首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The addition of external GSSG at concentrations in the range 50-500 microM produces in isolated adult rat heart myocytes an increase of GSH level and only a slight increase of GSSG level. On the contrary, external GSH at the above same indicated concentrations did not change the cell glutathione pool. The pretreatment of the cells with diethylamaleate depleted the myocytes of glutathione and enhanced the GSSG-induced replenishment effect on GSH level. On the contrary, the addition of GSH did not increase the concentration of cell glutathione. The level of cell GSH in diethylmaleate-treated myocytes was not increased after 30 min of incubation with cysteine, or acetylcysteine. The GSSG induced-stimulation on GSH level was not inhibited by buthionine sulfoximine, an inhibitor of glutathione synthesis. On the contrary, this stimulatory effect was inhibited by N, N-bis(2-chloroethyl)-N-nitrosourea, an inhibitor of glutathione reductase, or partially, by the remotion of glucose from the incubation medium. These results support the idea that the isolated adult rat heart myocytes are able to utilize external GSSG in order to increase the intracellular glutathione pool, probably through the reduction of the imported GSSG to GSH.  相似文献   

4.
A rapid decrease of intracellular glutathione (GSH) was observed when exponentially growing cells of Saccharomyces cerevisiae were treated with sublethal concentrations of either dimethyldithiocarbamic acid or thiram [bis(dimethylthiocarbamoyl) disulfide]. The underlying mechanism of this effect possibly involves the intracellular oxidation of dimethyldithiocarbamate anions to thiram, which in turn oxidizes GSH. Overall, a linear relationship was found between thiram concentrations up to 21 microM and production of oxidized GSH (GSSG). Cytochrome c can serve as the final electron acceptor for dimethyldithiocarbamate reoxidation, and it was demonstrated in vitro that NADPH handles the final electron transfer from GSSG to the fungicide by glutathione reductase. These cycling reactions induce transient alterations in the intracellular redox state of several electron carriers and interfere with the respiration of the yeast. Thiram and dimethyldithiocarbamic acid also inactivate yeast glutathione reductase when the fungicide is present within the cells as the disulfide. Hence, whenever the GSH regeneration rate falls below its oxidation rate, the GSH:GSSG molar ratio drops from 45 to 1. Inhibition of glutathione reductase may be responsible for the saturation kinetics observed in rates of thiram elimination and uptake by the yeast. The data suggest also a leading role for the GSH redox cycle in the control of thiram and dimethyldithiocarbamic acid fungitoxicity. Possible pathways for the handling of thiram and dimethyldithiocarbamic acid by yeast are considered with respect to the physiological status, the GSH content, and the activity of glutathione reductase of the cells.  相似文献   

5.
A mechanistic study was performed to elucidate the biochemical events connected with the cocarcinogenic effect of sulfur dioxide (SO2). Glutathione S-sulfonate (GSSO3H), a competitive inhibitor of the glutathione S-transferases, forms in lung cells exposed in culture to sulfite, the hydrated form of SO2. Changes in glutathione status (total GSH) were also observed during a 1-h exposure. Some cells were pretreated with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) to inhibit glutathione reductase. In human lung cells GSSO3H formed in a concentration-dependent manner, while glutathione (GSH) increased and glutathione disulfide (GSSG) decreased as the extracellular sulfite concentration was increased from 0 to 20 mM. The ratio of GSH/GSSG increased greater than 5-fold and the GSH/GSSO3H ratio decreased to 10 with increasing sulfite concentration. GSSO3H formed in rat lung cells exposed to sulfite, with no detectable effect on GSH and GSSG. GSSO3H also formed from cellular GSH mixed disulfides. GSSO3H formed rapidly, reaching its maximum value in 15 min. The viability of both cell types was unaffected except at 20 mM sulfite. GSSO3H incubated with human lung cells did not affect cellular viability. BCNU inhibited cellular GSSO3H reductase to the same extent as GSSG reductase. These results indicate that GSSO3H is formed in cells exposed to sulfite, and could be the active metabolite of sulfite responsible for the cocarcinogenic effect of SO2 by inhibiting conjugation of electrophiles by GSH.  相似文献   

6.
In a previous work, it was shown that in cells after a decrease of cellular glutathione content, toxic zinc effects, such as protein synthesis inhibition or GSSG (glutathione, oxidized form) increases, were enhanced. In this study, zinc toxicity was determined by detection of methionine incorporation as a parameter of protein synthesis and GSSG increase in various lung cell lines (A549, L2, 11Lu, 16Lu), dependent on enhanced GSSG reductase activities and changed glutathione contents. After pretreatment of cells with dl-buthionine-[R,S]-sulfoximine (BSO) for 72 h, cellular glutathione contents were decreased to 15–40% and GSSG reductase activity was increased to 120–135% in a concentration-dependent manner. In BSO pretreated cells, the IC50 values of zinc for methionine incorporation inhibition were unchanged as compared to cells not pretreated. The GSSG increase in BSO pretreated cells by zinc was enhanced in L2, 11Lu, and 16Lu cells, whereas in A549 cells, the GSSG increase by zinc was enhanced only after pretreatment with the highest BSO concentration. Inhibition of GSSG reductase in alveolar epithelial cells was observed at lower zinc concentrations than needed for methionine incorporation inhibition, whereas in fibroblastlike cells, inhibition of GSSG reductase occurred at markedly higher zinc concentrations as compared to methionine incorporation inhibition. These results demonstrate that GSSG reductase is an important factor in cellular zinc susceptibility. We conclude that reduction of GSSG is reduced in zinc-exposed cells. Therefore, protection of GSH oxidation by various antioxidants as well as enhancement of GSH content are expected to be mechanisms of diminishing toxic cellular effects after exposure to zinc.  相似文献   

7.
Innate immune cells recognize pathogens by detecting molecular patterns that are distinct from those of the host. One such pattern is unmethylated CpG dinucleotides, which are common in bacterial DNA but not in vertebrate genomes. Macrophages respond to such CpG motifs in bacterial DNA or synthetic oligodeoxynucleotides (ODN) by inducing NF-kappaB and secreting proinflammatory cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha), but the mechanisms regulating this have been unclear. CpG ODN-stimulated cells produce reactive oxygen species (ROS) and have a decreased ratio of intracellular glutathione/glutathione disulfide (GSH/GSSG), indicating a shift to a more oxidized intracellular redox state. To determine whether this may play a role in mediating the CpG-induced macrophage activation, the GSH/GSSG redox state was manipulated in the murine macrophagelike cell line RAW264.7. Treatment of cells with BCNU to inhibit glutathione reductase (GR) enhanced the CpG-induced intracellular oxidation and decreased the GSH/GSSG, with increased activation of NF-kappaB and a doubling in the CpG-induced production of IL-6 and TNF-alpha. Experimental manipulation of the intracellular GSSG concentration during inhibition of cellular prooxidant production demonstrated that increased intracellular GSSG is a primary signal that is directly or indirectly required for CpG-induced NF-kappaB activation but is not in itself sufficient to trigger this in the absence of CpG ODN. These data suggest the existence of a second CpG-induced intracellular signal, independent of GSSG, mediating the activation of innate immunity by bacterial DNA.  相似文献   

8.
Glutathione is a valuable tripeptide that is widely used in the pharmaceutical, food, and cosmetic industries. Intracellular glutathione exists in two forms, reduced glutathione (GSH) and oxidized glutathione (GSSG). Most of the glutathione produced by fermentation using yeast is in the GSH form because intracellular GSH concentration is higher than GSSG concentration. However, the stability of GSSG is higher than GSH, which makes GSSG more advantageous for industrial production and storage after extraction. In this study, an oxidized glutathione fermentation method using Saccharomyces cerevisiae was developed by following three metabolic engineering steps. First, over-expression of the glutathione peroxidase 3 (GPX3) gene increased the GSSG content better than over-expression of other identified peroxidase (GPX1 or GPX2) genes. Second, the increase in GSSG brought about by GPX3 over-expression was enhanced by the over-expression of the GSH1/GSH2 genes because of an increase in the total glutathione (GSH + GSSG) content. Finally, after deleting the glutathione reductase (GLR1) gene, the resulting GPX3/GSH1/GSH2 over-expressing ΔGLR1 strain yielded 7.3-fold more GSSG compared with the parental strain without a decrease in cell growth. Furthermore, use of this strain also resulted in an enhancement of up to 1.6-fold of the total glutathione content compared with the GSH1/GSH2 over-expressing strain. These results indicate that the increase in the oxidized glutathione content helps to improve the stability and total productivity of glutathione.  相似文献   

9.
Summary The redox interconversion of Escherichia coli glutathione reductase has been studied both in situ, with permeabilized cells treated with different reductants, and in vivo, with intact cells incubated with compounds known to alter their intracellular redox state.The enzyme from toulene-permeabilized cells was inactivated in situ by NADPH, NADH, dithionite, dithiothreitol, or GSH. The enzyme remained, however, fully active upon incubation with the oxidized forms of such compounds. The inactivation was time-, temperature-, and concentration-dependent; a 50% inactivation was promoted by just 2 M NADPH, while 700 M NADH was required for a similar effect. The enzyme from permeabilized cells was completely protected against redox inactivation by GSSG, and to a lesser extent by dithiothreitol, GSH, and NAD(P)+. The inactive enzyme was efficiently reactivated in situ by physiological GSSG concentrations. A significant reactivation was promoted also by GSH, although at concentrations two orders of magnitude below its physiological concentrations. The glutathione reductase from intact E. coli cells was inactivated in vivo by incubation with DL-malate, DL-isocitrate, or higher L-lactate concentrations. The enzyme was protected against redox inactivation and fully reactivated by diamide in a concentration-dependent fashion. Diamide reactivation was not dependent on the synthesis of new protein, thus suggesting that the effect was really a true reactivation and not due to de novo synthesis of active enzyme. The glutathione reductase activity increased significantly after incubation of intact cells with tert-butyl or cumene hydroperoxides, suggesting that the enzyme was partially inactive within such cells. In conclusion, the above results show that both in situ and in vivo the glutathione reductase of Escherichia coli is subjected to a redox interconversion mechanism probably controlled by the intracellular NADPH and GSSG concentrations.  相似文献   

10.
This paper extends the previous study for systems which control intracellular oxidative events in muscle and describes procedures suitable to assay glutathione peroxidase (GSHPx), glutathione reductase (GR), and total glutathione (GSH + GSSG) after fiber typing of individual muscle fibers. In human skeletal muscle, both GR and GSHPx activities were relatively low when compared to those of other tissue. No difference was found among fiber types (I, IIA, and IIB) with regard to GR activity, but in contrast GSHPx activity was significantly lower in type IIB fibers than in the other types. These results suggest that type IIB fibers may have a reduced ability to cope with hydroperoxides generated during oxidative stress, which, in turn, could lead to increased damage to membrane structures by lipid peroxidation or oxidation of sensitive intracellular thiol (-SH) enzymes by hydrogen peroxide. The Km of skeletal muscle GR for GSSG was 27 microM and for NADPH was 22 microM. If one assumes approximately 95% of total glutathione is present in the reduced state, then GSSG concentration would be of the order of 0.3 mmol/kg and under these conditions skeletal muscle GR would be efficient in all muscle fiber types.  相似文献   

11.
Glutathione reductase from Saccharomyces cerevisiae was rapidly inactivated following aerobic incubation with NADPH, NADH, and several other reductants, in a time- and temperature-dependent process. The inactivation had already reached 50% when the NADPH concentration reached that of the glutathione reductase subunit. The inactivation was very marked at pH values below 5.5 and over 7, while only a slight activity decrease was noticed at pH values between these two values. After elimination of excess NADPH the enzyme remained inactive for at least 4 h. The enzyme was protected against redox inactivation by low concentrations of GSSG, ferricyanide, GSH, or dithiothreitol, and high concentrations of NAD(P)+; oxidized glutathione effectively protected the enzyme at concentrations even lower than GSH. The inactive enzyme was efficiently reactivated after incubation with GSSG, ferricyanide, GSH, or dithiothreitol, whether NADPH was present or not. The reactivation with GSH was rapid even at 0 degree C, whereas the optimum temperature for reactivation with GSSG was 30 degrees C. A tentative model for the redox interconversion, involving an erroneous intramolecular disulfide bridge, is put forward.  相似文献   

12.
Studies were conducted in rats to determine the effect of dietary selenium (Se) concentration on hepatic glutathione concentrations and enzyme activities associated with the maintenance of the cellular glutathione status. Male rats were fed 0.1, 3.0, or 6.0 ppm Se as Na2SeO3 for 2, 4, or 6 weeks at which time they were killed and analyses were performed. Both 3.0 and 6.0 ppm Se caused a significant dose-dependent increase in hepatic-reduced glutathione (GSH) by 4 weeks of feeding compared to 0.1 ppm Se. The increase in GSH was preceded by significant, dose-dependent increases in oxidized glutathione (GSSG) as well as the GSSG to GSH ratio. Increases in GSSG and the GSSG to GSH ratio as well as in glutathione reductase and glucose-6-phosphate dehydrogenase activities were observed by 2 weeks of high Se feeding. The current findings substantiate previous results demonstrating effects of high Se on hepatic glutathione concentrations (R. A. LeBoeuf and W. G. Hoekstra, J. Nutr. 113:845-854, 1983) and further suggest that increased cellular GSSG concentrations or the GSSG to GSH ratio caused by 3.0 and 6.0 ppm dietary Se signals for "adaptive" changes in hepatic glutathione metabolism.  相似文献   

13.
The aim of this study was to investigate mechanisms responsible for the inhibition of biliary glutathione efflux in rats with secondary biliary cirrhosis. Rats were studied after bile duct obstruction for 28 days. The biliary secretion of reduced glutathione (GSH), oxidised glutathione (GSSG) and cysteine were completely inhibited in biliary obstructed rats. Hepatic gamma glutamyltranspeptidase (gamma-GT) activity increased significantly, but following its inhibition by acivicin administration GSH, GSSG and cysteine were still absent in bile. Biliary obstruction resulted in a significant increase of the permeability of the paracellular pathway, as shown by the higher bile/plasma ratio and hepatic clearance of [14C]sucrose. GSH and GSSG were, however, significantly lower in the carotid artery and hepatic vein of obstructed animals and the arteriovenous difference across the liver was reduced. The concentration of GSH was significantly reduced and that of GSSG increased in the liver of obstructed rats. Biliary obstruction induced an increase in the hepatic concentration of cysteine and an inhibition of both gamma glutamylcysteine synthetase and methionine adenosyl transferase activities. Dichlorofluorescein (DCF) and the GSSG/GSH ratio and thiobarbituric acid reactive substances (TBARS) concentration, markers of reactive oxygen species production and lipid peroxidation, respectively, were significantly increased. Our data indicate that increased degradation or blood reflux of glutathione do not participate in the disruption of its secretion into bile and support the view that impairment of glutathione synthesis and oxidative stress could contribute to the decline in biliary glutathione output.  相似文献   

14.
Incubation of isolated hepatocytes in the presence of either the parkinsonian-inducing compound 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or its putative toxic metabolite 1-methyl-4-phenylpyridinium ion (MPP+) led to a depletion of intracellular reduced glutathione (GSH), which was mostly recovered as glutathione disulfide (GSSG). However, both MPTP- and MPP+-induced glutathione perturbances were relatively unaffected by the prior inhibition of glutathione reductase with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), suggesting that intracellular oxidation was not the major mechanism involved in the GSH loss. Inclusion of cystine in the incubation mixtures revealed a time-dependent formation of cysteinyl glutathione (CySSG), indicating that an increased efflux was mostly responsible for the MPTP- and MPP+-induced GSH depletion. Therefore, the measurement of GSSG, which is apparently formed extracellularly, was not associated with oxidative stress.  相似文献   

15.
Erythrocytes are both an important source and target of reactive oxygen species in sickle cell disease. Levels of glutathione, a major antioxidant, have been shown to be decreased in sickle erythrocytes and the mechanism leading to this deficiency is not known yet. Detoxification of reactive oxygen species involves the oxidation of reduced glutathione (GSH) into glutathione-disulfide (GSSG) which is actively transported out of erythrocyte. We questioned whether under oxidative conditions, GSSG efflux is increased in sickle erythrocytes. Erythrocytes of 18 homozygous sickle cell patients and 9 race-matched healthy controls were treated with 2,3-dimethoxy-l,4-naphthoquinone, which induces intracellular reactive oxygen species generation, to stimulate GSSG production. Intra- and extracellular concentrations of GSH and GSSG were measured at baseline and during 210-minute 2,3-dimethoxy-l,4-naphthoquinone stimulation. While comparable at baseline, intracellular and extracellular GSSG concentrations were significantly higher in sickle erythrocytes than in healthy erythrocyte after 210-minute 2,3-dimethoxy-l,4-naphthoquinone stimulation (69.9 ± 3.7 μmol/l vs. 40.6 ± 6.9 μmol/l and 25.8 ± 2.7 μmol/l vs. 13.6 ± 1.7 μmol/l respectively, P<0.002). In contrast to control erythrocytes, where GSH concentrations remained unchanged (176 ± 8.4 μmol/l vs. 163 ± 13.6 μmol/l, NS), GSH in sickle erythrocytes decreased significantly (from 167 ± 8.8 μmol/l to 111 ± 11.8 μmol/l, P<0.01) after 210-minute 2,3-dimethoxy-l,4-naphthoquinone stimulation. Adding multidrug resistance-associated protein-1 inhibitor (MK571) to erythrocytes blocked GSSG efflux in both sickle and normal erythrocytes. GSSG efflux, mediated by multidrug resistance-associated protein-1, is increased in sickle erythrocytes, resulting in net loss of intracellular glutathione and possibly higher susceptibility to oxidative stress.  相似文献   

16.
Phycomyces blakesleeanus glutathione reductase shows hysteretic behaviour under experimental conditions, when GSSG substrate inhibition is observed. The progress curves for the reaction show an acceleration phase. The degree of hysteresis varied inversely as the enzyme concentration. It increased when GSSG or NADPH concentration increased, whereas the addition of GSH or NADP+ to the initial reaction mixture prevented it from occurring. In addition, hysteresis was dependent on pH, ionic strength and temperature, decreasing as any of these parameters increased. The parallel effects of pH and ionic strength on the GSSG substrate inhibition and hysteretic behaviour suggest a relationship between these two mechanisms. From the overall results reported in this paper, we propose that the hysteretic behaviour shown by Phycomyces glutathione reductase could be due to a process of time-dependent accumulation of reaction products rather than to a slow conformational change.  相似文献   

17.
Glutathione (γ-glutamylcysteinyl-glycine, GSH) has vital functions as thiol redox buffer and cofactor of antioxidant and detoxification enzymes. Plasmodium falciparum possesses a functional GSH biosynthesis pathway and contains mM concentrations of the tripeptide. It was impossible to delete in P. falciparum the genes encoding γ-glutamylcysteine synthetase (γGCS) or glutathione synthetase (GS), the two enzymes synthesizing GSH, although both gene loci were not refractory to recombination. Our data show that the parasites cannot compensate for the loss of GSH biosynthesis via GSH uptake. This suggests an important if not essential function of GSH biosynthesis pathway for the parasites. Treatment with the irreversible inhibitor of γGCS L-buthionine sulfoximine (BSO) reduced intracellular GSH levels in P. falciparum and was lethal for their intra-erythrocytic development, corroborating the suggestion that GSH biosynthesis is important for parasite survival. Episomal expression of γgcs in P. falciparum increased tolerance to BSO attributable to increased levels of γGCS. Concomitantly expression of glutathione reductase was reduced leading to an increased GSH efflux. Together these data indicate that GSH levels are tightly regulated by a functional GSH biosynthesis and the reduction of GSSG.  相似文献   

18.
19.
We investigated the effect of the selective dopaminergic neurotoxin 1-methyl-4-phenylpyridinium (MPP+) on glutathione redox status and the generation of reactive oxygen intermediates (ROI) in rat pheochromocytoma PC 12 cells in vitro. Treatment with MPP+ (250 microM) led to a 63% increase of reduced glutathione (GSH) after 24 h, while a 10-fold higher concentration of MPP+ (2.5 mM) depleted cellular GSH to 12.5% of control levels within that time. Similarly, the complex I-inhibitor rotenone induced a time-dependent loss of GSH at 1 and 10 microM, whereas treatment with lower concentrations of rotenone (0.1, 0.01 microM) increased cellular GSH. Both MPP+ and rotenone increased cellular levels of oxidised glutathione (GSSG) and the higher concentrations of both compounds led to an elevated ratio of oxidised glutathione (GSSG) vs total glutathione (GSH + GSSG) indicating a shift in cellular redox balance. MPP+ or rotenone did not induce the generation of ROI or significant elevation of intracellular levels of thiobabituric acid reactive substances (TBARS) for up to 48 h. Our data suggest that MPP+ has differential effects on glutathione homeostasis depending on the degree of complex I-inhibition and that inhibition of complex I is not sufficient to generate ROI in this paradigm.  相似文献   

20.
Preexposure to hypoxia increased survival and lung reduced glutathione-to-oxidized glutathione ratios (GSH/GSSG) and decreased pleural effusions in rats subsequently exposed to continuous hyperoxia. In addition, lungs from hypoxia-preexposed rats developed less acute edematous injury (decreased lung weight gains and lung lavage albumin concentrations) than lungs from normoxia-preexposed rats when isolated and perfused with hydrogen peroxide (H2O2) generated by xanthine oxidase (XO) or glucose oxidase (GO). In contrast, when perfused with elastase or exposed to a hydrostatic left atrial pressure challenge, lungs isolated from hypoxia-preexposed rats developed the same acute edematous injury as lungs from normoxia-preexposed rats. The mechanism by which hypoxia preexposure conferred protection against H2O2 appeared to depend on hexose monophosphate shunt (HMPS)-dependent increases in lung glutathione redox cycle activity. First, before perfusion with GO, lungs from hypoxia-preexposed rats had increased glutathione peroxidase and glucose 6-phosphate dehydrogenase (but not catalase or glutathione reductase) activities compared with lungs from normoxia-preexposed rats. Second, after perfusion with GO, lungs from hypoxia-preexposed rats had increased H2O2 reducing equivalents, as reflected by increased GSH/GSSG and NADPH/NADPH+, compared with lungs from normoxia-preexposed rats. Third, pretreatment of rats with an HMPS inhibitor, (6-aminonicotinamide) or a glutathione reductase inhibitor, [1,3-bis(2-chloroethyl)-1-nitrosourea] prevented hypoxia-conferred protection against H2O2-mediated acute edematous injury in isolated lungs. These findings suggest that increased detoxification of H2O2 by glutathione redox cycle and HMPS-dependent mechanisms contributes to tolerance to hyperoxia and resistance to H2O2 of lungs from hypoxia-preexposed rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号