首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When denervated at the medium bud stage, limb blastemas of the newt, Pleurodeles waltlii Michah, stop growing. In order to better understand the role of nerves in the cell cycle in blastemas, we studied the distribution of mesenchymal cells in the G0-1, G1, S, G2 and M phases 48 and 96 h after denervation. The cell-cycle phases were determined by examining Feulgen-stained nuclei using a SAMBA 200 (System for Analytical Microscopy in Biological Applications) cell image processor. The cell nuclei were automatically analyzed by calculating 18 parameters related to the densitometry and texture of chromatin, and the shape of each nucleus. Cell-cycle phases were classified according to the unsupervised recognition method using a SAMBA 200 system as proposed by Moustafa and Brugal for cell-kinetics analysis. The classification obtained was tested against the results of stepwise linear discriminant analysis performed according to the method of Giroud. Our results show that, in blastemas 96 h after denervation, the percentage of cells in the S, G2, and M phases decreases significantly, while the percentage of G1 and G0-1 cells increases (+ 51% for G1 cells; + 30% for G0-1 cells). Thus, it appears that denervation of medium-bud-stage limb blastemas promotes the lengthening of G1 and premature exiting of cells from the cycle into the G0-1 phase. These results show that nerves (i.e., neurotrophic factor) regulate cell kinetics during newt limb regeneration by maintaining blastema mesenchymal cells in the cell-cycle.  相似文献   

2.
A close relationship has been found between the 3D collagen structure and physiological condition of articular cartilage (AC). Studying the 3D collagen network in AC offers a way to determine the condition of the cartilage. However, traditional qualitative studies are time consuming and subjective. This study aims to develop a computer vision-based classifier to automatically determine the condition of AC tissue based on the structural characteristics of the collagen network. Texture analysis was applied to quantitatively characterise the 3D collagen structure in normal (International Cartilage Repair Society, ICRS, grade 0), aged (ICRS grade 1) and osteoarthritic cartilages (ICRS grade 2). Principle component techniques and linear discriminant analysis were then used to classify the microstructural characteristics of the 3D collagen meshwork and the condition of the AC. The 3D collagen meshwork in the three physiological condition groups displayed distinctive characteristics. Texture analysis indicated a significant difference in the mean texture parameters of the 3D collagen network between groups. The principle component and linear discriminant analysis of the texture data allowed for the development of a classifier for identifying the physiological status of the AC with an expected prediction error of 4.23%. An automatic image analysis classifier has been developed to predict the physiological condition of AC (from ICRS grade 0 to 2) based on texture data from the 3D collagen network in the tissue.  相似文献   

3.
4.
The structure of holocentric chromosomes was analyzed in mitotic cells of Luzula elegans. Light and scanning electron microscopy observations provided evidence for the existence of a longitudinal groove along each sister chromatid. The centromere-specific histone H3 variant, CENH3, colocalized with this groove and with microtubule attachment sites. The terminal chromosomal regions were CENH3-negative. During metaphase to anaphase transition, L. elegans chromosomes typically curved to a sickle-like shape, a process that is likely to be influenced by the pulling forces of microtubules along the holocentric axis towards the corresponding microtubule organizing regions. A single pair of 45S rDNA sites, situated distal to Arabidopsis-telomere repeats, was observed at the terminal region of one chromosome pair. We suggest that the 45S rDNA position in distal centromere-free regions could be required to ensure chromosome stability.  相似文献   

5.
Detection of bladder cancers using a SAMBA 200 cell image processor   总被引:2,自引:0,他引:2  
The cell image analysis of urinary sediments was performed using a SAMBA 200 system. Cell profiles were created using 18 parameters related to size, shape, densitometry and chromatin texture. Learning sets of about 50 cell images per class were constructed for bening, degenerated benign, atypical, malignant and degenerated malignant urothelial cell types as well as for squamous epithelial and white blood cell types. A four-level hierarchic decision tree involving a discriminant analysis at each node was designed and then evaluated against a test set of 700 cells from the various classes. All of the cell images involved in this study were acquired from Papanicolaou-stained specimens obtained for routine screening. In spite of some misclassification errors, the analysis of the occurrence of cells in the various classes, especially the percentage of cells classified as suspicious (both atypical and malignant cells), by the SAMBA 200 system resulted in the separate clustering of the positive specimens (49 carcinomas grade II and higher) and the negative ones (26 benign samples). The preliminary results suggest that the cell population features (occurrence rate of cells in the various classes and mean cell profile within a class) may be of diagnostic value in designing a classifier dedicated to the prescreening of urinary sediments for the detection of bladder cancers.  相似文献   

6.
Mitosis is a continuous process to separate replicated chromosomes into two daughter cells through prophase, metaphase, anaphase, and telophase. Although a number of methods have been established to synchronize cells at different phases of the cell cycle, it is difficult to synchronize cells at the specific phases, anaphase and telophase, during mitosis because of the short duration of anaphase. Here, we show that HeLa S3 cells in anaphase and in telophase are successfully enriched by treatment with a combination of low concentrations of the microtubule-depolymerizing agent nocodazole and the myosin II inhibitor blebbistatin. After 9-h release from thymidine block at G1/S phase, addition of nocodazole at 20 ng/ml but not 40 ng/ml ensures rapid release from the nocodazole arrest. Subsequently, the cells are cultured in the presence of 50 μM blebbistatin for 20 and 50 min to enrich cells in anaphase and telophase, respectively. Western blot analysis verifies down-regulation of phospho-histone H3-Ser10, phospho-Aurora A/B/C, and cyclin B1 during M-phase progression. Furthermore, we show how the electrophoretic mobility shifts of the Src-family kinases c-Yes and c-Src can change in each phase of mitosis. These results provide a useful synchronization method for biochemically examining protein dynamics during M-phase progression.  相似文献   

7.
This paper presents a novel system to compute the automated classification of wireless capsule endoscope images. Classification is achieved by a classical statistical approach, but novel features are extracted from the wavelet domain and they contain both color and texture information. First, a shift-invariant discrete wavelet transform (SIDWT) is computed to ensure that the multiresolution feature extraction scheme is robust to shifts. The SIDWT expands the signal (in a shift-invariant way) over the basis functions which maximize information. Then cross-co-occurrence matrices of wavelet subbands are calculated and used to extract both texture and color information. Canonical discriminant analysis is utilized to reduce the feature space and then a simple 1D classifier with the leave one out method is used to automatically classify normal and abnormal small bowel images. A classification rate of 94.7% is achieved with a database of 75 images (41 normal and 34 abnormal cases). The high success rate could be attributed to the robust feature set which combines multiresolutional color and texture features, with shift, scale and semi-rotational invariance. This result is very promising and the method could be used in a computer-aided diagnosis system or a content-based image retrieval scheme.  相似文献   

8.
During mitosis in Ptk1 cells anaphase is not initiated until, on average, 23 +/- 1 min after the last monooriented chromosome acquires a bipolar attachment to the spindle--an event that may require 3 h (Rieder, C. L., A. Schultz, R. W. Cole, and G. Sluder. 1994. J. Cell Biol. 127:1301-1310). To determine the nature of this cell-cycle checkpoint signal, and its site of production, we followed PtK1 cells by video microscopy prior to and after destroying specific chromosomal regions by laser irradiation. The checkpoint was relieved, and cells entered anaphase, 17 +/- 1 min after the centromere (and both of its associated sister kinetochores) was destroyed on the last monooriented chromosome. Thus, the checkpoint mechanism monitors an inhibitor of anaphase produced in the centromere of monooriented chromosomes. Next, in the presence of one monooriented chromosome, we destroyed one kinetochore on a bioriented chromosome to create a second monooriented chromosome lacking an unattached kinetochore. Under this condition anaphase began in the presence of the experimentally created monooriented chromosome 24 +/- 1.5 min after the nonirradiated monooriented chromosome bioriented. This result reveals that the checkpoint signal is not generated by the attached kinetochore of a monooriented chromosome or throughout the centromere volume. Finally, we selectively destroyed the unattached kinetochore on the last monooriented chromosome. Under this condition cells entered anaphase 20 +/- 2.5 min after the operation, without congressing the irradiated chromosome. Correlative light microscopy/elctron microscopy of these cells in anaphase confirmed the absence of a kinetochore on the unattached chromatid. Together, our data reveal that molecules in or near the unattached kinetochore of a monooriented PtK1 chromosome inhibit the metaphase-anaphase transition.  相似文献   

9.
Fibrillarin: a new protein of the nucleolus identified by autoimmune sera   总被引:40,自引:0,他引:40  
Autoimmune serum from a patient with scleroderma was shown by indirect immunofluorescence to label nucleoli in a variety of cells tested including: rat kangaroo PtK2, Xenopus A6, 3T3, HeLa, and human peripheral blood lymphocytes. Immunoblot analysis of nucleolar proteins with the scleroderma antibody resulted in the labeling of a single protein band of 34 kD molecular weight with a pI of 8.5. Electron microscopic immunocytochemistry demonstrated that the protein recognized by the scleroderma antiserum was localized exclusively in the fibrillar region of the nucleolus which included both dense fibrillar and fibrillar center regions. Therefore, we have named this protein "fibrillarin". Fibrillarin was found on putative chromosomal nucleolar organizer regions (NORs) in metaphase and anaphase, and during telophase fibrillarin was found to be an early marker for the site of formation of the newly forming nucleolus. Double label indirect immunofluorescence and immunoelectron microscopy on normal, actinomycin D-segregated, and DRB-treated nucleoli showed that fibrillarin and nucleolar protein B23 were predominantly localized to the fibrillar and granular regions of the nucleolus, respectively. RNase A and DNase I digestion of cells in situ demonstrated that fibrillarin was partially removed by RNase and completely removed by DNase. These results suggest that fibrillarin is a widely occurring basic nonhistone nucleolar protein whose location and nuclease sensitivity may indicate some structural and/or functional role in the rDNA-containing dense fibrillar and fibrillar center regions of the nucleolus.  相似文献   

10.
PRL-1 is one of three closely related protein-tyrosine phosphatases, which are characterized by C-terminal farnesylation. Recent reports suggest that they are involved in the regulation of cell proliferation and transformation. However, their biological function has not yet been determined. Here we show that PRL-1 mRNA is overexpressed in a number of human tumor cell lines, including HeLa cells. Using immunofluorescence we studied the subcellular localization of endogenous PRL-1, and our results demonstrate that PRL-1 exhibits cell cycle-dependent localization; in non-mitotic HeLa cells, PRL-1 is localized to the endoplasmic reticulum in a farnesylation-dependent manner. In mitotic cells PRL-1 relocalizes to the centrosomes and the spindle apparatus, proximal to the centrosomes, in a farnesylation-independent manner. Conditional expression of a catalytic domain mutant in HeLa cells results in a delay in the progression of cells through mitosis but has no effect on other phases of the cell cycle. Further, expression of a farnesylation site PRL-1 mutant results in mitotic defects, characterized by chromosomal bridges in anaphase and lagging chromosomes, without affecting spindle checkpoint function. Together, these results suggest that PRL-1 function is regulated in a cell cycle-dependent manner and implicate PRL-1 in regulating progression through mitosis, possibly by modulating spindle dynamics.  相似文献   

11.
The metaphase I and anaphase I stages of meiosis of wheat×rye hybrids carrying the ph1b mutation were analyzed by genomic in situ hybridization. This technique allows distinction between three different types of wheat-rye associations in metaphase I configurations as well as detection of wheat-rye recombinant chromosomes in anaphase I cells. The frequency of associations between wheat and rye chromosomes greatly exceeded the level of wheat-rye recombination found in the three hybrids examined. Extremely distal associations, which account for about 50% of the total wheat-rye metaphase I chromosomal pairing, can explain such a discrepancy between metaphase I and anaphase I data. It is further discussed whether these associations reflect very distally located chiasmata or nonchiasmatic pairing. The sizes of the segments exchanged in wheat-rye recombinant chromosomes provide cytological evidence that wheat-rye recombination is restricted to the distal chromosomal regions. Received: 24 August 1995; in revised form: 27 February 1996 / Accepted: 28 March 1996  相似文献   

12.
首次对蓼科酸模属植物羊蹄(Rumex japonicus Houtt.)进行了花粉母细胞减数分裂观察。减数分裂后期Ⅰ和后期Ⅱ存在染色体桥、染色体断片和落后染色体等异常现象,统计各时期畸形率都低于5%。随机统计花粉粒活性,成熟率达到95%。羊蹄的减数分裂过程基本正常,也证实了羊蹄的体细胞染色体数目2n=2x=100是可信的。  相似文献   

13.
BACKGROUND: Acquisition of DNA ploidy histograms by image analysis may yield important information regarding the behavior of premalignant cervical lesions. Accurate selection of nuclei for DNA measurement is an important prerequisite for obtaining reliable data. Traditionally, manual selection of nuclei of diagnostic and reference cells is performed by an experienced cytotechnologist. In the present study, a method for the fully automated identification of nuclei of diploid epithelial reference cells in Feulgen- restained Papanicolaou (PAP) smears is described. METHODS: The automated procedure consists of a decision tree implemented on the measurement device, containing nodes with feature threshold values and multivariate discriminant functions. Nodes were constructed to recognize debris and inflammatory cells, as well as diploid and nondiploid epithelial cells of the uterine cervix. Evaluation of the classifier was performed by comparing resulting diploid integrated optical densities with those from manually selected reference cells. RESULTS AND CONCLUSION: On average, automatically acquired values deviated 2.4% from manually acquired values, indicating that the method described in this paper may be useful in cytometric practice.  相似文献   

14.
SO2衍生物诱发蚕豆根尖细胞微核和后期异常的研究   总被引:14,自引:3,他引:11  
研究SO2体内衍生物--亚硫酸钠和亚硫酸氢钠混合液(3:1 mmol·L-1/mmol·L-1)诱发蚕豆根尖细胞微核和后期异常的效应。结果表明:SO2衍生物处理可诱发蚕豆根尖间期细胞微核和核芽,使分裂后期出现多种染色体异常,如断片、桥以及滞后染色体等。异常细胞中以微核细胞和染色体断裂细胞居多。在一定浓度范围内,细胞异常率与处理液浓度之间表现正的线性相关。这些研究结果表明,蚕豆根尖间期微核和后期染色体异常有可能用作检测SO2污染的生物剂量计。  相似文献   

15.
Meiotic cells of Poecilocerus pictus exposed to a low dose of 0.03 M of ethyl methanesulfonate (EMS) were found to be resistant to the induction of chromosomal anomalies by a subsequent challenge dose (0.12 M) of the same mutagen as compared to cells that were not pre-exposed. They responded with a significantly reduced incidence of chromosomal anomalies in metaphase I and II and anaphase I and II. These results indicate the presence of an inducible chromosomal repair mechanism in meiotic cells of P. pictus. The incidence of chromosome damage was found to be less when the time lag between the conditioning and challenging doses was reduced, suggesting that under the conditions tested, the efficacy of repair enzymes gradually decreases as the time between the two doses increases.  相似文献   

16.
Differing arresting agents and protocols can be used to synchronize cells in cultures to specific phases of the cell when studying cell-cycle gene expressions. Often, data derived from individual experiments are analyzed separately, since no appropriate statistical methodology is available at the moment to analyze the data from all such experiments simultaneously. The focus of this paper is to determine the association and coherence of the relative activation times of cell-cycling genes under different experimental conditions. Using a circular-circular regression model, we define two parameters, a rotation parameter for the angular difference between cells' arresting times (phases) in two cell-cycle experiments, and an association parameter to describe the correspondence between the cycle times of maximal expression (phase angles) for a set of genes studied in two experiments. Further, we propose a procedure to assess coherence across multiple experiments, i.e. to what extent the circular ordering of the phase angles of genes is maintained across multiple experiments. Coherence of genes across experiments suggests that functionally these genes tend to respond in a stereotypically sequenced way under different experimental conditions. Our proposed methodology is illustrated by applying it to a HeLa cell-cycle gene-expression data.  相似文献   

17.
Slk19p is a member of the Cdc-14 early anaphase release (FEAR) pathway, a signaling network that is responsible for activation of the cell-cycle regulator Cdc14p in Saccharomyces cerevisiae. Disruption of the FEAR pathway results in defects in anaphase, including alterations in the assembly and behavior of the anaphase spindle. Many phenotypes of slk19Δ mutants are consistent with a loss of FEAR signaling, but other phenotypes suggest that Slk19p may have FEAR-independent roles in modulating the behavior of microtubules in anaphase. Here, a series of SLK19 in-frame deletion mutations were used to test whether Slk19p has distinct roles in anaphase that can be ascribed to specific regions of the protein. Separation-of-function alleles were identified that are defective for either FEAR signaling or aspects of anaphase spindle function. The data suggest that in early anaphase one region of Slk19p is essential for FEAR signaling, while later in anaphase another region is critical for maintaining the coordination between spindle elongation and the growth of interpolar microtubules.  相似文献   

18.
Abstract. Two methods for the study of cell-cycle progression, time-lapse cinemicrography (TLCM) and flow cytometry (FCM), were compared for their ability to measure the shortening of cell-cycle transit time induced by temporary inhibition of DNA synthesis. DNA synthesis was reversibly inhibited by aphidicolin (APH) in synchronized HeLa cells obtained by mitotic collection. TLCM directly measured intermitotic time intervals and thereby directly obtained the cell-cycle transit time distribution. In contrast, FCM measured time dependent changes in the fractions of cells in the cell-cycle phases from which the distribution of cells traversing a cell-cycle boundary, such as that between G1 and S phase, was determined. Nevertheless, both methods provided equivalent measures of the cell-cycle transit time and its dispersion. However, TLCM apeared to provide a better measure of skewness of the transit time distribution than did FCM. Further, both methods were able to detect changes in the cell cycle transit on the order of 1 h or less. The TLCM data showed a greater precision (due to a larger number of data points) than that from FCM. However, FCM was able to directly measure changes in the transit of G1 phase whereas TLCM would require two different experiments to make a similar determination. The results obtained in this study show that FCM can replace TLCM to study most aspects of cell-cycle progression.  相似文献   

19.
The cyclic adenosine monophosphate dependent kinase protein (PKA) controls a variety of cellular processes including cell cycle regulation. Here, we took advantages of genetically encoded FRET-based biosensors, using an AKAR-derived biosensor to characterize PKA activity during mitosis in living HeLa cells using a single-cell approach. We measured PKA activity changes during mitosis. HeLa cells exhibit a substantial increase during mitosis, which ends with telophase. An AKAREV T>A inactive form of the biosensor and H89 inhibitor were used to ascertain for the specificity of the PKA activity measured. On a spatial point of view, high levels of activity near to chromosomal plate during metaphase and anaphase were detected. By using the PKA inhibitor H89, we assessed the role of PKA in the maintenance of a proper division phenotype. While this treatment in our hands did not impaired cell cycle progression in a drastic manner, inhibition of PKA leads to a dramatic increase in chromososme misalignement on the spindle during metaphase that could result in aneuploidies. Our study emphasizes the insights that can be gained with genetically encoded FRET-based biosensors, which enable to overcome the shortcomings of classical methologies and unveil in vivo PKA spatiotemporal profiles in HeLa cells.  相似文献   

20.
Using an asynchronously growing cell population, we investigated how X-irradiation at different stages of the cell cycle influences individual cell–based kinetics. To visualize the cell-cycle phase, we employed the fluorescent ubiquitination-based cell cycle indicator (Fucci). After 5 Gy irradiation, HeLa cells no longer entered M phase in an order determined by their previous stage of the cell cycle, primarily because green phase (S and G2) was less prolonged in cells irradiated during the red phase (G1) than in those irradiated during the green phase. Furthermore, prolongation of the green phase in cells irradiated during the red phase gradually increased as the irradiation timing approached late G1 phase. The results revealed that endoreduplication rarely occurs in this cell line under the conditions we studied. We next established a method for classifying the green phase into early S, mid S, late S, and G2 phases at the time of irradiation, and then attempted to estimate the duration of G2 arrest based on certain assumptions. The value was the largest when cells were irradiated in mid or late S phase and the smallest when they were irradiated in G1 phase. In this study, by closely following individual cells irradiated at different cell-cycle phases, we revealed for the first time the unique cell-cycle kinetics in HeLa cells that follow irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号