首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Trinucleotide repeats undergo contractions and expansions in humans, leading in some cases to fatal neurological disorders. The mechanism responsible for these large size variations is unknown, but replication-slippage events are often suggested as a possible source of instability. We constructed a genetic screen that allowed us to detect spontaneous expansions/contractions of a short trinucleotide repeat in yeast. We show that deletion of RAD27, a gene involved in the processing of Okazaki fragments, increases the frequency of contractions tenfold. Repair of a chromosomal double-strand break (DSB) using a trinucleotide repeat-containing template induces rearrangements of the repeat with a frequency 60 times higher than the natural rate of instability of the same repeat. Our data suggest that both gene conversion and single-strand annealing are major sources of trinucleotide repeat rearrangements. Received: 8 January 1999 / Accepted: 17 March 1999  相似文献   

2.
3.
Now that we have a good understanding of the DNA double strand break (DSB) repair mechanisms and DSB-induced damage signalling, attention is focusing on the changes to the chromatin environment needed for efficient DSB repair. Mutations in chromatin remodelling complexes have been identified in cancers, making it important to evaluate how they impact upon genomic stability. Our current understanding of the DSB repair pathways suggests that each one has distinct requirements for chromatin remodelling. Moreover, restricting the extent of chromatin modifications could be a significant factor regulating the decision of pathway usage. In this review, we evaluate the distinct DSB repair pathways for their potential need for chromatin remodelling and review the roles of ATP-driven chromatin remodellers in the pathways.  相似文献   

4.
SAW1, coding for Saw1, is required for single-strand annealing (SSA) DNA double-strand break (DSB) repair in Saccharomycescerevisiae. Saw1 physically associates with Rad1 and Rad52 and recruits the Rad1–Rad10 endonuclease. Herein we show by fluorescence microscopy that SAW1 is similarly required for recruitment of Rad10 to sites of Synthesis-Dependent Strand Annealing (SDSA) and associates with sites of SDSA repair in a manner temporally overlapped with Rad10. The magnitude of induction of colocalized Saw1-CFP/Rad10-YFP/DSB-RFP foci in SDSA is more dramatic in S and G2 phase cells than in M phase, consistent with the known mechanism of SDSA. We observed a substantial fraction of foci in which Rad10 was localized to the repair site without Saw1, but few DSB sites that contained Saw1 without Rad10. Together these data are consistent with a model in which Saw1 recruits Rad1–Rad10 to SDSA sites, possibly even binding as a protein–protein complex, but departs the repair site in advance of Rad1–Rad10.  相似文献   

5.
The cellular response to double-strand breaks (DSBs) in DNA is a complex signalling network, mobilized by the nuclear protein kinase ataxia-telangiectasia mutated (ATM), which phosphorylates many factors in the various branches of this network. A main question is how ATM regulates DSB repair. Here, we identify the DNA repair enzyme polynucleotide kinase/phosphatase (PNKP) as an ATM target. PNKP phosphorylates 5'-OH and dephosphorylates 3'-phosphate DNA ends that are formed at DSB termini caused by DNA-damaging agents, thereby regenerating legitimate ends for further processing. We establish that the ATM phosphorylation targets on human PNKP-Ser 114 and Ser 126-are crucial for cellular survival following DSB induction and for effective DSB repair, being essential for damage-induced enhancement of the activity of PNKP and its proper accumulation at the sites of DNA damage. These findings show a direct functional link between ATM and the DSB-repair machinery.  相似文献   

6.
赵烨  华跃进 《生命科学》2014,(11):1136-1142
耐辐射球菌对于电离辐射等DNA损伤剂具有极强的抗性,能够将同一个基因组中同时产生的高达100个以上的DNA双链断裂在数十小时内高效而精准地进行修复,是研究DNA双链断裂修复机制的重要模式生物。同源重组、非同源末端连接和单链退火途径作为3个主要的修复途径参与了耐辐射球菌基因组DNA双链断裂的修复过程。此外,一系列新发现的重要蛋白质,如Ppr I、Ddr B等对于耐辐射球菌基因组的修复过程同样至关重要。根据本实验室和国内外在这一研究领域近年来的报道,以不同的修复途径为线索,综述该菌DNA双链断裂修复机制的最新研究成果。  相似文献   

7.
8.
DNA double‐strand breaks (DSBs) can be repaired by two major pathways: non‐homologous end‐joining (NHEJ) and homologous recombination (HR). DNA repair pathway choice is governed by the opposing activities of 53BP1, in complex with its effectors RIF1 and REV7, and BRCA1. However, it remains unknown how the 53BP1/RIF1/REV7 complex stimulates NHEJ and restricts HR to the S/G2 phases of the cell cycle. Using a mass spectrometry (MS)‐based approach, we identify 11 high‐confidence REV7 interactors and elucidate the role of SHLD2 (previously annotated as FAM35A and RINN2) as an effector of REV7 in the NHEJ pathway. FAM35A depletion impairs NHEJ‐mediated DNA repair and compromises antibody diversification by class switch recombination (CSR) in B cells. FAM35A accumulates at DSBs in a 53BP1‐, RIF1‐, and REV7‐dependent manner and antagonizes HR by limiting DNA end resection. In fact, FAM35A is part of a larger complex composed of REV7 and SHLD1 (previously annotated as C20orf196 and RINN3), which promotes NHEJ and limits HR. Together, these results establish SHLD2 as a novel effector of REV7 in controlling the decision‐making process during DSB repair.  相似文献   

9.
10.
Double-strand breakage (DSB) of DNA involves loss of information on the two strands of the DNA fibre and thus cannot be repaired by simple copying of the complementary strand which is possible with single-strand DNA damage. Homologous recombination (HR) can precisely repair DSB using another copy of the genome as template and non-homologous recombination (NHR) permits repair of DSB with little or no dependence on DNA sequence homology. In addition to the well-characterised Ku-dependent non-homologous end-joining (NHEJ) pathway, much recent attention has been focused on Ku-independent NHR. The complex interrelationships and regulation of NHR pathways remain poorly understood, even more so in the case of plants, and we present here an analysis of Ku-dependent and Ku-independent repair of DSB in Arabidopsis thaliana. We have characterised an Arabidopsis xrcc1 mutant and developed quantitative analysis of the kinetics of appearance and loss of γ-H2AX foci as a tool to measure DSB repair in dividing root tip cells of γ-irradiated plants in vivo. This approach has permitted determination of DSB repair kinetics in planta following a short pulse of γ-irradiation, establishing the existence of a Ku-independent, Xrcc1-dependent DSB repair pathway. Furthermore, our data show a role for Ku80 during the first minutes post-irradiation and that Xrcc1 also plays such a role, but only in the absence of Ku. The importance of Xrcc1 is, however, clearly visible at later times in the presence of Ku, showing that alternative end-joining plays an important role in DSB repair even in the presence of active NHEJ.  相似文献   

11.
Cells are constantly threatened by multiple sources of genotoxic stress that cause DNA damage. To maintain genome integrity, cells have developed a coordinated signalling network called DNA damage response (DDR). While multiple kinases have been thoroughly studied during DDR activation, the role of protein dephosphorylation in the damage response remains elusive. Here, we show that the phosphatase Cdc14 is essential to fulfil recombinational DNA repair in budding yeast. After DNA double‐strand break (DSB) generation, Cdc14 is transiently released from the nucleolus and activated. In this state, Cdc14 targets the spindle pole body (SPB) component Spc110 to counterbalance its phosphorylation by cyclin‐dependent kinase (Cdk). Alterations in the Cdk/Cdc14‐dependent phosphorylation status of Spc110, or its inactivation during the induction of a DNA lesion, generate abnormal oscillatory SPB movements that disrupt DSB‐SPB interactions. Remarkably, these defects impair DNA repair by homologous recombination indicating that SPB integrity is essential during the repair process. Together, these results show that Cdc14 promotes spindle stability and DSB‐SPB tethering during DNA repair, and imply that metaphase spindle maintenance is a critical feature of the repair process.  相似文献   

12.
Rothmund–Thomson syndrome (RTS) is an autosomal recessive hereditary disorder associated with mutation in RECQL4 gene, a member of the human RecQ helicases. The disease is characterized by genomic instability, skeletal abnormalities and predisposition to malignant tumors, especially osteosarcomas. The precise role of RECQL4 in cellular pathways is largely unknown; however, recent evidence suggests its involvement in multiple DNA metabolic pathways. This study investigates the roles of RECQL4 in DNA double‐strand break (DSB) repair. The results show that RECQL4‐deficient fibroblasts are moderately sensitive to γ‐irradiation and accumulate more γH2AX and 53BP1 foci than control fibroblasts. This is suggestive of defects in efficient repair of DSB’s in the RECQL4‐deficient fibroblasts. Real time imaging of live cells using laser confocal microscopy shows that RECQL4 is recruited early to laser‐induced DSBs and remains for a shorter duration than WRN and BLM, indicating its distinct role in repair of DSBs. Endogenous RECQL4 also colocalizes with γH2AX at the site of DSBs. The RECQL4 domain responsible for its DNA damage localization has been mapped to the unique N‐terminus domain between amino acids 363–492, which shares no homology to recruitment domains of WRN and BLM to the DSBs. Further, the recruitment of RECQL4 to laser‐induced DNA damage is independent of functional WRN, BLM or ATM proteins. These results suggest distinct cellular dynamics for RECQL4 protein at the site of laser‐induced DSB and that it might play important roles in efficient repair of DSB’s.  相似文献   

13.
14.
The Mre11–Rad50 nuclease–ATPase is an evolutionarily conserved multifunctional DNA double‐strand break (DSB) repair factor. Mre11–Rad50's mechanism in the processing, tethering, and signaling of DSBs is unclear, in part because we lack a structural framework for its interaction with DNA in different functional states. We determined the crystal structure of Thermotoga maritima Rad50NBD (nucleotide‐binding domain) in complex with Mre11HLH (helix‐loop‐helix domain), AMPPNP, and double‐stranded DNA. DNA binds between both coiled‐coil domains of the Rad50 dimer with main interactions to a strand‐loop‐helix motif on the NBD. Our analysis suggests that this motif on Rad50 does not directly recognize DNA ends and binds internal sites on DNA. Functional studies reveal that DNA binding to Rad50 is not critical for DNA double‐strand break repair but is important for telomere maintenance. In summary, we provide a structural framework for DNA binding to Rad50 in the ATP‐bound state.  相似文献   

15.
16.
    
Mismatches in DNA occur either due to replication error or during recombination between homologous but non-identical DNA sequences or due to chemical modification of bases. The mismatch in DNA, if not repaired, result in high spontaneous mutation frequency. The repair has to be in the newly synthesized strand of the DNA molecule, otherwise the error will be fixed permanently. Three distinct mechanisms have been proposed for the repair of mismatches in DNA in prokaryotic cells and gene functions involved in these repair processes have been identified. The methyl-directed DNA mismatch repair has been examined inVibrio cholerae, a highly pathogenic gram negative bacterium and the causative agent of the diarrhoeal disease cholera. The DNA adenine methyltransferase encoding gene (dam) of this organism which is involved in strand discrimination during the repair process has been cloned and the complete nucleotide sequence has been determined.Vibrio cholerae dam gene codes for a 21.5 kDa protein and can substitute for theEscherichia coli enzyme. Overproduction ofVibrio cholerae Dam protein is neither hypermutable nor lethal both in Escherichia coli andVibrio cholerae. WhileEscherichia coli dam mutants are sensitive to 2-aminopurine,Vibrio cholerae 2-aminopurine sensitive mutants have been isolated with intact GATC methylation activity. The mutator genesmutS andmutL involved in the recognition of mismatch have been cloned, nucleotide sequence determined and their products characterized. Mutants ofmutS andmutL ofVibrio cholerae have been isolated and show high rate of spontaneous mutation frequency. ThemutU gene ofVibrio cholerae, the product of which is a DNA helicase II, codes for a 70 kDa protein. The deduced amino acid sequence of themutU gene hs all the consensus helicase motifs. The DNA cytosine methyltransferase encoding gene (dam) ofVibrio cholerae has also been cloned. Thedcm gene codes for a 53 kDa protein. This gene product might be involved in very short patch (VSP) repair of DNA mismatches. The vsr gene which is directly involved in VSP repair process codes for a 23 kDa protein. Using these information, the status of DNA mismatch repair inVibrio cholerae will be discussed.  相似文献   

17.
In Saccharomyces cerevisiae, genome stability depends on RNases H1 and H2, which remove ribonucleotides from DNA and eliminate RNA–DNA hybrids (R‐loops). In Schizosaccharomyces pombe, RNase H enzymes were reported to process RNA–DNA hybrids produced at a double‐strand break (DSB) generated by I‐PpoI meganuclease. However, it is unclear if RNase H is generally required for efficient DSB repair in fission yeast, or whether it has other genome protection roles. Here, we show that S. pombe rnh1? rnh201? cells, which lack the RNase H enzymes, accumulate R‐loops and activate DNA damage checkpoints. Their viability requires critical DSB repair proteins and Mus81, which resolves DNA junctions formed during repair of broken replication forks. “Dirty” DSBs generated by ionizing radiation, as well as a “clean” DSB at a broken replication fork, are efficiently repaired in the absence of RNase H. RNA–DNA hybrids are not detected at a reparable DSB formed by fork collapse. We conclude that unprocessed R‐loops collapse replication forks in rnh1? rnh201? cells, but RNase H is not generally required for efficient DSB repair.  相似文献   

18.
Recent studies have found BCL10 can localize to the nucleus and that this is linked to tumor aggression and poorer prognosis. These studies suggest that BCL10 localization plays a novel role in the nucleus that may contribute to cellular transformation and carcinogenesis. In this study, we show that BCL10 functions as part of the DNA damage response (DDR). We found that BCL10 facilitates the rapid recruitment of RPA, BRCA1 and RAD51 to sites of DNA damage. Furthermore, we also found that ATM phosphorylates BCL10 in response to DNA damage. Functionally, BCL10 promoted DNA double-strand breaks repair, enhancing cell survival after DNA damage. Taken together our results suggest a novel role for BCL10 in the repair of DNA lesions.  相似文献   

19.
20.
Although recent studies highlight the importance of histone modifications and ATP‐dependent chromatin remodelling in DNA double‐strand break (DSB) repair, how these mechanisms cooperate has remained largely unexplored. Here, we show that the SWI/SNF chromatin remodelling complex, earlier known to facilitate the phosphorylation of histone H2AX at Ser‐139 (S139ph) after DNA damage, binds to γ‐H2AX (the phosphorylated form of H2AX)‐containing nucleosomes in S139ph‐dependent manner. Unexpectedly, BRG1, the catalytic subunit of SWI/SNF, binds to γ‐H2AX nucleosomes by interacting with acetylated H3, not with S139ph itself, through its bromodomain. Blocking the BRG1 interaction with γ‐H2AX nucleosomes either by deletion or overexpression of the BRG1 bromodomain leads to defect of S139ph and DSB repair. H3 acetylation is required for the binding of BRG1 to γ‐H2AX nucleosomes. S139ph stimulates the H3 acetylation on γ‐H2AX nucleosomes, and the histone acetyltransferase Gcn5 is responsible for this novel crosstalk. The H3 acetylation on γ‐H2AX nucleosomes is induced by DNA damage. These results collectively suggest that SWI/SNF, γ‐H2AX and H3 acetylation cooperatively act in a feedback activation loop to facilitate DSB repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号