首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The subcellular distribution of 5'-nucleotidase and adenosine deaminase in rat brain hypothalamus and hippocampus was studied. In the hippocampus the 5'-nucleotidase activity was shown to be much higher than in the hypothalamus, while the adenosine deaminase activity, contrariwise, is nearly two times as high as that in the hypothalamus. During the analysis of subcellular distribution 5'-nucleotidase and adenosine deaminase were detected in all fractions under study, i. e., in nuclear, soluble, myelin fractions as well as in synaptic membranes, synaptosomes and "pure" mitochondria. The highest 5'-nucleotidase activity was found in the myelinic and synaptic fractions both in the hypothalamus and in the hippocampus. The highest adenosine deaminase activity was detected in the soluble fraction of the above structures. The enzyme activity in synaptic membranes and synaptosomes was nearly two times as low.  相似文献   

2.
The relative distribution of type A and type B monoamine oxidase (MAO) inside and outside the monoaminergic synaptosomes in preparations from hypothalamus and striatum of the guinea pig was determined by incubation of synaptosomal preparations of these regions with low concentrations of [14C]5-hydroxytryptamine (5-HT), noradrenaline, and dopamine. The deamination within the monoaminergic synaptosomes was hindered by selective amine uptake inhibitors. In the absence of these inhibitors, both intra- and extraneuronal deamination was measured. The two forms of the enzyme were differentiated with the irreversible and selective MAO-A and MAO-B inhibitors clorgyline and selegiline (l-deprenyl), respectively. [14C]5-HT was deaminated greater than 90% by MAO-A both inside and outside the 5-hydroxytryptaminergic synaptosomes prepared from the guinea pig hypothalamus. The deamination of [14C]noradrenaline within the noradrenergic synaptosomes of the hypothalamic preparation was in the ratio 75:25% for MAO-A:MAO-B; the corresponding ratio outside these synaptosomes was 45:55%. The deamination of [14C]dopamine within dopaminergic synaptosomes in the striatal preparation was 65% type A:35% type B, whereas outside these synaptosomes the ratio was 35:65%. Because the relative amounts and the distribution of the two forms of MAO in the guinea pig brain seem to be similar to those previously detected for the human brain, the MAO in the guinea pig brain may be a good model for the MAO in the human brain.  相似文献   

3.
Cranio-cerebral hypothermia (temperature of the body 32-30 degrees C, of the brain 29-27 degrees C) was studied for its effect on the reuptake of neuromediators (3H-noradrenaline and [14C]GABA) by the cortex and hypothalamus synaptosomes of the rat brain. It was found that the reuptake of [3H]noradrenaline by the cortex synaptosomes under narcosis and cranio-cerebral hypothermia was inhibited much stronger than that by the hypothalamus synaptosomes. At the same time GABA-ergic synapses of the cortex and hypothalamus were not sensitive to narcosis. Cranio-cerebral hypothermia essentially inhibited the reuptake of [14C] GABA by synaptosomes and hypothalamus.  相似文献   

4.
REGIONAL TRANSPORT OF TRYPTOPHAN IN RAT BRAIN   总被引:8,自引:4,他引:4  
Abstract— Tryptophan uptake was studied in brain slices and synaptosomes prepared from regions known to vary in the numbers of serotoninergic cell bodies and nerve endings that they contain. The rate of tryptophan uptake was highest in hypothalamus for both types of preparation. Differences among the regions were much more pronounced in isolated nerve endings (synaptosomes). Loading with tryptophan did not affect the uptake into tissue slices. Tryptophan accumulation in hypothalamus synaptosomes was reduced after intraventricular injection of 5,7–dihydroxytryptamine whereas no change was observed in synaptosomes prepared from cerebellum under the same conditions; accumulation by synaptosomes prepared from the hypothalamic and hippocampal regions was reduced after raphe lesions.  相似文献   

5.
Tyrosine hydroxylation rate was measured by a modified tritium release assay at the physiological pH of 7.4 in synaptosomes prepared from cerebellum, hippocampus and hypothalamus. Incubation in the presence of 2 mM 8 bromo cAMP increased tyrosine hydroxylation in all three regions. An almost identical activation was seen after membrane depolarization by 50 mM K+. Removal of Ca2+ from the incubation medium had no significant effect on the activation produced by either agent, however it did significantly increase the control tyrosine hydroxylation rate in the hypothalamus. The combined effect of 8 Br cAMP and high K+ was found to be additive in the cerebellum and hippocampus but not in the hypothalamus. A reduction in tyrosine hydroxylation was observed if incubation was carried out in the presence of 1 μM noradrenaline; the degree of inhibition was similar in the three regions. 2 mM 8 Br. cAMP added to the noradrenaline restored tyrosine hydroxylation to control levels in synaptosomes from the hypothalamus, but not the hippocampus and cerebellum. Tyrosine hydroxylase in the hypothalamus is associated with dopaminergic nerve terminals as well as noradrenergic nerve terminals derived from more than one cell group, the hippocampus and cerebellum however both receive their noradrenergic input entirely from the locus coeruleus. Differences between synaptosomes from the three brain regions may therefore reflect differences in the nature of the enzyme as well as local regulatory mechanisms.  相似文献   

6.
Abstract— The amount of α-melanocyte-stimulating hormone (α-MSH) in the entire hypothalamus as well as the amount of α-MSH in free granule and synaptosome fractions of hypothalamic homogenates was investigated throughout the lifespan of female rats (1-24 months). A 900 g supernatant fluid was prepared from hypothalami following homogenization in an iso-osmotic sucrose solution, and free granules and synaptosomes containing α-MSH were fractionated by means of continuous sucrose density gradient centrifugation. α-MSH was quantified by radioimmunoassay. The total amount of α-MSH in the hypothalamus, as well as the amount in free granules and synaptosomes prepared from hypothalami increased progressively from the 1st to the 5th month of life, and this increase was more pronounced in the free granules than in the synaptosomes. On the other hand, the amount of α-MSH in the hypothalamus and the amount present in free granules and synaptosomes prepared from 5-24-month-old animals decreased with age, and this decrease appeared to proceed at similar rates in both subcellular compartments. Based on these results, it is suggested that ageing of α-MSH neurons in the hypothalamus is accompanied by a degeneration of the axons and/or an alteration in the biosynthetic and degradative activities of the neuron.  相似文献   

7.
Branched-chain-amino-acid:alpha-ketoglutarate transaminase and branched-chain alpha-ketoacid dehydrogenase have been assayed in brains of control and of streptozotocin-induced diabetic rats. Enzyme activities were measured in five distinct regions of the brain: cerebellum, pons + medulla, midbrain, thalamus + hypothalamus, and telencephalon. Subcellular distribution of these enzymes in whole brain was assessed by fractionating brain homogenate into cytoplasm, free mitochondria, and synaptosomes. The following enzymes were used as markers: lactate dehydrogenase for cytoplasm, glutamate dehydrogenase for mitochondria, and glutamate decarboxylase for synaptosomes. The activity of the branched-chain amino acid transaminase in all brain regions was considerably higher than that of the branched-chain alpha-ketoacid dehydrogenase. While the highest activity of the transaminase occurred in brain-stem regions, the highest activity of the dehydrogenase was present in cerebellum and telencephalon. Diabetes did not affect the activity of the transaminase, but it caused a decrease in the total activity of the dehydrogenase in midbrain and in thalamus + hypothalamus. The transaminase was localized in the cytoplasmic fraction of whole brain, while the dehydrogenase was enriched in the free mitochondria.  相似文献   

8.
The subcellular distribution of the TRH-like immunoreactivity in the rat hypothalamus and brain was studied. In differential centrifugation, the 900 g for 10 min supernatant (S1) of the hypothalamus or brain contained 61--79% of the total TRH. At 11,000 g for 20 min, 51--73% of the TRH in S1 was sedimented. When the hypothalamic S1 was fractioned under non-equilibrium conditions at 25 degrees C, two populations of TRH-containing particles were observed in several types of continuous linear density gradients. Metrizamide and sucrose gradients affected TRH-assay. TRH-particles were very light in Percol-gradients. Isotonic dextran 40,000-sucrose gradients gave the most reproducible results. In these gradients, the large TRH-particles (35%) equilibrated at 1.055--1.060 kg/l and the small ones (23%) at 1.041--1.047 kg/l. Working at 4 degrees C decreased the amount of large TRH-particles. The apparently larger particles contained cytoplasmic and mitochondrial enzymes and were sensitive to hypoosmotic shock like synaptosomes. Electron micrographs confirmed that these particles were synaptosomes. The true nature of the small particles remained unclear but morphologically a part of them were also synaptosomes. Treatment of the animals with reserpine (10 mg/kg i.p., 24 h), with 6-hydroxydopamine (100 microgram/rat i.c.v.) or with 5,7-dihydroxytryptamine (200 microgram/rat i.c.v.) did not affect significantly TRH-recovery or distribution in the hypothalamus.  相似文献   

9.
The effect of galanin, a peptide present in a subpopulation of histaminergic neurons emanating from the rat posterior hypothalamus, was investigated on K(+)-evoked [3H]histamine release in slices and synaptosomes from rat cerebral cortex, striatum, hippocampus and hypothalamus. Porcine galanin (0.3 microM) significantly inhibited histamine release induced by 25 mM K+ in slices from hypothalamus and hippocampus, but not from cerebral cortex and striatum, i.e., only in regions in which a colocalization of histamine and galanin has been described. The inhibitory effect of galanin was concentration dependent, with an EC50 value of 5.8 +/- 1.9 nM. The maximal inhibition was of 30-40% in hypothalamic and hippocampal slices depolarized with 25 mM K+. The galanin-induced inhibition observed in hypothalamic slices was not prevented in the presence of 0.6 microM tetrodotoxin and also occurred in hippocampal and hypothalamic synaptosomes, strongly suggesting the activation by galanin of presynaptic receptors located upon histaminergic nerve endings. The maximal inhibitory effect of galanin in slices or synaptosomes was lower than that previously reported for histamine acting at H3-autoreceptors, possibly suggesting that not all histaminergic axon terminals, even in the hypothalamus and hippocampus, are endowed with galanin receptors. It increased progressively in hypothalamic and hippocampal synaptosomes as the strength of the depolarizing stimulus was reduced. It is concluded that galanin modulates histamine release via presynaptic receptors, presumably autoreceptors located upon nerve terminals of a subpopulation of cerebral histaminergic neurons.  相似文献   

10.
It has been established that hydrocortisone administration increased the amount of total, free, bound and synaptosomal GABA in the hypothalamus, glutamate decarboxylase activity in the homogenate and synaptosomes and time of the mediator turnover. ACTH administration increased the GABA content and glutamate decarboxylase activity in synaptosomes. The total amino acid content and time of its turnover got higher only with single hormone administration. In the hippocamp hydrocortisone administration increased the total and free GABA contents, its turnover time, glutamate decarboxylase activity in the homogenate and decreased GABA-aminotransferase activity in the homogenate and synaptosomes. The GABA level in synaptosomes grew only with multiple hormone administration. Single administration of ACTH decreased the total GABA content, glutamate decarboxylase activity in the homogenate, while its multiple administration increased the GABA level in synaptosomes followed by a decrease of GABA-aminotransferase activity in the homogenate and synaptosomes. The GABA turnover time fell with single hormone administration and grew with the multiple one. Adrenalectomy induced no changes in the GABA content and activity of its metabolism enzymes in the hypothalamus, however the bound GABA level decreased, while the turnover time increased. In the hippocamp adrenalectomy decreased total, free and synaptosomal GABA contents, glutamate decarboxylase activity in a homogenate and turnover time. Subsequent hydrocortisone administration only partly normalized the revealed changes of the GABA metabolism in the brain structures under adrenalectomy.  相似文献   

11.
This study examined the effects induced by long-term pinealectomy, daily melatonin treatment to pinealectomized and intact rats, and a single melatonin injection on [14C]-serotonin (5-HT) uptake and release from synaptosomes obtained of hypothalamic regions. Pinealectomy inhibited the accumulation of labeled 5-HT by synaptosomes of the preoptic area-anterior hypothalamus (POA-AH), but it failed to alter the [K+]-evoked 5-HT release. Melatonin treatment for 10 consecutive days to pinealectomized rats restored 5-HT uptake in POA-AH, and also increased 5-HT release in medial and posterior hypothalamus. These results suggest that pineal melatonin plays a stimulatory role on the serotoninergic terminals of the hypothalamus. Moreover, when daily melatonin treatment was administered to intact rats a significant increase in 5-HT uptake activity by synaptosomes of all the hypothalamic regions was observed, but 5-HT release was unaffected. In contrast, a single melatonin injection induced a significant decrease in 5-HT release from synaptosomes of the POA-AH was observed. The results suggest the existence of a differential sensitivity in the mechanisms mediating melatonin actions on 5-HT uptake/release, which depends on the presence of the pineal gland in the animals and on the frequency of the treatments with the pineal hormone.  相似文献   

12.
The subcellular and regional distribution of endo-oligopeptidase (EC 3.4.22.19), an enzyme capable of generating enkephalin by single cleavage from enkephalin-containing peptides, was determined by an enzymatic assay using metorphamide and by immunochemical techniques in the CNS of the rat. The rat CNS contains a membrane-associated form of endo-oligopeptidase, an enzyme predominantly associated with the soluble fraction of brain homogenates. Subcellular fractionation showed that approximately 17% of the total activity of the enzyme is associated with membrane fractions including synaptosomes. Synaptosomal membranes were prepared from neocortex, striatum, hypothalamus, medulla, spinal cord, and cerebellum. The amount of EC 3.4.22.19 activity solubilized by 3-[( 3-cholamidopropyl]dimethylammonio)-1-propanesulfonate from synaptosomal membranes was similar in neocortex, striatum, and hypothalamus, being three- to 10-fold greater than in spinal cord, cerebellum, and medulla. A polyclonal antibody exhibiting high affinity for endo-oligopeptidase was raised in rabbits against the purified rat brain enzyme and used to localize endo-oligopeptidase by Western blotting and by immunoperoxidase techniques. A strong band corresponding to the Mr of EC 3.4.22.19 was found in solubilized proteins obtained from synaptosomal membranes prepared from hypothalamus, neocortex, and striatum when subjected to Western blotting. The immunohistochemical localization of endo-oligopeptidase indicated that the immunoreactivity was confined to gray matter in regions known to be rich in peptide-containing neurons such as the striatum. In the cerebellum, a region poor in peptides, no staining could be detected. The nonuniform distribution of endo-oligopeptidase in rat brain suggests a role in neurotransmitter processing in the CNS.  相似文献   

13.
The inhibition of the A and B forms of monoamine oxidase (MAO) inside and outside serotonergic, noradrenergic, and dopaminergic synaptosomes in homogenates of rat hypothalamus or striatum by clorgyline, a selective and irreversible MAO-A inhibitor, and selegiline, a selective and irreversible MAO-B inhibitor, was examined. Intrasynaptosomal deamination at low concentrations of the substrates [14C]5-hydroxytryptamine ([14C]5-HT; 0.1 microM), [14C]noradrenaline (0.25 microM), [14C]3,4-dihydroxyphenylethylamine ([14C]dopamine; 0.25 microM), and [14C]tyramine (0.25 microM) was hindered by selective uptake inhibitors (citalopram, maprotiline, and amfonelic acid) in the incubation media. Thus, the difference between the deamination of 14C-amine in the absence and presence of the appropriate selective uptake inhibitor provided a measure of deamination in the specific aminergic synaptosomes. This was verified by determining the loss of MAO activity within noradrenergic and serotonergic systems after degeneration of the nerve terminals by the neurotoxins N-chloroethyl-N-ethyl-2-bromobenzylamine and p-chloroamphetamine. Results with the two inhibitors revealed that the A and B forms were responsible for 80 and 20%, respectively, of the deamination of [14C]5-HT within serotonergic synaptosomes from the hypothalamus. The deamination of [14C]noradrenaline within the noradrenergic synaptosomes from the hypothalamus and that of [14C]dopamine and [14C]tyramine within the striatal dopaminergic synaptosomes were due to MAO-A. About 10% of the deamination of [14C]noradrenaline, [14C]dopamine, and [14C]tyramine outside the noradrenergic or dopaminergic synaptosomes was brought about by the B form, with the remainder being deaminated by MAO-A.  相似文献   

14.
Studies on the subcellular distribution of immunoreactive cholecystokinin (CCK) in homogenates of rat cerebral cortex showed that approximately 95% was associated with particulate fractions, including presynaptic terminals (synaptosomes). Chromatography of extracts of tissue and medium from incubated synaptosomes revealed that this material was almost exclusively in the form of COOH-terminal octapeptide (CCK-8), very little CCK-33 being present. There was a wide range of CCK-8 concentrations in synaptosomes from different brain regions (cortex > striatum ? hypothalamus > brain stem). Cerebral cortex synaptosomes were incubated in vitro and showed a complex pattern of CCK-8 release with varying concentrations of tissue: amounts in the medium rose rapidly with increasing synaptosome concentrations, then fell to a plateau at higher tissue values. A mechanism for the rapid disposal of extracellular CCK-8 was associated with synaptosomal fractions. Depolarization-induced (high K+) release of CCK-8 was observed with cortex and corpus striatum synaptosomes. A rapid and reversible enhancement of CCK-8 release from cortex slices was observed in response to elevated K+. Veratrine also released CCK-8 from cortex slices, although this was not reversible. Stimulus-induced release of CCK-8 from synaptosomes and slices required extracellular Ca2+. The storage, release and degradation of CCK-8 by nerve-endings suggest a synaptic function for this peptide.  相似文献   

15.
Abstract— We have studied the subcellular distribution of exogenous and endogenous serotinin in slices from the hypothalamus and midbrain of several species. In a procedure which appears to label the endogenous pools, tissue slices were incubated with low concentrations of [3H]5-HT (5 × 10-8 M), for 45 min, when there was apparent equilibrium between [3H]5-HT of tissue and medium. After the tissue slices were homogenized in 0-32 M-sucrose and subjected to differential centrifugation, the distribution of exogenous and endogenous 5-HT in pellets and supernatant fluid was similar. In some experiments, the crude mitochondrial pellets were resuspended in 0-32 M-sucrose, layered on linear, continuous density gradients of sucrose (1 -5-0-32 M), and centrifuged for short times (incomplete equilibrium centrifugation). The subcellular distribution of particulate tritium, total tritium, and particulate endogenous 5-HT was the same in portions of the gradients containing synaptosomes. The peak distribution of [3H]5-HT in sucrose gradients was separable from the peak for [14C]GABA by four to five fractions; potassium (a marker for cytoplasm occluded within synaptosomes) occurred in the regions of the gradients containing most of the labelled compounds. The distribution of monoamine oxidase activity (a mitochondrial marker) overlapped the distribution of [3H]5-HT after a 15 min centrifugation but appeared in denser regions of the gradient after centrifuging for 2 h. Particles containing [3H]5-HT and [I4C]NE were slightly but consistently separable in synaptosomal fractions isolated from the hypothalamus or midbrain of rat, guinea pig and hamster.  相似文献   

16.
Abstract: As a result of chronic manganese treatment of rats from conception onwards, a decrease was observed in the uptake of dopamine, but not of noradrenaline or serotonin, by synaptosomes isolated from hypothalamus, striatum, and midbrain and in choline uptake by hypothalamic synaptosomes obtained from 70–90-day-old animals. In 100–120-day-old manganese-treated rats the only difference observed was increased choline uptake by striatal synaptosomes. All comparisons were with age-matched controls. These results, which are consistent with views of a dopaminergic and cholinergic involvement in manganese encephalopathy, point out that changes in these systems are observable only at specific times during manganese intoxication.  相似文献   

17.
There is considerable evidence that somatostatin is released from nerve terminals throughout the central nervous system in response to presynaptic stimulation, thus suggesting a neuromodulator role for the peptide. We here report the partial characterization of immunoreactive somatostatin released from rat nervous system in vitro (hypothalamus, spinal cord and hypothalamic, cortical, thalamic and striatal synaptosomes). Serial dilutions of released somatostatin immunoreactivity showed parallelism with dilutions of synthetic somatostatin standard. Somatostatin immunoreactivity released from all tissue areas coeluted with synthetic tetradecapeptide on Sephadex G-25 (fine grade) gel chromatography; more than 85% of this immunoreactivity bound to Sepharose-anti-somatostatin-serum immunoaffinity columns. In addition, immunoreactive material released from hypothalamus, spinal cord and hypothalamic and cortical synaptosomes inhibited somatotropin (growth hormone, 'STH', 'GH') release from perifused anterior pituitary in a dose-related manner, indicating biological similarity to synthetic somatostatin.  相似文献   

18.
The relative distributions of aromatase and of estrogen receptors were studied in the brain of the Japanese quail by a double-label immunocytochemical technique. Aromatase immunoreactive cells (ARO-ir) were found in the medial preoptic nucleus, in the septal region, and in a large cell cluster extending from the dorso-lateral aspect of the ventromedial nucleus of the hypothalamus to the tuber at the level of the nucleus inferioris hypothalami. Immunoreactive estrogen receptors (ER) were also found in each of these brain areas but their distribution was much broader and included larger parts of the preoptic, septal, and tuberal regions. In the ventromedial and tuberal hypothalamus, the majority of the ARO-ir cells (over 75%) also contained immunoreactive ER. By contrast, very few of the ARO-ir cells were double-labeled in the preoptic area and in the septum. More than 80% of the aromatase-containing cells contained no ER in these regions. This suggests that the estrogens, which are formed centrally by aromatization of testosterone, might not exert their biological effects through binding with the classical nuclear ER. The fact that significant amounts of aromatase activity are found in synaptosomes purified by differential centrifugation and that aromatase immunoreactivity is observed at the electron microscope level in synaptic boutons suggests that aromatase might produce estrogens that act at the synaptic level as neurohormones or neuromodulators.  相似文献   

19.
—Homogenates of corpus striatum, cerebral cortex and hypothalamus excised from rat brain were fractionated on discontinuous Ficoll and sucrose density gradients, and the distribution of choline acetyltransferase (ChAc) in the mitochondrial and synaptosomal fractions was determined. In the hypothalamic and cortical regions the fractions enriched in synaptosomes showed much higher activity of ChAc than those containing mainly mitochondria. On the other hand, the corpus striatum showed an equal distribution of ChAc activity in those two fractions. The localization of ChAc was also studied in the postnuclear supernatants obtained from three brain regions, using continuous sucrose density gradients. The distribution of ChAc was compared to that of monoamine oxidase (MAO), potassium and protein. When the pellets obtained from the fractions collected from the gradient were suspended in sucrose, the peak of ChAc activity was close to that of MAO in all three brain regions. When 0.1 mm EDTA +1% butanol was used in order to liberate the occluded form of ChAc, the maximum liberation occurred in lighter fractions, resulting in a shift of the activity peak toward the top of the gradient. This was found with fractions from hypothalamic and cortical regions. In the striatum, the liberated ChAc remained in the same fractions as the occluded enzyme. The results indicate that ChAc is liberated only in those fractions where it is present in synaptosomes. In agreement with the results on the discontinuous gradients this occurs in particles of lower density than mitochondria in cortex and hypo-thalamus, but in particles of similar density to mitochondria in the corpus striatum, indicating regional differences in the distribution of ChAc in the brain. K+ containing particles centrifuged in less dense fractions than those containing ChAc, indicating that synaptosomes are heterogeneous with respect to these two marker substances.  相似文献   

20.
Delta-sleep-inducing peptide (DSIP) stimulates the release of Met-enkephalin (Met-ENK) from superfused slices of the rodent lower brainstem in vitro. In our present study, DSIP (10(-10)-10(-9) M) induced a significant release of Met-ENK from medullary synaptosomes of rats. This DSIP-evoked release of Met-ENK was Ca2+ dependent and tetrodotoxin (TTX) insensitive. Furthermore, DSIP (10(-11)-10(-9) M) significantly increased 45Ca2+ uptake in medullary synaptosomes. These results demonstrate that DSIP acts directly on the nerve endings of Met-ENK-containing neurons to release this pentapeptide by generating a Ca2+ influx into these neurons. Effects of DSIP on Met-ENK release in other discrete brain regions were also studied. Significant DSIP-evoked Met-ENK release from synaptosomes was observed in the cortex, hypothalamus, and midbrain (at concentrations of 10(-10) and 10(-9) M) and in the hippocampus and thalamus (only at 10(-9) M), but not in the striatum. In the hypothalamus, the release of Leu-enkephalin from its synaptosomes was slightly, but not significantly, enhanced by DSIP (10(-10)-10(-8) M). Our findings demonstrate that DSIP triggered a Ca2+ influx in nerve endings to induce a subsequent release of Met-ENK from neurons in only certain brain regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号