首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of the 130 kDa monomer obtained by treatment of duck salt gland Na,K-ATPase with C12E8 was compared with that of the membrane-bound enzyme. The shapes of the substrate-velocity curves for the membrane-bound and solubilized forms were quite different: a hyperbolic one for the monomeric Na,K-ATPase and a nonhyperbolic one for the native enzyme. A reaction scheme for ATP hydrolysis based on a comparative analysis of kinetic properties of these two forms is proposed. Experimental evidence in favour of this hypothesis is presented.  相似文献   

2.
The kinetic properties of intact and digitonin-treated Na,K-ATPase from bovine brain were studied. The temperature dependence curve for the rate of ATP hydrolysis under optimal conditions (upsilon 0) in the Arrhenius plots shows a break at 19-20 degrees. The temperature dependence curves for Km' and Km" have breaks at the same temperatures, while the Arrhenius plot for V is linear. The value of the Hill coefficient (nH) for ATP at 37 degrees is variable depending on ATP concentration, i. e. it is less than 1 at ATP concentrations below 50 mkM and is increased up to 3.2 at higher concentrations of the substrate. At high ATP concentrations the value of nH depends on temperature, falling down to 2.1 at 23 degrees and then down to 1 within the temperature range of 21-19 degrees. A further decrease in temperature does not significantly affect the nH value. Digitonin irreversibly inhibits Na, K-ATPase. ATP hydrolysis is more sensitive to the effect of the detergent than is nNPP hydrolysis, i. e. after complete inhibition of the ATPase about 40% of the phosphatase activity are retained. Treatment of Na,K-ATPase by digitonin results in elimination of the breaks in the Arrhenius plots for upsilon 0, Km' and Km", whereas the temperature dependence plot of V remains linear. Simultaneously digitonin eliminates the positive cooperativity of the enzyme for ATP. It is assumed that Na, K-ATPase from bovine brain is an oligomer of the (alpha beta) 4 type. Digitonin changes the type of interaction between the protomers within the oligomeric complex by changing the lipid environment of the enzyme or the type of protein -- lipid interactions.  相似文献   

3.
Cornelius F  Mahmmoud YA  Meischke L  Cramb G 《Biochemistry》2005,44(39):13051-13062
The proteolytic profile after mild controlled trypsin cleavage of shark rectal gland Na,K-ATPase was characterized and compared to that of pig kidney Na,K-ATPase, and conditions for achieving N-terminal cleavage of the alpha-subunit at the T(2) trypsin cleavage site were established. Using such conditions, the shark enzyme N-terminus was much more susceptible to proteolysis than the pig enzyme. Nevertheless, the maximum hydrolytic activity was almost unaffected for the shark enzyme, whereas it was significantly decreased for the pig kidney enzyme. The apparent ATP affinity was unchanged for shark but increased for pig enzyme after N-terminal truncation. The main common effect following N-terminal truncation of shark and pig Na,K-ATPase is a shift in the E(1)-E(2) conformational equilibrium toward E(1). The phosphorylation and the main rate-limiting E(2) --> E(1) step are both accelerated after N-terminal truncation of the shark enzyme, but decreased significantly in the pig kidney enzyme. Some of the kinetic differences, like the acceleration of the phosphorylation reaction, following N-terminal truncation of the two preparations may be due to the fact that under the conditions used for N-terminal truncation, the C-terminal domain of the FXYD regulatory protein of the shark enzyme, PLMS or FXYD10, was also cleaved, whereas the gamma or FXYD2 of the pig enzyme was not. In the shark enzyme, N-terminal truncation of the alpha-subunit abolished association of exogenous PLMS with the alpha-subunit and the functional interactions were abrogated. Moreover, PKC phosphorylation of the preparation, which relieves PLMS inhibition of Na,K-ATPase activity, exposed the N-terminal trypsin cleavage site. It is suggested that PLMS interacts functionally with the N-terminus of the shark Na,K-ATPase to control the E(1)-E(2) conformational transition of the enzyme and that such interactions may be controlled by regulatory protein kinase phosphorylation of the N-terminus. Such interactions are likely in shark enzyme where PLMS has been demonstrated by cross-linking to associate with the Na,K-ATPase A-domain.  相似文献   

4.
We describe and compare the main kinetic characteristics of rabbit kidney Na,K-ATPase incorporated inside-out in DPPC:DPPE-liposomes with the C(12)E(8) solubilized and purified form. In proteoliposomes, we observed that the ATP hydrolysis of the enzyme is favored and also its affinity for Na(+)-binding sites increases, keeping the negative cooperativity with two classes of hydrolysis sites: one of high affinity (K(0.5)=6 microM and 4 microM for reconstituted enzyme and purified form, respectively) and another of low affinity (K(0.5)=0.4 mM and 1.4 mM for reconstituted enzyme and purified form, respectively). Our data showed a biphasic curve for ATP hydrolysis, suggesting the presence of (alphabeta)(2) oligomer in reconstituted Na,K-ATPase similar to the solubilized enzyme. The Mg(2+) concentration dependence in the proteoliposomes stimulated the Na,K-ATPase activity up to 476 U/mg with a K(0.5) value of 0.4 mM. The Na(+) ions also presented a single saturation curve with V(M)=551 U/mg and K(0.5)=0.2 mM with cooperative effects. The activity was also stimulated by K(+) ions through a single curve of saturation sites (K(0.5)=2.8 mM), with cooperative effects and V(M)=641 U/mg. The lipid microenvironment close to the proteic structure and the K(+) internal to the liposome has a key role in enzyme regulation, affecting its kinetic parameters while it can also modulate the enzyme's affinity for substrate and ions.  相似文献   

5.
Iron is a key element in cell function; however, its excess in iron overload conditions can be harmful through the generation of reactive oxygen species (ROS) and cell oxidative stress. Activity of Na,K-ATPase has been shown to be implicated in cellular iron uptake and iron modulates the Na,K-ATPase function from different tissues. In this study, we determined the effect of iron overload on Na,K-ATPase activity and established the role that isoforms and conformational states of this enzyme has on this effect. Total blood and membrane preparations from erythrocytes (ghost cells), as well as pig kidney and rat brain cortex, and enterocytes cells (Caco-2) were used. In E1-related subconformations, an enzyme activation effect by iron was observed, and in the E2-related subconformations enzyme inhibition was observed. The enzyme's kinetic parameters were significantly changed only in the Na+ curve in ghost cells. In contrast to Na,K-ATPase α2 and α3 isoforms, activation was not observed for the α1 isoform. In Caco-2 cells, which only contain Na,K-ATPase α1 isoform, the FeCl3 increased the intracellular storage of iron, catalase activity, the production of H2O2 and the expression levels of the α1 isoform. In contrast, iron did not affect lipid peroxidation, GSH content, superoxide dismutase and Na,K-ATPase activities. These results suggest that iron itself modulates Na,K-ATPase and that one or more E1-related subconformations seems to be determinant for the sensitivity of iron modulation through a mechanism in which the involvement of the Na, K-ATPase α3 isoform needs to be further investigated.  相似文献   

6.
Some new properties of Na,K-ATPase system have been revealed using the kinetic analysis of the complex enzymic systems. The fundamental mechanism of Na,K-ATPase functioning has been interpreted and the minimum model including all known working modes of the enzyme under different conditions has been built. The existence of new unknown modes and properties of Na,K-ATPase is predicted and confirmed by different authors.  相似文献   

7.
Applicability of the integrated form of the Michaelis-Menten equation to kinetic analysis of transport ATPases has been shown during continuous pH-metric recording of their activity. Two values of Km for both Na, K-ATPase and Ca-ATPase have been found to be consistent with the reported data. Both values of Km for Na, K-ATPase change with temperature, i. e. at 37 degrees, 26 degrees and 15 degrees C they are as follows: Km1--21, Km2--171; Km1--3.32, Km2--47; and Km1--1,2, Km2--20 microM, respectively. This method of determination of Km and V for transport ATPases compares favourably with the previously used methods in resulting efficiency.  相似文献   

8.
To gain insight into the structure and conformational coupling in the Na,K-ATPase, this study characterized the reaction of the α1 subunit transmembrane cysteines with a small probe. Intact HeLa cells expressing heterologous Na,K-ATPase were treated with (μm) HgCl2 after placing the enzyme predominantly in either of two conformations, phosphorylated E2P.Na/E2P or dephosphorylated ATP.E1.K/ATP.E1. Under both conditions the treatment led to enzyme inactivation following a double exponential kinetic as determined by ouabain-sensitive K+ uptake measurements. However, the rate constant of the slow reacting component was ten times larger when the protein was probed in a medium that would favor enzyme phosphorylation. Enzymes carrying mutations of cysteines located in the α1 subunit transmembrane region were used to identify the reacting–SH groups. Replacement Cys104Ser reduced enzyme inactivation by removing the slow reacting component under both treatment conditions. Replacement of Cys964 reduced the inactivation rate constant of the fast reacting component (79%) and removed the slow reacting component when the dephosphorylated enzyme was treated with Hg2+. Moreover, Cys964Ser substituted enzyme was insensitive to Hg2+ when treated under phosphorylation conditions. These results indicate that Cys964 is involved in the fast inactivation by Hg2+. Although the double mutant Cys964, 104Ser was still partially inactivated by treatment under nonphosphorylating conditions, an enzyme devoid of transmembrane cysteines was insensitive to Hg2+ under all treatment conditions. Thus, this enzyme provides a background where accessibility of engineered transmembrane cysteines can be tested. Received: 13 March 2000/Revised: 23 June 2000  相似文献   

9.
A highly conserved amino acid sequence 442GDASE446 in the ATP binding pocket of rat Na/K-ATPase was mutated, and the resulting proteins, G442A, G442P, D443A, S445A, and E446A, were expressed in HeLa cells to investigate the effect of individual ligands on Na/K-ATPase. The apparent Km for the high and low affinity ATP effects was estimated by ATP concentration dependence for the formation of the Na-dependent phosphoenzyme (Kmh) and Na/K-ATPase activity (Kml). The apparent Km for p-nitrophenylphosphate (pNPP) for K-dependent-pNPPase (KmP) and its inhibition by ATP (Ki,0.5) and the apparent Km for Mg2+, Na+, K+, and vanadate in Na/K-ATPase were also estimated. For all the mutants, the value for ATP was approximately 2-10-fold larger than that of the wild type. While the turnover number for Na/K-ATPase activity were unaffected or reduced by 20 approximately 50% in mutants G442(A/P) and D443A. Although both affinities for ATP effects were reduced as a result of the mutations, the ratio, Kml Kmh, for each mutant was 1.3 approximately 3.7, indicating that these mutations had a greater impact on the low affinity ATP effect than on the high affinity effect. Each KmP value with the turnover number suggests that these mutations favor the binding of pNPP over that of ATP. These data and others indicate that the sequence 442GDASE446 in the ATP binding pocket is an important motif that it is involved in both the high and low affinity ATP effects rather than in free Mg2+, Na+, and K+ effects.  相似文献   

10.
We found earlier that Na,K-ATPase is purified from duck salt glands in partially glutathionylated state (up to 13 of the 23 cysteine residues of the Na,K-ATPase catalytic α-subunit can be S-glutathionylated). To determine the effect of glutathionylation on the enzyme conformation, we have analyzed the products of trypsinolysis of Na,K-ATPase α-subunit in different conformations with different extent of glutathionylation. Incubation of the protein in the E1 conformation with trypsin produced a large fragment with a molecular mass (MM) of 80 kDa with the following formation of smaller fragments with MM 40, 35.5, and 23 kDa. Tryptic digestion of Na,K-ATPase in the E2 conformation also resulted in the generation of the fragments with MM 40, 35.5, and 23 kDa. Deglutathionylation of Na,K-ATPase α-subunit increases the rate of proteolysis of the enzyme in both E1 and E2 conformations. The pattern of tryptic digestion of the α-subunit in E2 conformation additionally glutathionylated with oxidized glutathione is similar to that of partially deglutathionylated Na,K-ATPase. The pattern of tryptic digestion of the additionally glutathionylated α-subunit in E1 conformation is similar to that of the native enzyme. The highest rate of trypsinolysis was observed for the α-subunit in complex with ouabain (E2-OBN conformation). Additional glutathionylation increased the content of high-molecular-weight fragments among the digestion products, as compared to the native and deglutathionylated enzymes. The data obtained were confirmed using molecular mod-eling that revealed that number of sites accessible for trypsinolysis is higher in the E2P-OBN conformation than in the E1-and E2-conformations and that glutathionylation decreases the number of sites accessible for trypsin. Therefore, glu-tathionylation affects enzyme conformation and its sensitivity to trypsinolysis. The mechanisms responsible for the changes in the Na,K-ATPase sensitivity to trypsinolysis depending on the level of enzyme glutathionylation and increase in the enzyme sensitivity to proteolysis upon its binding to ouabain, as well as physiological role of these phenomena, are discussed.  相似文献   

11.
There are two isozymes of the Na,K-ATPase, which can be purified separately from rat renal medulla and brainstem axolemma. Here the basic kinetic properties of the two Na,K-ATPases have been compared in conditions permitting enzyme turnover. The two isozymes are half-maximally activated at different concentrations of ATP, the axolemma Na,K-ATPase having the higher affinity. They are half-maximally activated by Na+ and K+ at very similar concentrations but show differences in cooperativity toward Na+. The affinities of both isozymes for ATP and Na+ are affected in a qualitatively similar way by variations in the concentration of K+. Both isozymes transport 22Na+ and 42K+ in a ratio close to 3:2 in artificial lipid vesicles. The two isozymes differ most strikingly in the inhibition of ATPase activity by ouabain. The axolemma Na,K-ATPase has a high affinity for ouabain with positive cooperativity, while the renal medulla Na,K-ATPase has a lower affinity with negative cooperativity. It is likely that the cooperativity differences are due to kinetic effects, reflecting different rates of conformation transitions during enzyme turnover. The functional result of the contrasting cooperativities is that the difference in sensitivity to ouabain is amplified.  相似文献   

12.
The particular aim of the review on some basic facets of the mechanism of Na+/K(+)-transporting ATPase (Na/K-ATPase) has been to integrate the experimental findings concerning the Na(+)- and K(+)-elicited protein conformation changes and transphosphorylations into the perspective of an allosterically regulated, phosphoryl energy transferring enzyme. This has led the authors to the following summarizing evaluations. 1. The currently dominating hypothesis on a link between protein conformation changes ('E1 in equilibrium with E2') and Na+/K+ transport (the 'Albers-Post scheme') has been constructed from a variety of partial reactions and elementary steps, which, however, do not all unequivocally support the hypothesis. 2. The Na(+)- and K(+)-elicited protein conformation changes are inducible by a variety of other ligands and modulatory factors and therefore cannot be accepted as evidence for their direct participation in effecting cation translocation. 3. There is no evidence that the 'E1 in equilibrium with E2' protein conformation changes are moving Na+ and K+ across the plasma membrane. 4. The allosterically caused ER in equilibrium with ET ('E1 in equilibrium with E2') conformer transitions and the associated cation 'occlusion' in equilibrium with 'de-occlusion' processes regulate the actual catalytic power of an enzyme ensemble. 5. A host of experimental variables determines the proportion of functionally competent ER enzyme conformers and incompetent ET conformers so that any enzyme population, even at the start of a reaction, consists of an unknown mixture of these conformers. These circumstances account for the occurrence of contradictory observations and apparent failures in their comparability. 6. The modelling of the mechanism of the Na/K-ATPase and Na+/K+ pump from the results of reductionistically designed experiments requires the careful consideration of the physiological boundary conditions. 7. Na+ and K+ ligandation of Na/K-ATPase controls the geometry and chemical reactivity of the catalytic centre in the cycle of E1 in equilibrium with E2 state conversions. This is possibly effected by hinge-bending, concerted motions of three adjacent, intracellularly exposed peptide sequences, which shape open and closed forms of the catalytic centre in lock-and-key responses. 8. The Na(+)-dependent enzyme phosphorylation with ATP and the K(+)-dependent hydrolysis of the phosphoenzyme formed are integral steps in the transport mechanism of Na/K-ATPase, but the translocations of Na+ and K+ do not occur via a phosphate-cation symport mechanism.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Oligomycin induces occlusion of Na+ in membrane-bound Na,K-ATPase. Here it is shown that Na,K-ATPase from pig kidney or shark rectal gland solubilized in the nonionic detergent C12E8 is capable of occluding Na+ in the presence of oligomycin. The apparent affinity for Na+ is reduced for both enzymes upon solubilization, and there is an increase in the sigmoidicity of binding curves, which indicates a change in the cooperativity between the occluded ions. A high detergent/protein ratio leads to a decreased occlusion capacity. De-occlusion of Na+ by addition of K+ is slow for solubilized Na,K-ATPase, with a rate constant of about 0.1 s-1 at 6 degrees C. Stopped-flow fluorescence experiments with 6-carboxyeosin, which can be used to monitor the E1Na-form in detergent solution, show that the K(+)-induced de-occlusion of Na+ correlates well with the fluorescence decrease which follows the transition from the E1Na-form to the E2-form. There is a marked increase in the rate of fluorescence change at high detergent/protein ratios, indicating that the properties of solubilized enzyme are subject to modification by detergent in other respects than mere solubilization of the membrane-bound enzyme. The temperature dependence of the rate of de-occlusion in the range 2 degrees C to 12 degrees C is changed slightly upon solubilization, with activation energies in the range 20-23 kcal/mol for membrane-bound enzyme, increasing to 26-30 kcal/mol for solubilized enzyme. Titrations of the rate of transition from E1Na to E2K with oligomycin can be interpreted in a model with oligomycin having an apparent dissociation constant of about 2.5 microM for C12E8-solubilized shark Na,K-ATPase and 0.2 microM for solubilized pig kidney Na,K-ATPase.  相似文献   

14.
1. The authors compare oxidative injury to brain and kidney Na/K-ATPase using in vitro and in vivo approaches. The substrate dependence of dog kidney Na/K-ATPase was examined both before and after partial hydrogen peroxide modification. A computer simulation model was used for calculating kinetic parameters.2. The substrate dependence curve for the unmodified endogenous enzyme displayed a typical curve with an intermediate plateau, adequately described by the sum of hyperbolic and sigmoidal components.3. The modified enzyme demonstrated a dependent curve that closely approximates normal hyperbola. The estimated ATP K m value for the endogenous enzyme was about 85 M; the K h was equal to 800 M. The maximal number of protomers interacting was 8. Following oxidative modification, the enzyme substrate dependence curve did not show a significant change in the maximal protomer rate V m, while the K m was increased slightly and interprotomer interaction was abolished.4. Na/K-ATPase from an ischemic gerbil brain showed a 22% decrease in specific activity. The maximal rate of ATP hydrolysis by an enzyme protomer changed slightly, but the sigmoidal component, characterizing the enzyme's ability to form oligomers was abolished completely. The K m value was almost unchanged, but the Hill coefficient fell to 1. These data show that Na/K-ATPase molecules isolated from the ischemic brain have lost the ability to interact with one another.5. We suggest that the most important consequence of oxidative modification is Na/K-ATPase oligomeric structure formation and subsequent hydrolysis rate suppression.  相似文献   

15.
Cornelius F  Mahmmoud YA 《Biochemistry》2007,46(9):2371-2379
FXYD10 is a 74 amino acid small protein which regulates the activity of shark Na,K-ATPase. The lipid dependence of this regulatory interaction of FXYD10 with shark Na,K-ATPase was investigated using reconstitution into DOPC/cholesterol liposomes with or without the replacement of 20 mol % DOPC with anionic phospholipids. Specifically, the effects of the cytoplasmic domain of FXYD10, which contains the phosphorylation sites for protein kinases, on the kinetics of the Na,K-ATPase reaction were investigated by a comparison of the reconstituted native enzyme and the enzyme where 23 C-terminal amino acids of FXYD10 had been cleaved by mild, controlled trypsin treatment. Several kinetic properties of the Na,K-ATPase reaction cycle as well as the FXYD-regulation of Na,K-ATPase activity were found to be affected by acidic phospholipids like PI, PS, and PG. This takes into consideration the Na+ and K+ activation, the K+-deocclusion reaction, and the poise of the E1/E2 conformational equilibrium, whereas the ATP activation was unchanged. Anionic phospholipids increased the intermolecular cross-linking between the FXYD10 C-terminus (Cys74) and the Cys254 in the Na,K-ATPase A-domain. However, neither in the presence nor in the absence of anionic phospholipids did protein kinase phosphorylation of native FXYD10, which relieves the inhibition, affect such cross-linking. Together, this seems to indicate that phosphorylation involves only modest structural rearrangements between the cytoplasmic domain of FXYD10 and the Na,K-ATPase A-domain.  相似文献   

16.
The mechanism of functioning of Na, K-ATPase system is considered, the peculiarities of hydrolysis in different substrates are described. The experimental results testify to the role of substrate structure in E2----E1-transition, Na+ transport, K(+)-dependent phosphatase activity and quaternary structure of enzyme. The regulatory role of molecular organization of Na, K-ATPase in ion transport is discussed.  相似文献   

17.
In our previous studies, we have demonstrated that the Src-coupled α1 Na/K-ATPase works as a receptor for cardiotonic steroids, such as ouabain, to regulate cellular protein kinase cascades. Here, we explore further the structural determinants of the interaction between the α1 Na/K-ATPase and Src and demonstrate that the Src-coupled α1 Na/K-ATPase allows the cell to decode the transmembrane transport activity of the Na/K-ATPase to turn on/off protein kinases. The α1 Na/K-ATPase undergoes E1/E2 conformational transition during an ion pumping cycle. The amount of E1 and E2 Na/K-ATPase is regulated by extracellular K(+) and intracellular Na(+). Using purified enzyme preparations we find that the E1 Na/K-ATPase can bind both the Src SH2 and kinase domains simultaneously and keep Src in an inactive state. Conversely, the E1 to E2 transition releases the kinase domain and activates the associated Src. Moreover, we demonstrate that changes in E1/E2 Na/K-ATPase by either Na(+) or K(+) are capable of regulating Src and Src effectors in live cells. Together, the data suggest that the Src-coupled α1 Na/K-ATPase may act as a Na(+)/K(+) receptor, allowing salt to regulate cellular function through Src and Src effectors.  相似文献   

18.
Na+/K+-ATPase (EC 3.6.1.3) is an important membrane-bound enzyme. In this paper, kinetic studies on Na+/K+-ATPase were carried out under mimetic physiological conditions. By using microcalorimeter, a thermokinetic method was employed for the first time. Compared with other methods, it provided accurate measurements of not only thermodynamic data (deltarHm) but also the kinetic data (Km and Vmax). At 310.15K and pH 7.4, the molar reaction enthalpy (deltarHm) was measured as -40.514 +/- 0.9kJmol(-1). The Michaelis constant (Km) was determined to be 0.479 +/- 0.020 mM and consistent with literature data. The reliability of the thermokinetic method was further confirmed by colorimetric studies. Furthermore, a simple and reliable kinetic procedure was presented for ascertaining the true substrate for Na+/K+-ATPase and determining the effect of free ATP. Results showed that the MgATP complex was the real substrate with a Km value of about 0.5mM and free ATP was a competitive inhibitor with a Ki value of 0.253 mM.  相似文献   

19.
A hybridoma cell line producing mouse monoclonal antibody against pig kidney Na,K-ATPase was established. The antibody, named 38 (mAb38, IgG1), was purified from mouse ascites fluid by chromatography on a protein A-Sepharose column. Antigens immobilized on microplate wells with p-benzoquinone were used for titer assays. mAb38 cross-reacted with both dodecyloctaethyleneglycol monoether (C12E8)-solubilized enzyme and membranous sodium dodecyl sulfate (SDS)-treated enzyme from kidney with high affinity (50% binding = 0.6 nM). However, the antibody bound to neither alpha- nor beta-subunit separated by preparative SDS-polyacrylamide gel electrophoresis (PAGE). The stoichiometry of antibody binding to the purified enzyme was estimated to be about 0.86 mol of IgG per mol of alpha beta-protomer. Na,K-ATPase proteins were recovered from a column of mAb38-coupled Affi-Gel by elution with pH 3 buffer when C12E8-solubilized kidney enzyme or detergent extracts of brain microsomes were applied to it, confirming that the mAb is directed to Na,K-ATPase. mAb38 at saturation level concentrations had no effect on kidney Na,K-ATPase activity or on ouabain-sensitive Rb uptake in erythrocytes. In an immunofluorescence study, the antibody bound to intact erythrocytes much more strongly than control IgG1 (mAb50c), but the extent of the antibody binding to inside-out vesicles under hypotonic conditions was lower than that of the control. Most of the antibody binding activity remained when the kidney enzyme was treated with sialidase. These results suggest that this mAb38 was raised against an intact conformation of a cell-surface-exposed site of Na,K-ATPase.  相似文献   

20.
The Na,K-ATPase belongs to the P-type ATPase family of primary active cation pumps. Metal fluorides like magnesium-, beryllium-, and aluminum fluoride act as phosphate analogues and inhibit P-type ATPases by interacting with the phosphorylation site, stabilizing conformations that are analogous to specific phosphoenzyme intermediates. Cardiotonic steroids like ouabain used in the treatment of congestive heart failure and arrhythmias specifically inhibit the Na,K-ATPase, and the detailed structure of the highly conserved binding site has recently been described by the crystal structure of the shark Na,K-ATPase in a state analogous to E2·2K(+)·P(i) with ouabain bound with apparently low affinity (1). In the present work inhibition, and subsequent reactivation by high Na(+), after treatment of shark Na,K-ATPase with various metal fluorides are characterized. Half-maximal inhibition of Na,K-ATPase activity by metal fluorides is in the micromolar range. The binding of cardiotonic steroids to the metal fluoride-stabilized enzyme forms was investigated using the fluorescent ouabain derivative 9-anthroyl ouabain and compared with binding to phosphorylated enzyme. The fastest binding was to the Be-fluoride stabilized enzyme suggesting a preformed ouabain binding cavity, in accord with results for Ca-ATPase where Be-fluoride stabilizes the E2-P ground state with an open luminal ion access pathway, which in Na,K-ATPase could be a passage for ouabain. The Be-fluoride stabilized enzyme conformation closely resembles the E2-P ground state according to proteinase K cleavage. Ouabain, but not its aglycone ouabagenin, prevented reactivation of this metal fluoride form by high Na(+) demonstrating the pivotal role of the sugar moiety in closing the extracellular cation pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号