首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sulfur mustard (SM) is known to induce cutaneous injury and to cause acute damage to the respiratory tract. Although skin vesication has been demonstrated on human epidermal keratinocytes in culture, no study has been carried out to analyze the effects of SM on the ultrastructural and functional activity of surface respiratory epithelial cells. To evaluate this SM toxicity, we developed an in vitro model of respiratory epithelial cells in primary culture. The study was performed on surface epithelial cells from rabbit trachea cultured according to the explant-outgrowth technique. The functional activity of the cultures was evaluated by measuring the ciliary beating frequency (CBF) of the ciliated cells with a videomicroscopic method. The morphological aspects of the cells were analyzed by light and electron microscopy. Addition of 0.1 mM SM directly into the culture medium produced a sudden and irreversible CBF inhibition, first observed after 2 hr on the ciliated cells of the outgrowth periphery. The arrest of the ciliary beating progressively reached the whole surface of the outgrowth and was simultaneously observed with a detachment of the outgrowth cells. It began at the outgrowth border, leading to the exfoliation of cell sheets, and then to the whole culture after 48 hr. Morphological damage was expressed by intense vacuolisation and disorganization of cytoplasmic and nuclear structures. These findings suggest that the detachment of the respiratory epithelial cells from the matrix represents a major toxic effect of 0.1 mM SM. SM dramatically affects the viability of respiratory epithelial cells in culture. Moreover, the sudden CBF inhibition is more likely due to the death of the ciliated cells than to a specific ciliotoxic effect of SM.Abbreviations CBF ciliary beating frequency - HEPES N2-hydroxyethylpiperazine-N'2ethanesulfonic acid - PBS phosphate buffer saline - SM sulfur mustard - TEM transmission electron microscopy  相似文献   

2.
Various models have been put forward suggesting ways in which brush borders from intestinal epithelial cells may be motile. Experiments documenting putative brush border motility have been performed on isolated brush borders and have generated models suggesting microvillar retraction or microvillar rootlet interactions. The reported Ca++ ATP- induced retraction of microvilli has been shown, instead, to be microvillar dissolution in response to Ca++ and not active brush border motility. I report here studies on the reactivation of motility in intact sheets of isolated intestinal epithelium. Whole epithelial sheets were glycerinated, which leaves the brush border and intercellular junctions intact, and then treated with ATP, PPi, ITP, ADP, GTP, or delta S-ATP. Analysis by video enhanced differential interference-contrast microscopy and thin-section transmission electron microscopy reveals contractions in the terminal web region causing microvilli to be fanned apart in response to ATP and delta S-ATP but not in response to ADP, PPi, ITP, or GTP. Electron microscopy reveals that the contractions occur at the level of the intermediate junction in a circumferential constriction which can pull cells completely apart. This constriction occurs in a location occupied by an actin- containing circumferential band of filaments, as demonstrated by S-1 binding, which completely encircles the terminal web at the level of the intermediate junction. Upon contraction, this band becomes denser and thicker. Since myosin, alpha-actinin and tropomyosin, in addition to actin, have been localized to this region of the terminal web, it is proposed that the intestinal epithelial cell can be motile via a circumferential terminal web contractile ring analogous to the contractile ring of dividing cells.  相似文献   

3.
A renal cortical slice system was utilized to investigate the events leading to site-specific nephrotoxicity induced by S-(1,2-dichlorovinyl)-L-cysteine (DCVC). DCVC uptake into renal cortical slices was shown to be rapid (5-15 min) as well as time- and concentration-dependent. Of the total amount taken up at 1 h, 40% was subsequently covalently bound. These observations were confirmed by autoradiography, illustrating uptake and binding in the proximal tubule cells. Following these events, toxicity was evidenced by alterations in ATP content and O2 consumption between 4 and 8 h as well as leakage of the brush border enzymes (gamma glutamyl transpeptidase and alkaline phosphatase) as early as 4 h. Light microscopy provided a sequence of histopathological changes from an initial S3 lesion between 4 and 8 h to a lesion encompassing all proximal tubule segments (by 12 h). Electron microscopy demonstrated not only the specificity of DCVC toxicity (at 6 h) but also illustrated mitochondrial damage and loss of brush borders. A comparison of continuous versus short-term exposure to DCVC indicated that an irreversible sequence of events was initiated as early as 30 min. By utilizing an in vitro model which allows correlation of biochemical and histological changes, a sequence of events leading to DCVC induced toxicity was established.  相似文献   

4.
The electron microscopy of human eccrine sweat glands has been studied before and after stimulation by pilocarpine iontophoresis. The identity of the dark and clear cells in the secretory segment as defined by Montagna et al. (23) was determined by studying serial sections, thin for electron microscopy and thick for light microscopy. Cells with numerous apical secretory vacuoles are termed mucoid (dark) cells, since these vacuoles stain positively for acid mucopolysaccharide. Clear cells are intimately associated with intercellular canaliculi. The "cuticular border" of surface cells of the duct is a condensation of tonofilaments and granules. Numerous mitochondria are concentrated in basal cells of the duct. The presence of mucoid cells in the secretory segment may bear on the interpretation of the pathologic findings in the disease cystic fibrosis of the pancreas, and suggests that this disease may be due to a basic disorder of mucopolysaccharide production. The possible roles of the various cellular components in the elaboration of sweat are discussed.  相似文献   

5.
Structural rearrangements of the human epidermis have been studied after its local vacuum exfoliation. Blisters have been formed in 48 men-volunteers by means of negative pressure up to 0.7 kg/cm2 and during the following 72 h structure of the exfoliated epidermis has been investigated. Immediately after the blister formation the epidermal basal layer is traumatized, a part of its cells die in some time after the lesion. In the center of most of the cells of the spinous layer there is a large vacuole which presses back the nucleus. However, the whole epidermis is not ruined, and during 24 h actively regenerates. The remaining viable cells into the blister lumen. By the end of the first 24 h span they practically cover from below the whole surface of the exfoliated epidermis. In the cells of the spinous layer amount and size of vacuoles decrease, the nuclei return to the central position. In 48 h in the spinous layer keratohyalin granules are revealed, moreover, in the cells, arranging on the border with the basal layer. By 72 h within the epidermis of the number of necrotic areas sharply increases. All the arrangements in the epidermal structure occur at the absence of mitotic division of cells.  相似文献   

6.
We studied the occurrence of apoptosis and secondary delayed cell death at various time points in the penumbra zone, which is the target for therapeutic intervention after stroke. A compression lesion was induced in the right sensory motor cortex of rat brains. At 0.5, 1, 3, 6, 12, 24, 48 and 72 h after lesioning, motor functions were evaluated by behavioral tests, and cortical layers IV and V were examined by electron microscopy. Behavioral recovery was observed at 48 h after lesioning. At 0.5-1 h in the lesioned area, the neuropil was expanded and contained affected cells. Apoptotic cells were found between 0.5-72 h, and at 12 h, 47.3 % of the total cell number was apoptotic cells. On the contralateral side, cells showed an enlarged endoplasmic reticulum at 3 h, indicating secondary delayed cell death. Our results show that a compression lesion is a useful model for studying ultrastructural changes in injured cells. The lesion results in the penumbra zone with apoptotic cell death between 0.5-72 h. As secondary delayed cell death occurred on the contralateral side at three hours after lesioning might be the time period during which injured, but still viable, neurons can be targets for acute treatment.  相似文献   

7.
J P Denizot 《Histochemistry》1978,55(2):117-128
Glycogen synthetase (2.4.1.11) forms I (independent or active) and D (dependent or passive) as well as the enzymes active in the transformation of the pathways, protein kinase and phosphatase transferase, were studied in the sensory cells and glycogen rich epidermal cells of the weakly electric fish Gnathonemus petersii (Mormyridae). For light microscopy an indirect cytochemical method which differentiated between glycogen originally present and that produced during incubation in the presence of UDPG was used. This differentiation was obtained by iodine, PAS and alpha and beta amylases. Glycogen synthetase is present in the sensory cells in the I and D forms. The epidermal cells only contain the D form. Protein kinase (active I yields D) has only been found in the sensory cells but phosphatase transferase (active D yields I) has been found in both the epidermal cells and the sensory cells, but only within certain organs. Electron microscopy studies of glycogen synthetase I and D and protein kinase were restricted to the sensory cells only. As with the light microscope it was possible to differentiate between native glycogen and newly formed glycogen. This was done using ultrathin sections and staining with uranyl acetate, lead citrate or by the PATAg reaction. It was possible from these observations to locate precisely the positions of these enzymes. In fact, glycogen synthetase I and D are found both in the sensory cytoplasm and in the sensory cavity with the polysaccharide filaments. Protein kinase is also abundant in the sensory cytoplasm especially in the periphery of the cell near the microvillary border.  相似文献   

8.
The pathogenesis of skeletal muscle necrosis produced by Tityus Serrulatus venom was studied by means of light microscopy and electron microscopy. Wistar rats were inoculated subcutaneously, at some distance from the muscles under study, with a sublethal dose of scorpion venom. Samples were taken of the tibialis anterior muscles of both rear legs, 2, 7 and 24 hours postinoculation. Light microscopy analysis after 2 hours revealed certain changes identified as "delta lesions", and also the presence of hyperconcentrated muscle cells. Electron microscopy confirmed these lesions and also enabled us to identify a degree of discontinuity in the plasma membrane with a persistence of the basal membrane. Hyperconcentrated fibers could still be observed 7 hours postinoculation. Histochemical analysis revealed high levels of calcium within the fibers. 24 hours after inoculation with the venom, numerous phagocytic cells were found in the degenerated fibers. Muscle cells were also found to have undergone alterations indicative of an ischemic process. The most characteristic finding 7 days postinoculation was the appearance of regenerative fibers. After thirty days the muscles regained their normal appearance. It is suggested that Tityus Serrulatus venom induces myonecrosis by means of a twofold action: direct action, which gives rise in the first place to a rupture of the plasma membrane, permitting a massive entry of calcium this being a key factor in the process of cell lesion and an assumed indirect action due to ischemia.  相似文献   

9.
Toxic properties of the cell wall of gram-positive bacteria   总被引:4,自引:0,他引:4       下载免费PDF全文
The biological activity of Odontomyces viscosus, which has been reported to cause periodontal disease in hamsters, was examined. The microorganism was cultured anaerobically in Brain Heart Infusion broth, and the cells were harvested. The washed cells were injected intradermally into the abdomen of rabbits. After 72 hr, a well-defined, firm, raised nodule (about 1.0 by 1.5 cm) with an erythematous border was seen at the injection site. Suspensions of cell wall and cytoplasmic material were injected intradermally, and the lesions appeared only at the site of cell wall injection. The cell walls, which were then treated with trypsin, pepsin, and ribonuclease, again produced the characteristic lesion. These nodular dermal lesions persisted for a minimal time of 10 days. The enzymatically treated cell walls were then hydrolyzed with 1 n HCl, and such hydrolysis up to 1 hr failed to alter the toxic activity of the cell walls. Similar dermal nodular lesions were obtained by injection of enzymatically treated cell walls of strains of Staphylococcus aureus, Streptococcus groups B, C, E, F, K, Lactobacillus casei, and Actinomyces israelii. Treatment with hot and cold trichloroacetic acid solutions and proteolytic enzymes, or with formamide, yielded insoluble fractions which produced the characteristic nodular lesions. The size of the lesion resulting from injection of these fractions was proportional to the amount of the injected material. The active fraction, which does not appear susceptible to hydrolysis by lysozyme, is thought to be cell wall mucopeptide. Histological studies showed skin abscesses due to the toxic reaction; however, in addition to the acute inflammatory reaction, there was local eosinophilia.  相似文献   

10.
Root border cells lie on the surface of the root cap and secrete massive amounts of mucilage that contains polysaccharides and proteoglycans. Golgi stacks in the border cells have hypertrophied margins, reflecting elevated biosynthetic activity to produce the polysaccharide components of the mucilage. To investigate the three‐dimensional structures and macromolecular compositions of these Golgi stacks, we examined high‐pressure frozen/freeze‐substituted alfalfa root cap cells with electron microscopy/tomography. Golgi stacks in border cells and peripheral cells, precursor cells of border cells, displayed similar morphological features, such as proliferation of trans cisternae and swelling of the trans cisternae and trans‐Golgi network (TGN) compartments. These swollen margins give rise to two types of vesicles larger than other Golgi‐associated vesicles. Margins of trans‐Golgi cisternae accumulate the LM8 xylogalacturonan (XGA) epitope, and they become darkly stained large vesicles (LVs) after release from the Golgi. Epitopes for xyloglucan (XG), polygalacturonic acid/rhamnogalacturonan‐I (PGA/RG‐I) are detected in the trans‐most cisternae and TGN compartments. LVs produced from TGN compartments (TGN‐LVs) stained lighter than LVs and contained the cell wall polysaccharide epitopes seen in the TGN. LVs carrying the XGA epitope fuse with the plasma membrane only in border cells, whereas TGN‐LVs containing the XG and PGA/RG‐I epitopes fuse with the plasma membrane of both peripheral cells and border cells. Taken together, these results indicate that XGA is secreted by a novel type of secretory vesicles derived from trans‐Golgi cisternae. Furthermore, we simulated the collapse in the central domain of the trans‐cisternae accompanying polysaccharide synthesis with a mathematical model.  相似文献   

11.
Villin is a major protein of the microfilament bundle which makes up the core of each microvillus of the brush border of the intestinal epithelial cell. Using antibodies to villin in indirect immunofluorescence microscopy on isolated cells and on frozen tissue sections, the protein is readily detectable in the microvilli of the brush border of both intestinal and renal epithelial cells. However, villin could not be detected in tissue culture cells either by immunofluorescence microscopy or by immune replica procedures. When native villin was microinjected into such cells and its distribution visualized by immunofluorescence microscopy, the protein was found to be associated with microfilamentous structures. Moreover, preferential association of the villin into the microfilaments at the leading edges of the living cell was observed. Since villin behaves in vitro as a calcium-regulated F-actin bundling protein, we discuss the possibility that villin is immunologically distinct but functionally related to putative calcium-regulatory factors assumed to be present in cultured cells.  相似文献   

12.
Bone marrow mesenchymal stem cells (MSC) have been tested and proven effective in some neurodegenerative diseases, but their tracking after transplantation may be challenging. Our group has previously demonstrated the feasibility and biosafety of rat MSC labeling with iron oxide superparamagnetic nanoparticles (SPION). In this study, we investigated the therapeutic potential of SPION-labeled MSC in a rat model of Huntington's disease, a genetic degenerative disease with characteristic deletion of striatal GABAergic neurons. MSC labeled with SPION were injected into the striatum 1h after quinolinic acid injection. FJ-C analysis demonstrated that MSC transplantation significantly decreased the number of degenerating neurons in the damaged striatum 7 days after lesion. In this period, MSC transplantation enhanced the striatal expression of FGF-2 but did not affect subventricular zone proliferation, as demonstrated by Ki67 proliferation assay. In addition, MSC transplantation significantly reduced the ventriculomegaly in the lesioned brain. MRI and histological techniques detected the presence of the SPION-labeled cells at the lesion site. SPION-labeled MSC produced magnetic resonance imaging (MRI) signals that were visible for at least 60 days after transplantation. Our data highlight the potential of adult MSC to reduce brain damage under neurodegenerative diseases and indicate the use of nanoparticles in cell tracking, supporting their potential as valuable tools for cell therapy.  相似文献   

13.
Basal lamina formation by cultured microvascular endothelial cells   总被引:4,自引:1,他引:3       下载免费PDF全文
The production of a basal lamina by microvascular endothelial cells (MEC) cultured on various substrata was examined. MEC were isolated from human dermis and plated on plastic dishes coated with fibronectin, or cell-free extracellular matrices elaborated by fibroblasts, smooth muscle cells, corneal endothelial cells, or PF HR9 endodermal cells. Examination of cultures by electron microscopy at selected intervals after plating revealed that on most substrates the MEC produced an extracellular matrix at the basal surface that was discontinuous, multilayered, and polymorphous. Immunocytochemical studies demonstrated that the MEC synthesize and deposit both type IV collagen and laminin into the subendothelial matrix. When cultured on matrices produced by the PF HR9 endodermal cells MEC deposit a subendothelial matrix that was present as a uniform sheet which usually exhibited lamina rara- and lamina densa-like regions. The results indicate that under the appropriate conditions, human MEC elaborate a basal lamina-like matrix that is ultrastructurally similar to basal lamina formed in vivo, which suggests that this experimental system may be a useful model for studies of basal lamina formation and metabolism.  相似文献   

14.
It has been possible for several years to study the dynamics of fluorescently labeled proteins by single-molecule microscopy, but until now this technology has been applied only to individual cells in culture. In this study, it was extended to stem cells and living vertebrate organisms. As a molecule of interest we used yellow fluorescent protein fused to the human H-Ras membrane anchor, which has been shown to serve as a model for proteins anchored in the plasma membrane. We used a wide-field fluorescence microscopy setup to visualize individual molecules in a zebrafish cell line (ZF4) and in primary embryonic stem cells. A total-internal-reflection microscopy setup was used for imaging in living organisms, in particular in epidermal cells in the skin of 2-day-old zebrafish embryos. Our results demonstrate the occurrence of membrane microdomains in which the diffusion of membrane proteins in a living organism is confined. This membrane organization differed significantly from that observed in cultured cells, illustrating the relevance of performing single-molecule microscopy in living organisms.  相似文献   

15.
Rabbit erythrocytes have been haemolysed by treatment with vitamin A alcohol and the sequence of changes in the fine structure of the cells during lysis has been investigated by phase contrast microscopy of intact cells and electron microscopy of thin sections. The initial effect of the vitamin, which occurs within 1 minute, is the production of cells of bizarre appearance which have a greatly increased surface area relative to untreated cells. Large indentations appear in the surfaces of the cells, and vacuoles are formed from the indentations by a process that resembles micropinocytosis. The cells then become spherical and loss of haemoglobin begins as breaks appear in the membranes of some cells; finally, ghosts are produced that are no longer spherical but still contain numerous vacuoles. These observations support the thesis that one site of action of vitamin A is at lipoprotein membranes.  相似文献   

16.
Distribution of SGLT1 and GLUT2 hexose transporters as well as that of fibrillar actin and tight junction proteins in cultured Caco2 cells incubated in medium with different hexose concentrations has been considered. Glucose absorption by the cells from incubation medium has been determined. Fibrillar actin was concentrated in the microvilli and closely to tight junction. The actin distribution was not dependent on the glucose concentration. There was no SGLT1 association with brush border actin and the transporter localization was not dependent on the concentration of hexose. GLUT2 was localized in the basal part of Caco2 cells after low concentration hexose load (2.5 mM). The transporter was colocalized with microvilli actin in the apical part of the cells after high concentration hexose load (25 mM). The tight junction proteins, occludin and claudin 1, 3, 4 were not dependent on glucose concentration. Claudin 2 was not detected in Caco2 cells. Caco2 cell culture can be used as a model for studying of hexose transport in small intestine epithelium.  相似文献   

17.
Using confocal fluorescence microscopy with a monoclonal antibody, we have localized the receptor for urokinase plasminogen activator (uPAR) in MDA-MB-231 human breast cancer cells migrating into a reconstituted basement membrane. Patchy and polarized uPAR immunoreactivity was found at the cell membrane, and strong staining was found both in the ruffled border or leading edge of the cells and at pseudopodia penetrating into the membrane. Intracellular uPAR staining was localized in the paranuclear region and in rounded granule-like structures: some of these were identified as lysosomes by double staining for uPAR and the lysosomal enzyme cathepsin D. Urokinase plasminogen activator (uPA) activity has previously been shown to play a role in migration of cells into basement membranes, and it has been proposed that uPAR also is involved in this process. uPA is known to be internalized and degraded after complex formation with the inhibitor PAI-1. Lysosomal uPAR immunoreactivity may result from concomitant internalization of the receptor.  相似文献   

18.
19.
20.
In a previous study, we analyzed and described the features of the degeneration of the protocerebral tract (PCT) of the crustacean Ucides cordatus, after the extirpation of the eyestalk. In that study, among axons with axoplasmic degeneration, cells with granules resembling blood cells (hemocytes) were seen. Therefore, in the present study, we characterized the circulating hemocytes and compared them with the cells recruited to a lesion, which was produced as in the former study. Using histochemistry, immunohistochemistry, and electron microscopy (transmission and scanning), we confirmed that circulating and recruited cells display a similar morphology. Therefore, in the crab, hemocytes were attracted to the lesion site in the acute stage of degeneration, appearing near local glial cells that showed signs of being responsive. Some of the attracted hemocytes displayed a morphology that was considered to be possibly activated blood cells. Also, the cells that migrated to the injured PCT displayed features, such as the presence of hydrolytic enzymes and an ability to phagocytize neural debris, similar to those of vertebrates. In summary, our results indicate that hemocytes were not only phagocytizing neural debris together with glial cells but also that they may be concerned with creating a favorable environment for regenerating events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号