ezrin is tightly associated with F-actin and the membrane, restricting normal activity. These data demonstrate and emphasize the functional importance of reversible phosphorylation of ezrin on F-actin binding. A novel model is proposed whereby ezrin and closely associated kinase and phosphatase proteins represent a motor complex to maintain a dynamic relationship between the varying membrane surface area and filamentous actin length. ezrin/radixin/moesin protein; motor complex; gastric parietal cell; fluorescence resonance energy transfer; fluorescence recovery after photobleaching  相似文献   

4.
ERM (ezrin, radixin, moesin) proteins act as linkers between the plasma membrane and the actin cytoskeleton. An interaction between their NH(2)- and COOH-terminal domains occurs intramolecularly in closed monomers and intermolecularly in head-to-tail oligomers. In vitro, phosphorylation of a conserved threonine residue (T567 in ezrin) in the COOH-terminal domain of ERM proteins disrupts this interaction. Here, we have analyzed the role of this phosphorylation event in vivo, by deriving stable clones producing wild-type, T567A, and T567D ezrin from LLC-PK1 epithelial cells. We found that T567A ezrin was poorly associated with the cytoskeleton, but was able to form oligomers. In contrast, T567D ezrin was associated with the cytoskeleton, but its distribution was shifted from oligomers to monomers at the membrane. Moreover, production of T567D ezrin induced the formation of lamellipodia, membrane ruffles, and tufts of microvilli. Both T567A and T567D ezrin affected the development of multicellular epithelial structures. Collectively, these results suggest that phosphorylation of ERM proteins on this conserved threonine regulates the transition from membrane-bound oligomers to active monomers, which induce and are part of actin-rich membrane projections.  相似文献   

5.
The highly homologous ERM (ezrin/radixin/moesin) proteins, molecular cross-linkers which connect the cell membrane with the underlying cytoskeleton, have molecular weights of 81, 80 and 78 kDa respectively. We present data which shows significant variation in the molecular weight and presence of multiple forms of ERM proteins in different cell lines, such that specific antibodies to each protein are essential for unambiguous detection. Biochemical fractionation of MDCK cells demonstrates that although the individual ERM fractionation patterns are unaltered by cell density, the multiple forms of moesin each associate with different subcellular fractions. Since ERM proteins can exist in dormant or active conformations corresponding to their phosphorylation state, we propose that the partitioning of ERM proteins between subcellular compartments may depend on their activation status. In addition, we show that when the co-localization between ezrin and F-actin is disrupted by cytochalasin D, MDCK cells undergo a dramatic morphology change during which long, branching, ezrin-rich protrusions are formed. Consistent with other workers, our data suggest that maintenance of ezrin:F-actin interactions are required for the maintenance of normal cellular morphology.  相似文献   

6.
《The Journal of cell biology》1994,125(6):1371-1384
To examine the functions of ERM family members (ezrin, radixin, and moesin), mouse epithelial cells (MTD-1A cells) and thymoma cells (L5178Y), which coexpress all of them, were cultured in the presence of antisense phosphorothioate oligonucleotides (PONs) complementary to ERM sequences. Immunoblotting revealed that the antisense PONs selectively suppressed the expression of each member. Immunofluorescence microscopy of these ezrin, radixin, or moesin "single-suppressed" MTD-1A cells revealed that the ERM family members are colocalized at cell-cell adhesion sites, microvilli, and cleavage furrows, where actin filaments are densely associated with plasma membranes. The ezrin/radixin/moesin antisense PONs mixture induced the destruction of both cell-cell and cell-substrate adhesion, as well as the disappearance of microvilli. Ezrin or radixin antisense PONs individually affected the initial step of the formation of both cell-cell and cell-substrate adhesion, but did not affect the microvilli structures. In sharp contrast, moesin antisense PONs did not singly affect cell-cell and cell-substrate adhesion, whereas it partly affected the microvilli structures. These data indicate that ezrin and radixin can be functionally substituted, that moesin has some synergetic functional interaction with ezrin and radixin, and that these ERM family members are involved in cell-cell and cell-substrate adhesion, as well as microvilli formation.  相似文献   

7.
Pseudomonas aeruginosa ExoS is a bifunctional type III-secreted cytotoxin. The N terminus (amino acids 96-233) encodes a GTPase-activating protein activity, whereas the C terminus (amino acids 234-453) encodes a factor-activating ExoS-dependent ADP-ribosyltransferase activity. The GTPase-activating protein activity inactivates the Rho GTPases Rho, Rac, and Cdc42 in cultured cells and in vitro, whereas the ADP-ribosylation by ExoS is poly-substrate-specific and includes Ras as an early target for ADP-ribosylation. Infection of HeLa cells with P. aeruginosa producing a GTPase-activating protein-deficient form of ExoS rounded cells, indicating the ADP-ribosyltransferase domain alone is sufficient to elicit cytoskeletal changes. Examination of substrates modified by type III-delivered ExoS identified a 70-kDa protein as an early and predominant target for ADP-ribosylation. Matrix-assisted laser desorption ionization mass spectroscopy identified this protein as moesin, a member of the ezrin/radixin/moesin (ERM) family of proteins. ExoS ADP-ribosylated recombinant moesin at a linear velocity that was 5-fold faster and with a K(m) that was 2 orders of magnitude lower than Ras. Moesin homologs ezrin and radixin were also ADP-ribosylated, indicating the ERMs collectively represent high affinity targets of ExoS. Type III delivered ExoS ADP-ribosylated moesin and ezrin (and/or radixin) in cultured HeLa cells. The ERM proteins contribute to cytoskeleton dynamics, and the ability of ExoS to ADP-ribosylate the ERM proteins links ADP-ribosylation with the cytoskeletal changes associated with ExoS intoxication.  相似文献   

8.
Moesin is a member of the ERM family and is involved in plasma membrane-actin cytoskeleton cross-linking, resulting cell adhesion, shape, and motility. Because moesin was shown to be highly expressed in growth cones and moesin/radixin suppression led to impaired structure and function of this key element in brain development, we tested the ERM family, ezrin, radixin, and moesin, in fetal Down syndrome (DS) cortex at the early second trimester. We applied two-dimensional gel electrophoresis with subsequent MALDI detection and identification of protein spots followed by quantification with specific software. Moesin was shown to be significantly and manifold reduced in fetal DS brain, whereas reduction of ezrin and radixin did not reach statistical significance. We therefore propose the involvement of moesin in developmental impairment of DS brain, including deteriorated arborisation, neuritic outgrowth, and neuronal migration. Furthermore, decreased moesin is the second F-actin bundling protein, besides drebrin, that is manifold reduced in fetal DS brain.  相似文献   

9.
Ou-Yang M  Liu HR  Zhang Y  Zhu X  Yang Q 《Biochimie》2011,93(5):954-961
Three closely related proteins, ezrin, radixin, and moesin (ERM), which primarily act as a linker between the plasma membrane and the cytoskeleton, are involved in many cellular functions, including regulation of actin cytoskeleton, control of cell shape, adhesion and motility, and modulation of signaling pathways. Although, ezrin is now recognized as a key component in tumor metastasis, the functional role of the radixin and moesin in tumor metastasis has not been established. In the present study, we chose highly metastatic human gastric carcinoma SGC-7901 cells, which express all of the ERM proteins as a model to examine the functional roles of these proteins in tumor metastasis. Ezrin, radixin or moesin stable knockdown SGC-7901 cell lines were established using siRNA methodology. In vitro cell migration and invasion studies showed that either ezrin, radixin or moesin specific deficiency in the cells caused the substantial reduction of the cell migration and invasion. Western blotting and immunofluorescence analysis showed that the expression of E-cadherin was also significantly increased when any member of ERM proteins was downregulated. Our results indicated that these three ERM proteins play similar roles in the SGC-7901 cell metastatic potential and their roles of upregulating the expression of E-cadherin may be important in tumor progression.  相似文献   

10.
Proteins of the ERM family (ezrin, moesin, radixin) play a fundamental role in tethering the membrane to the cellular actin cortex as well as regulating cortical organization and mechanics. Overexpression of dominant inactive forms of ezrin leads to fragilization of the membrane-cortex link and depletion of moesin results in softer cortices that disrupt spindle orientation during cytokinesis. Therefore, the kinetics of association of ERM proteins with the cortex likely influence the timescale of cortical signaling events and the dynamics of membrane interfacing to the cortex. However, little is known about ERM protein turnover at the membrane-cortex interface. Here, we examined cortical ezrin dynamics using fluorescence recovery after photobleaching experiments and single-molecule imaging. Using multiexponential fitting of fluorescence recovery curves, we showed that ezrin turnover resulted from three molecular mechanisms acting on very different timescales. The fastest turnover process was due to association/dissociation from the F-actin cortex, suggesting that ezrin acts as a link that leads to low friction between the membrane and the cortex. The second turnover process resulted from association/dissociation of ezrin from the membrane and the slowest turnover process resulted from the slow diffusion of ezrin in the plane of the membrane. In summary, ezrin-mediated membrane-cortex tethering resulted from long-lived interactions with the membrane via the FERM domain coupled with shorter-lived interactions with the cortex. The slow diffusion of membranous ezrin and its interaction partners relative to the cortex signified that signals emanating from membrane-associated ezrin may locally act to modulate cortical organization and contractility.  相似文献   

11.
Proteins of the ERM family (ezrin, moesin, radixin) play a fundamental role in tethering the membrane to the cellular actin cortex as well as regulating cortical organization and mechanics. Overexpression of dominant inactive forms of ezrin leads to fragilization of the membrane-cortex link and depletion of moesin results in softer cortices that disrupt spindle orientation during cytokinesis. Therefore, the kinetics of association of ERM proteins with the cortex likely influence the timescale of cortical signaling events and the dynamics of membrane interfacing to the cortex. However, little is known about ERM protein turnover at the membrane-cortex interface. Here, we examined cortical ezrin dynamics using fluorescence recovery after photobleaching experiments and single-molecule imaging. Using multiexponential fitting of fluorescence recovery curves, we showed that ezrin turnover resulted from three molecular mechanisms acting on very different timescales. The fastest turnover process was due to association/dissociation from the F-actin cortex, suggesting that ezrin acts as a link that leads to low friction between the membrane and the cortex. The second turnover process resulted from association/dissociation of ezrin from the membrane and the slowest turnover process resulted from the slow diffusion of ezrin in the plane of the membrane. In summary, ezrin-mediated membrane-cortex tethering resulted from long-lived interactions with the membrane via the FERM domain coupled with shorter-lived interactions with the cortex. The slow diffusion of membranous ezrin and its interaction partners relative to the cortex signified that signals emanating from membrane-associated ezrin may locally act to modulate cortical organization and contractility.  相似文献   

12.
Hyperosmotic shrinkage induces multiple cellular responses, including activation of volume-regulatory ion transport, cytoskeletal reorganization, and cell death. Here we investigated the possible roles of ezrin/radixin/moesin (ERM) proteins in these events. Osmotic shrinkage of Ehrlich Lettre ascites cells elicited the formation of long microvillus-like protrusions, rapid translocation of endogenous ERM proteins and green fluorescent protein-tagged ezrin to the cortical region including these protrusions, and Thr(567/564/558) (ezrin/radixin/moesin) phosphorylation of cortical ERM proteins. Reduced cell volume appeared to be the critical parameter in hypertonicity-induced ERM protein activation, whereas alterations in extracellular ionic strength or intracellular pH were not involved. A shrinkage-induced increase in the level of membrane-associated phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] appeared to play an important role in ERM protein activation, which was prevented after PtdIns(4,5)P(2) depletion by expression of the synaptojanin-2 phosphatase domain. While expression of constitutively active RhoA increased basal ERM phosphorylation, the Rho-Rho kinase pathway did not appear to be involved in shrinkage-induced ERM protein phosphorylation, which was also unaffected by the inhibition or absence of Na(+)/H(+) exchanger isoform (NHE1). Ezrin knockdown by small interfering RNA increased shrinkage-induced NHE1 activity, reduced basal and shrinkage-induced Rho activity, and attenuated the shrinkage-induced formation of microvillus-like protrusions. Hyperosmolarity-induced cell death was unaltered by ezrin knockdown or after phosphatidylinositol 3-kinase (PI3K) inhibition. In conclusion, ERM proteins are activated by osmotic shrinkage in a PtdIns(4,5)P(2)-dependent, NHE1-independent manner. This in turn mitigates the shrinkage-induced activation of NHE1, augments Rho activity, and may also contribute to F-actin rearrangement. In contrast, no evidence was found for the involvement of an NHE1-ezrin-PI3K-PKB pathway in counteracting shrinkage-induced cell death.  相似文献   

13.
G(13) protein, one of the heterotrimeric guanine nucleotide-binding proteins (G proteins), regulates diverse and complex cellular responses by transducing signals from the cell surface presumably involving more than one pathway. Yeast two-hybrid screening of a mouse brain cDNA library identified radixin, a member of the ERM family of three closely related proteins (ezrin, radixin, and moesin), as a protein that interacted with Galpha(13). Interaction between radixin and Galpha(13) was confirmed by in vitro binding assay and by co-immunoprecipitation technique. Activated Galpha(13) induced conformational activation of radixin, as determined by binding of radixin to polymerized F-actin and by immunofluorescence in intact cells. Finally, two dominant negative mutants of radixin inhibited Galpha(13)-induced focus formation of Rat-1 fibroblasts but did not affect Ras-induced focus formation. Our results identifying a new signaling pathway for Galpha(13) indicate that ERM proteins can be activated by and serve as effectors of heterotrimeric G proteins.  相似文献   

14.
Front-rear asymmetry in motile cells is crucial for efficient directional movement. The uropod in migrating lymphocytes is a posterior protrusion in which several proteins, including CD44 and ezrin/radixin/moesin (ERM), are concentrated. In EL4.G8 T-lymphoma cells, Thr567 phosphorylation in the COOH-terminal domain of ezrin regulates the selective localization of ezrin in the uropod. Overexpression of the phosphorylation-mimetic T567D ezrin enhances uropod size and cell migration. T567D ezrin also induces construction of the CD44-associated polar cap, which covers the posterior cytoplasm in staurosporine-treated, uropod-disrupted EL4.G8 cells or in naturally unpolarized X63.653 myeloma cells in an actin cytoskeleton-dependent manner. Rho-associated coiled coil-containing protein kinase (ROCK) inhibitor Y-27632 disrupts the uropod but not the polar cap, indicating that Rho-ROCK signaling is required for posterior protrusion but not for ERM phosphorylation. Phosphorylated ezrin associates with Dbl through its NH2-terminal domain and causes Rho activation. Moreover, constitutively active Q63L RhoA is selectively localized in the rear part of the cells. Thus, phosphorylated ERM has a potential function in establishing plasma membrane "posteriority" in the induction of the uropod in T lymphocytes.  相似文献   

15.
Interactions of CD44 on neutrophils with E-selectin on activated endothelial cells mediate rolling under flow, a prerequisite for neutrophil arrest and migration into perivascular tissues. How CD44 functions as a rolling ligand despite its weak affinity for E-selectin is unknown. We examined the nanometer scale organization of CD44 on intact cells. CD44 on leukocytes and transfected K562 cells was cross-linked within a 1.14-nm spacer. Depolymerizing actin with latrunculin B reduced cross-linking. Fluorescence resonance energy transfer (FRET) revealed tight co-clustering between CD44 fused to yellow fluorescent protein (YFP) and CD44 fused to cyan fluorescent protein on K562 cells. Latrunculin B reduced FRET-reported co-clustering. Number and brightness analysis confirmed actin-dependent CD44-YFP clusters on living cells. CD44 lacking binding sites for ankyrin and for ezrin/radixin/moesin (ERM) proteins on its cytoplasmic domain (ΔANKΔERM) did not cluster. Unexpectedly, CD44 lacking only the ankyrin-binding site (ΔANK) formed larger but looser clusters. Fluorescence recovery after photobleaching demonstrated increased CD44 mobility by latrunculin B treatment or by deleting the cytoplasmic domain. ΔANKΔERM mobility increased only modestly, suggesting that the cytoplasmic domain engages the cytoskeleton by an additional mechanism. Ex vivo differentiated CD44-deficient neutrophils expressing exogenous CD44 rolled on E-selectin and activated Src kinases after binding anti-CD44 antibody. In contrast, differentiated neutrophils expressing ΔANK had impaired rolling and kinase activation. These data demonstrate that spectrin and actin networks regulate CD44 clustering and suggest that ankyrin enhances CD44-mediated neutrophil rolling and signaling.  相似文献   

16.
Expression of the scavenger receptor class B, type I (SR-BI) receptor facilitates high density lipoprotein cholesterol transport and correlates with protection against atherosclerosis. Studies have shown that SR-BI self-associates, but many of the techniques used to characterize SR-BI homo-oligomerization were wrought with the prospect of producing artifacts. Therefore, we employed fluorescence resonance energy transfer (FRET) to visualize SR-BI homo-oligomerization with the benefit of gaining information about its quaternary structure in the absence of typical membrane receptor artifacts. To this end, SR-BI was tagged at the N- or C-termini with either cyan (CFP) or yellow (YFP) fluorescent protein. To test whether SR-BI subunits oligomerize through N-N, N-C or C-C terminal interactions, we co-expressed the appropriate SR-BI fusion protein combinations in COS-7 cells and measured live-cell FRET following acceptor photobleaching. We did not observe FRET with co-transfection of SR-BI with CFP and YFP at the N-termini nor at the N- and C-termini, suggesting that the N-termini are not proximal to each other or to the C-termini. However, FRET was observed with co-transfection of SR-BI with CFP and YFP at the C-termini, suggesting that the C-terminal ends are within 10 nm of each other, consistent with SR-BI dimerization via its C-terminal region.  相似文献   

17.
Ezrin, a member of the ezrin/radixin/moesin (ERM) family, localizes to microvilli of epithelia in vivo, where it bridges actin filaments and plasma membrane proteins. Here, we demonstrate two specific morphogenetic roles of ezrin in the retinal pigment epithelium (RPE), i.e., the formation of very long apical microvilli and of elaborate basal infoldings typical of these cells, and characterize the role of ezrin in these processes using antisense and transfection approaches. In the adult rat RPE, only ezrin (no moesin or radixin) was detected at high levels by immunofluorescence and immunoelectron microscopy at microvilli and basal infoldings. At the time when these morphological differentiations develop, in the first two weeks after birth, ezrin levels increased fourfold to adult levels. Addition of ezrin antisense oligonucleotides to primary cultures of rat RPE drastically decreased both apical microvilli and basal infoldings. Transfection of ezrin cDNA into the RPE-J cell line, which has only trace amounts of ezrin and moesin, sparse and stubby apical microvilli, and no basal infoldings, induced maturation of microvilli and the formation of basal infoldings without changing moesin expression levels. Taken together, the results indicate that ezrin is a major determinant in the maturation of surface differentiations of RPE independently of other ERM family members.  相似文献   

18.
The ERM (ezrin/radixin/moesin) proteins provide a regulated linkage between membrane proteins and the cortical cytoskeleton and also participate in signal transduction pathways. Ezrin is localized to the apical membrane of parietal cells and couples the protein kinase A activation cascade to regulated HCl secretion in gastric parietal cells. Here, we show that the integrity of ezrin is essential for parietal cell activation and provide the first evidence that ezrin interacts with PALS1, an evolutionarily conserved PDZ and SH3 domain-containing protein. Our biochemical study verifies that ezrin binds to PALS1 via its N terminus and is co-localized with PALS1 to the apical membrane of gastric parietal cells. Furthermore, our study shows that PALS1 is essential for the apical localization of ezrin, as either suppression of PALS1 protein accumulation or deletion of the PALS1-binding domain of ezrin eliminated the apical localization of ezrin. Finally, our study demonstrates the essential role of ezrin-PALS1 interaction in the apical membrane remodeling associated with parietal cell secretion. Taken together, these results define a novel molecular mechanism linking ezrin to the conserved apical polarity complexes and their roles in polarized epithelial secretion of gastric parietal cells.  相似文献   

19.
To examine the oligomeric state and trafficking of the dopamine transporter (DAT) in different compartments of living cells, human DAT was fused to yellow (YFP) or cyan fluorescent protein (CFP). YFP-DAT and CFP-DAT were transiently and stably expressed in porcine aortic endothelial (PAE) cells, human embryonic kidney (HEK) 293 cells, and an immortalized dopaminergic cell line 1RB3AN27. Fluorescence microscopic imaging of cells co-expressing YFP-DAT and CFP-DAT revealed fluorescence resonance energy transfer (FRET) between CFP and YFP, which is consistent with an intermolecular interaction of DAT fusion proteins. FRET signals were detected between CFP- and YFP-DAT located at the plasma membrane and in intracellular membrane compartments. Phorbol esters or amphetamine induced the endocytosis of YFP/CFP-DAT to early and recycling endosomes, identified by Rab5, Rab11, Hrs and EEA.1 proteins. Interestingly, however, DAT was mainly excluded from Rab5- and Hrs-containing microdomains within the endosomes. The strongest FRET signals were measured in endosomes, indicative of efficient oligomerization of internalized DAT. The intermolecular DAT interactions were confirmed by co-immunoprecipitation. A DAT mutant that was retained in the endoplasmic reticulum (ER) after biosynthesis was used to show that DAT is oligomeric in the ER. Moreover, co-expression of an ER-retained DAT mutant and wild-type DAT resulted in the retention of wild-type DAT in the ER. These data suggest that DAT oligomers are formed in the ER and then are constitutively maintained both at the cell surface and during trafficking between the plasma membrane and endosomes.  相似文献   

20.

Background

Ezrin/radixin/moesin (ERM) proteins are highly homologous proteins that function to link cargo molecules to the actin cytoskeleton. Ezrin and moesin are both expressed in mature lymphocytes, where they play overlapping roles in cell signaling and polarity, but their role in lymphoid development has not been explored.

Methodology/Principal Findings

We characterized ERM protein expression in lymphoid tissues and analyzed the requirement for ezrin expression in lymphoid development. In wildtype mice, we found that most cells in the spleen and thymus express both ezrin and moesin, but little radixin. ERM protein expression in the thymus was differentially regulated, such that ezrin expression was highest in immature thymocytes and diminished during T cell development. In contrast, moesin expression was low in early thymocytes and upregulated during T cell development. Mice bearing a germline deletion of ezrin exhibited profound defects in the size and cellularity of the spleen and thymus, abnormal thymic architecture, diminished hematopoiesis, and increased proportions of granulocytic precursors. Further analysis using fetal liver chimeras and thymic transplants showed that ezrin expression is dispensable in hematopoietic and stromal lineages, and that most of the defects in lymphoid development in ezrin−/− mice likely arise as a consequence of nutritional stress.

Conclusions/Significance

We conclude that despite high expression in lymphoid precursor cells, ezrin is dispensable for lymphoid development, most likely due to redundancy with moesin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号