首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Astrocytes and neurons cultured from mouse cerebellum and cerebral cortex were analyzed with respect to content and synthesis of amino acids as well as export of metabolites to the culture medium and the response to fluorocitrate, an, inhibitor of aconitase. The intracellular levels of amino acids were similar in the two astrocytic populations. The release of citrate, lactate and glutamine, however, was markedly higher from cerebellar than from cortical astrocytes. Neurons contained higher levels of glutamate, aspartate and GABA than astrocytic cultures. Cortical neurons were especially high in GABA and aspartate, and the level of aspartate increased specifically when the extracellular level of glutamine was elevated. Fluorocitrate inhibited the TCA cycle in the astrocytes, but was less effective in cerebellar neurons. Whereas neurons responded to fluorocitrate with an increase in the formation of lactate, reflecting, glycolysis, astrocytes decreased the formation of lactate in the presence of fluorocitrate, indicating that astrocytes to a high degree synthesize pyruvate and hence lactate from TCA cycle intermediates.  相似文献   

2.
A global kinetic study of the central metabolism of Vero cells cultivated in a serum‐free medium is proposed in the present work. Central metabolism including glycolysis, glutaminolysis, and tricarboxylic acid cycle (TCA) was demonstrated to be saturated by high flow rates of consumption of the two major substrates, glucose, and glutamine. Saturation was reavealed by an accumulation of metabolic intermediates and amino acids, by a high production of lactate needed to balance the redox pathway, and by a low participation of the carbon flow to the TCA cycle supply. Different culture conditions were set up to reduce the central metabolism saturation and to better balance the metabolic flow rates between lactate production and energetic pathways. From these culture conditions, substitutions of glutamine by other carbon sources, which have lower transport rates such as asparagine, or pyruvate in order to shunt the glycolysis pathway, were successful to better balance the central metabolism. As a result, an increase of the cell growth with a concomitant decrease of cell death and a better distribution of the carbon flow between TCA cycle and lactate production occurred. We also demonstrated that glutamine was a major carbon source to supply the TCA cycle in Vero cells and that a reduction of lactate production did not necessary improve the efficiency of the Vero cell metabolism. Thus, to adapt the formulation of the medium to the Vero cell needs, it is important to provide carbon substrates inducing a regulated supply of carbon in the TCA cycle either through the glycolysis or through other pathways such as glutaminolysis. Finally, this study allowed to better understand the Vero cell behavior in serum‐free medium which is a valuable help for the implementation of this cell line in serum‐free industrial production processes. Biotechnol. Bioeng. 2010;107: 143–153. © 2010 Wiley Periodicals, Inc.  相似文献   

3.
Metabolism of 13C labeled substrates viz. glucose and pyruvate in S. cerevisiae has been studied by 13C Nuclear Magnetic Resonance Spectroscopy. C3-Pyruvate, alanine and lactate, and C2-acetate are produced from [1-13C]glucose. The pyruvate, entering TCA cycle, leads to preferential labeling of C2-glutamate. [2-13C]Glucose results in labeling of C2-pyruvate, alanine and lactate. Some C3-pyruvate is also produced, indicating the routing of the label from glucose through pentose phosphate pathway (PPP). In TCA cycle the C2-pyruvate preferentially labels the C3-glutamate. The NMR spectra, obtained with [2-13C]pyruvate as substrate, confirm the above observations. These results suggest that the intermediates of TCA cycle are transferred from one enzyme active site to another in a manner that allows only restricted rotation of the intermediates. That is, the intermediates are partially channeled.  相似文献   

4.
t-PA producing CHO cells have been shown to undergo a metabolic shift when the culture medium is supplemented with a mixture of glucose and galactose. This metabolic change is characterized by the reincorporation of lactate and its use as an additional carbon source. The aim of this work is to understand lactate metabolism. To do so, Chinese hamster ovary cells were grown in batch cultures in four different conditions consisting in different combinations of glucose and galactose. In experiments supplemented with glucose, only lactate production was observed. Cultures with glucose and galactose consumed glucose first and produced lactate at the same time, after glucose depletion galactose consumption began and lactate uptake was observed. Comparison of the metabolic state of cells with and without the shift by metabolic flux analysis show that the metabolic fluxes distribution changes mostly in the reactions involving pyruvate metabolism. When not enough pyruvate is being produced for cells to support their energy requirements, lactate dehydrogenase complex changes the direction of the reaction yielding pyruvate to feed the TCA cycle. The slow change from high fluxes during glucose consumption to low fluxes in galactose consumption generates intracellular conditions that allow the influx of lactate. Lactate consumption is possible in cell cultures supplemented with glucose and galactose due to the low rates at which galactose is consumed. Evidence suggests that an excessive production and accumulation of pyruvate during glucose consumption leads to lactate production and accumulation inside the cell. Other internal conditions such as a decrease in internal pH, forces the flow of lactate outside the cell. After metabolic shift the intracellular pool of pyruvate, lactate and H+ drops permitting the reversal of the monocarboxylate transporter direction, therefore leading to lactate uptake. Metabolic analysis comparing glucose and galactose consumption indicates that after metabolic shift not enough pyruvate is produced to supply energy metabolism and lactate is used for pyruvate synthesis. In addition, MFA indicates that most carbon consumed during low carbon flux is directed towards maintaining energy metabolism.  相似文献   

5.
Utilization of glucose by adult brain as its metabolic substrate does not mean that glutamate cannot be synthesized from glucose and subsequently oxidatively degraded. Between 10 and 20% of total pyruvate metabolism in brain occurs as formation of oxaloacetate (OAA), a tricarboxylic acid (TCA) cycle intermediate, from pyruvate plus CO(2). This anaplerotic ('pool-filling') process occurs in astrocytes, which in contrast to neurons express pyruvate carboxylase (PC) activity. Equivalent amounts of pyruvate are converted to acetylcoenzyme A and condensed with oxaloacetate to form citrate (Cit), which is metabolized to alpha-ketoglutarate (generating oxidatively-derived energy), glutamate and glutamine and transferred to neurons in the glutamate-glutamine cycle and used as precursor for transmitter glutamate. Since the blood-brain barrier is poorly permeable to glutamate and its metabolites, net synthesis of glutamate must be followed by degradation of equivalent amounts of glutamate, a cataplerotic ('pool-emptying') process, in which glutamate is converted in the TCA cycle to malate or oxaloacetate (generating additional energy), which exit the cycle to form one molecule pyruvate. To obtain an estimate of the rate of astrocytic oxidation of glutamate the rate of oxygen consumption was measured in primary cultures of mouse astrocytes metabolizing glutamate in the absence of other metabolic substrates. The observed rate is compatible with complete oxidative degradation of glutamate.  相似文献   

6.
Anaplerosis, the synthesis of citric acid cycle intermediates, by pancreatic beta cell mitochondria has been proposed to be as important for insulin secretion as mitochondrial energy production. However, studies designed to lower the rate of anaplerosis in the beta cell have been inconclusive. To test the hypothesis that anaplerosis is important for insulin secretion, we lowered the activity of pyruvate carboxylase (PC), the major enzyme of anaplerosis in the beta cell. Stable transfection of short hairpin RNA was used to generate a number of INS-1 832/13-derived cell lines with various levels of PC enzyme activity that retained normal levels of control enzymes, insulin content, and glucose oxidation. Glucose-induced insulin release was decreased in proportion to the decrease in PC activity. Insulin release in response to pyruvate alone, 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH) plus glutamine, or methyl succinate plus beta-hydroxybutyrate was also decreased in the PC knockdown cells. Consistent with a block at PC, the most PC-deficient cells showed a metabolic crossover point at PC with increased basal and/or glucose-stimulated pyruvate plus lactate and decreased malate and citrate. In addition, in BCH plus glutamine-stimulated PC knockdown cells, pyruvate plus lactate was increased, whereas citrate was severely decreased, and malate and aspartate were slightly decreased. The incorporation of 14C into lipid from [U-14C]glucose was decreased in the PC knockdown cells. The results confirm the central importance of PC and anaplerosis to generate metabolites from glucose that support insulin secretion and even suggest PC is important for insulin secretion stimulated by noncarbohydrate insulin secretagogues.  相似文献   

7.
In this study, the growth characteristics of Fusariumoxysporum were evaluated in minimal medium using acetate or different mixtures of acetate and glucose as carbon source. The minimum inhibitory concentration (MIC) of acetic acid that F.oxysporum cells could tolerate was 0.8%w/v while glucose was consumed preferentially to acetate. The activity of isocitrate lyase was high when cells were grown on acetate and acetate plus glucose indicating an activation of the glyoxylate cycle. Investigation of the metabolic fingerprinting and footprinting revealed higher levels of intracellular and extracellular TCA cycle intermediates when F.oxysporum cells were grown on mixtures of acetate and glucose compared to growth on only glucose. Our data support the hypothesis that a higher flux through TCA cycle during acetate consumption could significantly increase the pool of NADH, resulting in the activation of succinate-propionate pathway which consumes reducing power (NADH) via conversion of succinate to propionyl-CoA and produce propionate.  相似文献   

8.
Fermentative and aerobic metabolism in Rhizobium etli.   总被引:1,自引:1,他引:0       下载免费PDF全文
Strains of Rhizobium etli, Rhizobium meliloti, and Rhizobium tropici decreased their capacity to grow after successive subcultures in minimal medium, with a pattern characteristic for each species. During the growth of R. etli CE 3 in minimal medium (MM), a fermentation-like response was apparent: the O2 content was reduced and, simultaneously, organic acids and amino acids were excreted and poly-beta-hydroxybutyrate (PHB) was accumulated. Some of the organic acids excreted into the medium were tricarboxylic acid (TCA) cycle intermediates, and, concomitantly, the activities of several TCA cycle and auxiliary enzymes decreased substantially or became undetectable. Optimal and sustained growth and a low PHB content were found in R. etli CE 3 when it was grown in MM inoculated at a low cell density with O2 maintained at 20% or with the addition of supplements that have an effect on the supply of substrates for the TCA cycle. In the presence of supplements such as biotin or thiamine, no amino acids were excreted and the organic acids already excreted into the medium were later reutilized. Levels of enzyme activities in cells from supplemented cultures indicated that carbon flux through the TCA cycle was maintained, which did not happen in MM. It is proposed that the fermentative state in Rhizobium species is triggered by a cell density signal that results in the regulation of some of the enzymes responsible for the flux of carbon through the TCA cycle and that this in turn determines how much carbon is available for the synthesis and accumulation of PHB. The fermentative state of free-living Rhizobium species may be closely related to the metabolism that these bacteria express during symbiosis.  相似文献   

9.
The tricarboxylic acid (TCA) cycle is an interface among glycolysis, lipid metabolism, and amino acid metabolism. Increasing interest in cancer metabolism has created a demand for rapid and sensitive methods for quantifying the TCA cycle intermediates and related organic acids. We have developed a liquid chromatography–tandem mass spectrometry (LC–MS/MS) method to quantify the TCA cycle intermediates in a 96-well format after O-benzylhydroxylamine (O-BHA) derivatization under aqueous conditions. This method was validated for quantitation of all common TCA cycle intermediates with good sensitivity, including α-ketoglutarate, malate, fumarate, succinate, 2-hydroxyglutarate, citrate, oxaloacetate, pyruvate, isocitrate, and lactate using a 8-min run time in cancer cells and tissues. The method was used to detect and quantify changes in metabolite levels in cancer cells and tumor tissues treated with a pharmacological inhibitor of nicotinamide phosphoribosyl transferase (NAMPT). This method is rapid, sensitive, and reproducible, and it can be used to assess metabolic changes in cancer cells and tumor samples.  相似文献   

10.
Summary Enzyme activities of the tricarboxylic acid (TCA) cycle and the anaplerotic pathways, as well as the cell cytology of two C. lipolytica mutants with the modified glyoxylate cycle and their parent strain were studied during the exponential growth phase on glucose or hexadecane.Among the TCA cycle enzymes, the key enzyme citrate synthase had the highest activity in all three strains grown on both substrates. NAD-dependent isocitrate dehydrogenase had the minimum activity. All strains had well-developed mitochondria.Pyruvate carboxylation was active in the wild strain and mutant 2 grown on glucose, where this reaction is the basic anaplerotic pathway for oxal-acetate synthesis; mutant 1 had actively functioning enzymes for both anaplerotic pathways — pyruvate carboxylase, isocitrate lyase and malate synthase.During hexadecane assimilation, the number of peroxisomes in all strains increased sharply, accompanied by a simultaneous increase in isocitrate lyase activity.The low activities of both isocitrate lyase and pyruvate carboxylase in mutant 2 give reason to believe that this strain has an additional pathway for oxalacetic acid synthesis during the assimilation of n-alkane.  相似文献   

11.
Current thought is that proliferating cells undergo a shift from oxidative to glycolytic metabolism, where the energy requirements of the rapidly dividing cell are provided by ATP from glycolysis. Drawing on the hexokinase–mitochondrial acceptor theory of insulin action, this article presents evidence suggesting that the increased binding of hexokinase to porin on mitochondria of cancer cells not only accelerates glycolysis by providing hexokinase with better access to ATP, but also stimulates the TCA cycle by providing the mitochondrion with ADP that acts as an acceptor for phosphoryl groups. Furthermore, this acceleration of the TCA cycle stimulates protein synthesis via two mechanisms: first, by increasing ATP production, and second, by provision of certain amino acids required for protein synthesis, since the amino acids glutamate, alanine, and aspartate are either reduction products or partially oxidized products of the intermediates of glycolysis and the TCA cycle. The utilization of oxygen in the course of the TCA cycle turnover is relatively diminished even though TCA cycle intermediates are being consumed. With partial oxidation of TCA cycle intermediates into amino acids, there is necessarily a reduction in formation of CO2 from pyruvate, seen as a relative diminution in utilization of oxygen in relation to carbon utilization. This has been assumed to be an inhibition of oxygen uptake and therefore a diminution of TCA cycle activity. Therefore a switch from oxidative metabolism to glycolytic metabolism has been assumed (the Crabtree effect). By stimulating both ATP production and protein synthesis for the rapidly dividing cell, the binding of hexokinase to mitochondrial porin lies at the core of proliferative energy metabolism. This article further reviews literature on the binding of the isozymes of hexokinase to porin, and on the evolution of insulin, proposing that intracellular insulin-like proteins directly bind hexokinase to mitochondrial porin.  相似文献   

12.
Metabolic profiling is defined as the simultaneous assessment of substrate fluxes within and among the different pathways of metabolite synthesis and energy production under various physiological conditions. The use of stable-isotope tracers and the analysis of the distribution of labeled carbons in various intermediates, by both mass spectrometry and NMR spectroscopy, allow the role of several metabolic processes in cell growth and death to be defined. In the present paper we describe the metabolic profiling of Jurkat cells by isotopomer analysis using (13)C-NMR spectroscopy and [1,2-(13)C(2)]glucose as the stable-isotope tracer. The isotopomer analysis of the lactate, alanine, glutamate, proline, serine, glycine, malate and ribose-5-phosphate moiety of nucleotides has allowed original integrated information regarding the pentose phosphate pathway, TCA cycle, and amino acid metabolism in proliferating human leukemia T cells to be obtained. In particular, the contribution of the glucose-6-phosphate dehydrogenase and transketolase activities to phosphoribosyl-pyrophosphate synthesis was evaluated directly by the determination of isotopomers of the [1'-(13)C], [4',5'-(13)C(2)]ribosyl moiety of nucleotides. Furthermore, the relative contribution of the glycolysis and pentose cycle to lactate production was estimated via analysis of lactate isotopomers. Interestingly, pyruvate carboxylase and pyruvate dehydrogenase flux ratios measured by glutamate isotopomers and the production of isotopomers of several metabolites showed that the metabolic processes described could not take place simultaneously in the same macrocompartments (cells). Results revealed a heterogeneous metabolism in an asynchronous cell population that may be interpreted on the basis of different metabolic phenotypes of subpopulations in relation to different cell cycle phases.  相似文献   

13.
Physiological Role of Pyruvate Carboxylase in a Thermophilic Bacillus   总被引:7,自引:4,他引:3  
A prototrophic, thermophilic bacillus is in a state of biotin insufficiency when grown in medium consisting of inorganic salts and a carbon source. The effect of this biotin deficiency on the growth rate is severe only if the functioning of pyruvate carboxylase is essential for the utilization of the particular growth substrate. A mutant, PC2, of the thermophile devoid of active pyruvate carboxylase has been isolated. The properties of this mutant confirm the anaplerotic role of this enzyme in the utilization for growth of compounds like glucose and lactate which are catabolized via pyruvate. This conclusion is supported by the finding that revertants isolated from strain PC2 have regained simultaneously the ability to synthesize active pyruvate carboxylase and the ability to utilize glucose or lactate for growth. The growth of mutant PC2 on acetate, unlike that of the parent wild type, is inhibited when glucose or lactate is added to the medium. Secondary mutants obtained from PC2, which are resistant to such inhibition, still carry the original pyruvate carboxylase lesion but are derepressed for isocitrate lyase. This suggests that the inhibition of the growth of mutant PC2 is due to a block in the functioning of the glyoxylate cycle, produced by the glucose or lactate supplement.  相似文献   

14.
Nocardia salmonicolor, grown on acetate, commercial D,L-lactate or hydrocarbon substrates, has high isocitrate lyase activities compared with those resulting from growth on other carbon sources. This presumably reflects the anaplerotic role of the glyoxylate cycle during growth on the former substrates. Amongst a variety of compounds tested, including glucose, pyruvate and tricarboxylic acid cycle intermediates, only succinate and fumarate prevented an increase in enzyme activity in the presence of acetate. When acetate (equimolar to the initial sugar concentration) was added to cultures growing on glucose, there followed de novo synthesis of isocitrated lyase and isocitrate dehydrogenase, with increases in growth rate and glucose utilization, and both acetate and glucose were metabolized simultaneously. A minute amount of acetate (40 muM) caused isocitrate lyase synthesis (a three-fold increase in activity within 3 min of addition) when added to glucose-limited continuous cultures, but even large amounts added to nitrogen-limited batch cultures were ineffective. Malonate, at a concentration that was not totally growth-inhibitory (1mM) prevented the inhibition of acetate-stimulated isocitrate lyase synthesis by succinate, but fumarate still inhibited in the presence of malonate. Phosphoenolpyruvate is a non-competitive inhibitor of the enzyme (apparent Ki 1-7 mM). The results are consistent with the induction of isocitrate or a closely related metabolite, and catabolite repression by a C-4 acid of the tricarboxylic acid cycle, possibly fumarate.  相似文献   

15.
Abstract: Cerebral formation of lactate via the tricarboxylic acid (TCA) cycle was investigated through the labeling of lactate from [2-13C]acetate and [1-13C]glucose as shown by 13C NMR spectroscopy. In fasted mice that had received [2-13C]acetate intravenously, brain lactate C-2 and C-3 were labeled at 5, 15, and 30 min, reflecting formation of pyruvate and hence lactate from TCA cycle intermediates. In contrast, [1-13C]glucose strongly labeled lactate C-3, reflecting glycolysis, whereas lactate C-2 was weakly labeled only at 15 min. These data show that formation of pyruvate, and hence lactate, from TCA cycle intermediates took place predominantly in the acetate-metabolizing compartment, i.e., glia. The enrichment of total brain lactate from [2-13C]acetate reached ∼1% in both the C-2 and the C-3 position in fasted mice. It was calculated that this could account for 20% of the lactate formed in the glial compartment. In fasted mice, there was no significant difference between the labeling of lactate C-2 and C-3 from [2-13C]acetate, whereas in fed mice, lactate C-3 was more highly labeled than the C-2, reflecting adaptive metabolic changes in glia in response to the nutritional state of the animal. It is hypothesized that conversion of TCA cycle intermediates into pyruvate and lactate may be operative in the glial metabolism of extracellular glutamate and GABA in vivo. Given the vasodilating effect of lactate on cerebral vessels, which are ensheathed by astrocytic processes, conversion of glutamate and GABA into lactate could be one mechanism mediating increases in cerebral blood flow during nervous activity.  相似文献   

16.
The facultative phototroph Rhodobacter capsulatus takes up the highly toxic oxyanion tellurite when grown under both photosynthetic and respiratory growth conditions. Previous works on Escherichia coli and R. capsulatus suggested that tellurite uptake occurred through a phosphate transporter. Here we present evidences indicating that tellurite enters R. capsulatus cells via a monocarboxylate transport system. Indeed, intracellular accumulation of tellurite was inhibited by the addition of monocarboxylates such as pyruvate, lactate and acetate, but not by dicarboxylates like malate or succinate. Acetate was the strongest tellurite uptake antagonist and this effect was concentration dependent, being already evident at 1 μM acetate. Conversely, tellurite at 100 μM was able to restrict the acetate entry into the cells. Both tellurite and acetate uptakes were energy dependent processes, since they were abolished by the protonophore FCCP and by the respiratory electron transport inhibitor KCN. Interestingly, cells grown on acetate, lactate or pyruvate showed a high level resistance to tellurite, whereas cells grown on malate or succinate proved to be very sensitive to the oxyanion. Taking these data together, we propose that: (a) tellurite enters R. capsulatus cells via an as yet uncharacterized monocarboxylate(s) transporter, (b) competition between acetate and tellurite results in a much higher level of tolerance against the oxyanion and (c) the toxic action of tellurite at the cytosolic level is significantly restricted by preventing tellurite uptake.  相似文献   

17.
The nonfermentative Alteromonas putrefaciens NCMB 1735 grew anaerobically in defined media with trimethylamine oxide as external electron acceptor. All amino acids tested, except taurine and those with a cyclic or aromatic side chain, were utilized during trimethylamine oxide-dependent anaerobic growth. Lactate, serine, and cysteine (which are easily converted to pyruvate) and glutamate and aspartate (which are easily converted to tricarboxylic acid cycle intermediates) were metabolized at the fastest rate. Growth with lactate as growth-limiting substrate gave rise to the formation of 40 mol% acetate, whereas serine and cysteine were nearly completely oxidized to CO2. Molar growth yields with the latter substrates were the same and were 50% higher than with lactate. This showed that more ATP was formed when acetyl coenzyme A entered the tricarboxylic acid cycle than when it was converted via acetyl phosphate to acetate. Also, growth with formate as substrate indicated that the reduction of trimethylamine oxide to trimethylamine was coupled with energy conservation by a respiratory mechanism.  相似文献   

18.
E Ring  E Stenberg    A R Strm 《Applied microbiology》1984,47(5):1084-1089
The nonfermentative Alteromonas putrefaciens NCMB 1735 grew anaerobically in defined media with trimethylamine oxide as external electron acceptor. All amino acids tested, except taurine and those with a cyclic or aromatic side chain, were utilized during trimethylamine oxide-dependent anaerobic growth. Lactate, serine, and cysteine (which are easily converted to pyruvate) and glutamate and aspartate (which are easily converted to tricarboxylic acid cycle intermediates) were metabolized at the fastest rate. Growth with lactate as growth-limiting substrate gave rise to the formation of 40 mol% acetate, whereas serine and cysteine were nearly completely oxidized to CO2. Molar growth yields with the latter substrates were the same and were 50% higher than with lactate. This showed that more ATP was formed when acetyl coenzyme A entered the tricarboxylic acid cycle than when it was converted via acetyl phosphate to acetate. Also, growth with formate as substrate indicated that the reduction of trimethylamine oxide to trimethylamine was coupled with energy conservation by a respiratory mechanism.  相似文献   

19.
Primary metabolism of a murine hybridoma was probed with (13)C nuclear magnetic resonance (NMR) spectroscopy. Cells cultured in a hollow fiber bioreactor were serially infused with [1-(13)C] glucose, [2-(13)C] glucose, and [3-(13)C] glutamine. In vivo spectroscopy of the culture was used in conjunction with off-line spectroscopy of the medium to determine the intracellular concentration of several metabolic intermediates and to determine fluxes for primary metabolic pathways. Intracellular concentrations of pyruvate and alanine were very high relative to levels observed in normal quiescent mammalian cells. Estimates made from labeling patterns in lactate indicate that 76% of pyruvate is derived directly from glycolysis; some is also derived from the malate shunt, the pyruvate/melate shuttle associated with lipid synthesis and the pentose phosphate pathway. The rate of formation of pyruvate from the pentose phosphate pathway was estimated to be 4% of that from glycolysis; This value is a lower limit and the actual value may be higher. Incorporation of pyruvate into the tricarboxylic acid (TCA) cycle appears to occur through only pyruvate dehydrogenase; no pyruvate carboxylase activity was detected. The malate shunt rate was approximately equal to the rate of glutamine uptake. The rate of incorporation of glucosederived acetyl-CoA into lipids was 4% of the glucose uptake rate. The TCA cycle rate between isocitrate and alpha-ketoglutarate was 110% of the glutamine uptake rate. (c) 1994 John Wiley & Sons, Inc.  相似文献   

20.
Glucose and glutamine metabolism in several cultured mammalian cell lines (BHK, CHO, and hybridoma cell lines) were investigated by correlating specific utilization and formation rates with specific maximum activities of regulatory enzymes involved in glycolysis and glutaminolysis. Results were compared with data from two insect cell lines and primary liver cells. Flux distribution was measured in a representative mammalian (BHK) and an insect (Spodoptera frugiperda) cell line using radioactive substrates. A high degree of similarity in many aspects of glucose and glutamine metabolism was observed among the cultured mammalian cell lines examined. Specific glucose utilization rates were always close to specific hexokinase activities, indicating that formation of glucose-6-phosphate from glucose (catalyzed by hexokinase) is the rate limiting step of glycolysis. No activity of the key enzymes connecting glycolysis with the tricarboxylic acid cycle, such as pyruvate dehydrogenase, pyruvate carboxylase, and phosphoenolpyruvate carboxykinase, could be detected. Flux distribution in BHK cells showed glycolytic rates very similar to lactate formation rates. No glucose- or pyruvate-derived carbon entered the tricarboxylic acid cycle, indicating that glucose is mainly metabolized via glycolysis and lactate formation. About 8% of utilized glucose was metabolized via the pentose phosphate shunt, while 20 to 30% of utilized glucose followed pathways other than glycolysis, the tricarboxylic acid cycle, or the pentose phosphate shunt. About 18% of utilized glutamine was oxidized, consistent with the notion that glutamine is the major energy source for mammalian cell lines. Mammalian cells cultured in serum-free low-protein medium showed higher utilization rates, flux rates, and enzyme activities than the same cells cultured in serum-supplemented medium. Insect cells oxidized glucose and pyruvate in addition to glutamine. Furthermore, insect cells produced little or no lactate and were able to channel glycolytic intermediates into the tricarboxylic acid cycle. Metabolic profiles of the type presented here for a variety of cell lines may eventually enable one to interfere with the metabolic patterns of cells relevant to biotechnology, with the hope of improving growth rate and/or productivity. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号