首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extracellular signal-regulated kinase (ERK) cascade is activated in response to a multitude of extracellular signals and converts these signals into a variety of specific biological responses, including cell differentiation, cell movement, cell division, and apoptosis. The specificity of the biological response is likely to be controlled in large measure by the localization of signaling, thus enabling ERK activity to be directed towards specific targets. Here we show that the RACK1 scaffold protein functions specifically in integrin-mediated activation of the mitogen-activated protein kinase/ERK cascade and targets active ERK to focal adhesions. We found that RACK1 associated with the core kinases of the ERK pathway, Raf, MEK, and ERK, and that attenuation of RACK1 expression resulted in a decrease in ERK activity in response to adhesion but not in response to growth factors. RACK1 silencing also caused a reduction of active ERK in focal adhesions, an increase in focal adhesion length, a decreased rate of focal adhesion disassembly, and decreased motility. Our data further suggest that focal adhesion kinase is an upstream activator of the RACK1/ERK pathway. We suggest that RACK1 tethers the ERK pathway core kinases and channels signals from upstream activation by integrins to downstream targets at focal adhesions.  相似文献   

2.
The oncogenic SHC proteins are signaling substrates for most receptor and cytoplasmic tyrosine kinases (TKs) and have been implicated in cellular growth, transformation, and differentiation. In tumor cells overexpressing TKs, the levels of tyrosine phosphorylated SHC are chronically elevated. The significance of amplified SHC signaling in breast tumorigenesis and metastasis remains unknown. Here we demonstrate that seven- to ninefold overexpression of SHC significantly altered interactions of cells with fibronectin (FN). Specifically, in human breast cancer cells overexpressing SHC (MCF-7/SHC) the association of SHC with alpha5beta1 integrin (FN receptor) was increased, spreading on FN was accelerated, and basal growth on FN was reduced. These effects coincided with an early decline of adhesion-dependent MAP kinase activity. Basal motility of MCF-7/SHC cells on FN was inhibited relative to that in several cell lines with normal SHC levels. However, when EGF or IGF-I was used as the chemoattractant, the locomotion of MCF-7/SHC cells was greatly (approx fivefold) stimulated, while it was only minimally altered in the control cells. These data suggest that SHC is a mediator of the dynamic regulation of cell adhesion and motility on FN in breast cancer cells.  相似文献   

3.
Macrophages require activation with either PMA (Mercurio, A. M., and L. M. Shaw. 1988. J. Cell Biol. 107:1873-1880) or interferon-gamma (Shaw, L. M., and A. M. Mercurio. 1989. J. Exp. Med. 169:303-308) to adhere to a laminin substratum. In the present study, we identified an integrin laminin receptor on macrophages and characterized cellular changes that occur in response to PMA activation that facilitate laminin adhesion. A monoclonal antibody (GoH3) that recognizes the integrin alpha 6 subunit (Sonnenberg, A., H. Janssen, F. Hogervorst, J. Calafat, and J. Hilgers. 1987. J. Biol. Chem. 262:10376-10383) specifically inhibited adhesion to laminin-coated surfaces. This antibody precipitated an alpha 6 beta 1 heterodimer (Mr 130/110 kD) from 125I surface-labeled macrophages. The amount of radiolabeled receptor on the cell surface did not increase after PMA activation. Thus, the induction of laminin adhesion cannot be attributed to de novo or increased surface expression of alpha 6 beta 1. By initially removing the Triton X-100-soluble fraction of macrophages and then disrupting the remaining cytoskeletal framework, we observed that 75% of the alpha 6 beta 1 heterodimer on the cell surface is anchored to the cytoskeleton in macrophages that had adhered to a laminin substratum in response to PMA. Significant cytoskeletal anchoring of this receptor was not observed in macrophages that had adhered to fibronectin or tissue culture plastic, nor was it seen in nonadherent cells. PMA also induced phosphorylation of the cytoplasmic domain of the alpha 6 subunit, but not the beta 1 subunit. Phosphorylated alpha 6 was localized to the cytoskeletal fraction only in macrophages plated on a laminin substratum. In summary, our results support a mechanism for the regulation of macrophage adhesion to laminin that involves specific and dynamic matrix integrin-cytoskeletal interactions that may be facilitated by integrin phosphorylation.  相似文献   

4.
The pleckstrin homology (PH) domain, identified in numerous signaling proteins including the beta-adrenergic receptor kinase (betaARK), was found to bind to various phospholipids as well as the beta subunit of heterotrimeric G proteins (Gbeta) [Touhara, K., et al. (1994) J. Biol. Chem. 269, 10217-10220]. Several PH domain-containing proteins are also substrates of protein kinase C (PKC). Because RACK1, an anchoring protein for activated PKC, is homologous to Gbeta (both contain seven repeats of the WD-40 motif), we determined (i) whether a direct interaction between various PH domains and RACK1 occurs and (ii) the effect of PKC on this interaction. We found that recombinant PH domains of several proteins exhibited differential binding to RACK1. Activated PKC and the PH domain of beta-spectrin or dynamin-1 concomitantly bound to RACK1. Although PH domains bind acidic phospholipids, the interaction between various PH domains and RACK1 was not dependent on the phospholipid activators of PKC, phosphatidylserine and 1, 2-diacylglycerol. Binding of these PH domains to RACK1 was also not affected by either inositol 1,4,5-triphosphate (IP(3)) or phosphatidylinositol 4,5-bisphosphate (PIP(2)). Our in vitro data suggest that RACK1 binds selective PH domains, and that PKC regulates this interaction. We propose that, in vivo, RACK1 may colocalize the kinase with its PH domain-containing substrates.  相似文献   

5.
We have previously shown that mutation of the two tyrosines in the cytoplasmic domain of integrin subunit beta1 (Y783 and Y795) to phenylalanines markedly reduces the capability of beta1A integrins to mediate directed cell migration. In this study, beta1-dependent cell spreading was found to be delayed in GD25 cells expressing beta1A(Y783/795F) compared to that in wild-type GD25-beta1A. Focal adhesion kinase (FAK) tyrosine phosphorylation and activation were severely impaired in response to beta1-dependent adhesion in GD25-beta1A(Y783/795F) cells compared to that in wild-type GD25-beta1A or mutants in which only a single tyrosine was altered (beta1A(Y783F) or beta1A(Y795F)). Phosphorylation site-specific antibodies selective for FAK phosphotyrosine 397 indicated that the defect in FAK phosphorylation via beta1A(Y783/795F) lies at the level of the initial autophosphorylation step. Indeed, beta1A-dependent tyrosine phosphorylation of tensin and paxillin was lost in the beta1A(Y783/795F) cells, consistent with the impairment in FAK activation. In contrast, p130(CAS) overall tyrosine phosphorylation was unaffected by the beta1 mutations. Despite the defect in beta1-mediated FAK activation, FAK was still localized to focal adhesions. Taken together, the phenotype of the GD25-beta1A(Y783/795F) cells resembles, but is distinct from, the phenotype observed in FAK-null cells. These observations argue that tyrosines 783 and 795 within the cytoplasmic tail of integrin subunit beta1A are critical mediators of FAK activation and cell spreading in GD25 cells.  相似文献   

6.
《The Journal of cell biology》1995,130(5):1181-1187
The integrins have recently been implicated in signal transduction. A likely mediator of integrin signaling is focal adhesion kinase (pp125FAK or FAK), a structurally distinct protein tyrosine kinase that becomes enzymatically activated upon engagement of integrins with their ligands. A second candidate signaling molecule is paxillin, a focal adhesion associated, cytoskeletal protein that coordinately becomes phosphorylated on tyrosine upon activation of pp125FAK. Paxillin physically complexes with two protein tyrosine kinases, pp60src and Csk (COOH-terminal src kinase), and the oncoprotein p47gag-crk, each of which could function as part of a paxillin signaling complex. Using an in vitro assay we have established that the cytoplasmic domain of the beta 1 integrin can bind to paxillin and pp125FAK from chicken embryo cell lysates. The NH2-terminal, noncatalytic domain of pp125FAK can bind directly to the cytoplasmic tail of beta 1 and recognizes integrin sequences distinct from those involved in binding to alpha-actinin. Paxillin binding is independent of pp125FAK binding despite the fact that both bind to the same region of beta 1. These results demonstrate that the cytoplasmic domain of the beta subunits of integrins contain binding sites for both signaling molecules and structural proteins suggesting that integrins can coordinate the generation of cytoplasmic signals in addition to their role in anchoring components of the cytoskeleton.  相似文献   

7.
FG human pancreatic carcinoma cells adhere to vitronectin using integrin alpha v beta 5 yet are unable to migrate on this ligand whereas they readily migrate on collagen in an alpha 2 beta 1-dependent manner. We report here that epidermal growth factor receptor (EGFR) activation leads to de novo alpha v beta 5-dependent FG cell migration on vitronectin. The EGFR specific tyrosine kinase inhibitor tyrphostin 25 selectively prevents EGFR autophosphorylation thereby preventing the EGF-induced FG cell migration response on vitronectin without affecting constitutive migration on collagen. Protein kinase C (PKC) activation also leads to alpha v beta 5-directed motility on vitronectin; however, this is not blocked by tyrosine kinase inhibitors. In this case, PKC activation appears to be associated with and downstream of EGFR signaling since calphostin C, an inhibitor of PKC, blocks FG cell migration on vitronectin induced by either PKC or EGF. These findings represent the first report implicating a receptor tyrosine kinase in a specific integrin mediated cell motility event independent of adhesion.  相似文献   

8.
Integrin adhesion receptors have been implicated in bidirectional signal transduction. The dynamic regulation of integrin affinity and avidity as well as post-ligand effects involved in outside-in signaling depends on the interaction of integrins with cytoskeletal and signaling proteins. In this study, we attempted to identify cytoplasmic binding partners of alpha(1)beta(1) integrin. We were able to show that cell adhesion to alpha(1)beta(1)-specific substrates results in the association of phospholipase Cgamma (PLCgamma) with the alpha(1)beta(1) integrin independent of PLCgamma tyrosine phosphorylation. Using peptide-binding assays, the membrane proximal sequences within the alpha(1)beta(1) integrin subunits were identified as binding sites for PLCgamma. In particular, the conserved sequence of beta(1) subunit binds the enzyme very efficiently. Because purified PLCgamma also binds the integrin peptides, binding seems to be direct. Inhibition of PLC by leads to reduced cell adhesion on alpha(1)beta(1)-specific substrates. Cells lacking the conserved domain of the alpha(1) subunit fail to respond to the PLC inhibition, indicating that this domain is necessary for PLC-dependent adhesion modulation of alpha(1)beta(1) integrin.  相似文献   

9.
10.
LIM proteins contain one or more double zinc finger structures (LIM domains) mediating specific contacts between proteins that participate in the formation of multiprotein complexes. We report that the LIM-only protein DRAL/FHL2, with four and a half LIM domains, can associate with alpha(3A), alpha(3B), alpha(7A), and several beta integrin subunits as shown in yeast two-hybrid assays as well as after overexpression in human cells. The amino acid sequence immediately following the conserved membrane-proximal region in the integrin alpha subunits or the C-terminal region with the conserved NXXY motif of the integrin beta subunits are critical for binding DRAL/FHL2. Furthermore, the DRAL/FHL2 associates with itself and with other molecules that bind to the cytoplasmic domain of integrin alpha subunits. Deletion analysis of DRAL/FHL2 revealed that particular LIM domains or LIM domain combinations bind the different proteins. These results, together with the fact that full-length DRAL/FHL2 is found in cell adhesion complexes, suggest that it is an adaptor/docking protein involved in integrin signaling pathways.  相似文献   

11.
The integrin cytoplasmic domain modulates cell proliferation, adhesion, migration, and intracellular signaling. The beta(1) integrin subunits, beta(1C) and beta(1A), that contain variant cytoplasmic domains differentially affect cell proliferation; beta(1C) inhibits proliferation, whereas beta(1A) promotes it. We investigated the ability of beta(1C) and beta(1A) to modulate integrin-mediated signaling events that affect cell proliferation and survival in Chinese hamster ovary stable cell lines expressing either human beta(1C) or human beta(1A). The different cytodomains of either beta(1C) or beta(1A) did not affect either association with the endogenous alpha(2), alpha(V), and alpha(5) subunits or cell adhesion to fibronectin or TS2/16, a mAb to human beta(1). Upon engagement of endogenous and exogenous integrins by fibronectin, cells expressing beta(1C) showed significantly inhibited extracellular signal-regulated kinase (ERK) 2 activation compared with beta(1A) stable cell lines. In contrast, focal adhesion kinase phosphorylation and Protein Kinase B/AKT activity were not affected. Selective engagement of the exogenously expressed beta(1C) by TS2/16 led to stimulation of Protein Kinase B/AKT phosphorylation but not of ERK2 activation; in contrast, beta(1A) engagement induced activation of both proteins. We show that Ras activation was strongly reduced in beta(1C) stable cell lines in response to fibronectin adhesion and that expression of constitutively active Ras, Ras 61 (L), rescued beta(1C)-mediated down-regulation of ERK2 activation. Inhibition of cell proliferation in beta(1C) stable cell lines was attributable to an inhibitory effect of beta(1C) on the Ras/MAP kinase pathway because expression of activated MAPK kinase rescued beta(1C) antiproliferative effect. These findings show that the beta(1C) variant, by means of a unique signaling mechanism, selectively inhibits the MAP kinase pathway by preventing Ras activation without affecting either survival signals stimulated by integrins or cellular interactions with the extracellular matrix. These findings highlight a role for beta(1)-specific cytodomain sequences in maintaining an intracellular balance of proliferation and survival signals.  相似文献   

12.
Identification of selective anchoring proteins responsible for specialized localization of specific signaling proteins has led to the identification of new inhibitors of signal transduction, inhibitors of anchoring protein-ligand interactions. RACK1, the first receptor for activated C kinase identified in our lab, is a selective anchoring protein for betaII protein kinase C (betaIIPKC). We previously found that at least part of the RACK1-binding site resides in the C2 domain of betaIIPKC (Ron, D., Luo, J., and Mochly-Rosen, D. (1995) J. Biol. Chem. 270, 24180-24187). Here we show that the V5 domain also contains part of the RACK1-binding site in betaIIPKC. In neonatal rat cardiac myocytes, the betaIIV5-3 peptide (amino acids 645-650 in betaIIPKC) selectively inhibited phorbol 12-myristate 13-acetate (PMA)-induced translocation of betaIIPKC and not betaIPKC. In addition, the betaIIV5-3 peptide inhibited cardiac myocyte hypertrophy in PMA-treated cells. Interestingly, betaIV5-3 (646-651 in betaIPKC), a selective translocation inhibitor of betaIPKC, also inhibited PMA-induced cardiac myocyte hypertrophy, demonstrating that both betaI- and betaIIPKC are essential for this cardiac function. Therefore, the betaIIV5 domain contains part of the RACK1-binding site in betaIIPKC; a peptide corresponding to this site is a selective inhibitor of betaIIPKC and, hence, enables the identification of betaIIPKC-selective functions.  相似文献   

13.
Early metastatic growth occurs at sites of vascular arrest of blood-borne cancer cells and is entirely intravascular. Here we show that lung colonization by B16-F10 cells is licensed by beta(4) integrin adhesion to the mouse lung endothelial Ca(2+)-activated chloride channel protein mCLCA1. In a manner independent of Met, beta(4) integrin-mCLCA1-ligation leads to complexing with and activation of focal adhesion kinase (FAK) and downstream signaling to extracellular signal-regulated kinase (ERK). FAK/ERK signaling is Src-dependent and is interrupted by adhesion blocking antibodies and by dominant-negative (dn)-FAK mutants. Levels of ERK activation in B16-F10 cells transfected with wild-type or mutant FAK are closely associated with rates of proliferation and bromodeoxyuridine (BrdUrd) incorporation of tumor cells grown in mCLCA1-coated dishes, the ability to form tumor cell colonies on CLCA-expressing endothelial cell monolayers, and the extent of pulmonary metastatic growth. Parallel with the transfection rates, B16-F10 cells transfected with dn-FAK mutants and injected intravenously into syngeneic mice generate approximately half the number and size of lung colonies that vector-transfected B16-F10 cells produce. For the first time, beta(4) integrin ligation to its novel CLCA-adhesion partner is shown to be associated with FAK complexing, activation, and signaling to promote early, intravascular, metastatic growth.  相似文献   

14.
Phospholipase Cgamma1 (PLCgamma1) represents a major downstream signalling component of the epidermal growth factor (EGF) receptor (EGFR) and is activated by tyrosine phosphorylation. Here we show for the first time that cellular knockdown of protein kinase Cepsilon (PKCepsilon) leads to decreased activation of PLCgamma1 by EGF and that EGF induces tyrosine phosphorylation of PKCepsilon as well as association of PKCepsilon with both EGFR and PLCgamma1. Using several mutants, co-immunoprecipitation and phosphopeptide-based pull-down experiments we found that in dependency on c-Src and EGF-stimulation PKCepsilon may bind to the c-Src-specific phosphorylation site pY845-EGFR. Furthermore, we identified a single tyrosine residue, PKCepsilon-Y573, within a consensus binding sequence of the C-terminal SH2 domain of PLCgamma1 which is critical for both tyrosine phosphorylation of PKCepsilon and its association with PLCgamma1. Thus, in particular cells and independent of the kinase activity PKCepsilon may form a signalling module with EGFR and PLCgamma1. Thereby the tyrosine phosphorylation of PLCgamma1 via the EGFR may be facilitated. This is a novel function of PKCepsilon upstream of PLCgamma1 and a novel paradigm for the EGF-induced formation of multi-protein complexes.  相似文献   

15.
Mice lacking protein kinase Cepsilon (PKCepsilon) are hypersensitive to both Gram-positive and Gram-negative bacterial infections; however, the mechanism of PKCepsilon coupling to the Toll-like receptors (TLRs), responsible for pathogen detection, is poorly understood. Here we sought to investigate the mechanism of PKCepsilon involvement in TLR signaling and found that PKCepsilon is recruited to TLR4 and phosphorylated on two recently identified sites in response to lipopolysaccharide (LPS) stimulation. Phosphorylation at both of these sites (Ser-346 and Ser-368) resulted in PKCepsilon binding to 14-3-3beta. LPS-induced PKCepsilon phosphorylation, 14-3-3beta binding, and recruitment to TLR4 were all dependent on expression of the scaffold protein MyD88. In mouse embryo fibroblasts and activated macrophages from MyD88 knock-out mice, LPS-stimulated PKCepsilon phosphorylation was reduced compared with wild type cells. Acute knockdown of MyD88 in LPS-responsive 293 cells also resulted in complete loss of Ser-346 phosphorylation and TLR4/PKCepsilon association. By contrast, MyD88 overexpression in 293 cells resulted in constitutive phosphorylation of PKCepsilon. A general role for MyD88 was evidenced by the finding that phosphorylation of PKCepsilon was induced by the activation of all TLRs tested that signal through MyD88 (i.e. all except TLR3) both in RAW cells and in primary human macrophages. Functionally, it is established that phosphorylation of PKCepsilon at these two sites is required for TLR4- and TLR2-induced NFkappaB reporter activation and IkappaB degradation in reconstituted PKCepsilon(-/-) cells. This study therefore identifies the scaffold protein MyD88 as the link coupling TLRs to PKCepsilon recruitment, phosphorylation, and downstream signaling.  相似文献   

16.
Integrins are alphabeta transmembrane receptors that function in key cellular processes, including cell adhesion, differentiation, and extracellular matrix deposition through interactions with extracellular, membrane, and cytoplasmic proteins. We previously identified and cloned a muscle beta1 integrin cytoplasmic binding protein termed MIBP and found that the expression level of MIBP is critical in the decision-making process of terminal myogenic differentiation. We report here that MIBP interacts with the alpha7beta1 integrin but not the alpha5beta1 integrin in C2C12 myoblasts, suggesting an important role of integrin alpha chains in the regulation of the beta1-MIBP interaction. Furthermore, consistent with its selective binding activity toward the alpha7beta1 laminin receptor, we have found that overexpression of MIBP in C2C12 myoblasts resulted in a significant reduction of cell adhesion to laminin and inhibition of laminin matrix deposition. By contrast, neither cell adhesion to fibronectin nor fibronectin matrix deposition was significantly altered in cells overexpressing MIBP. Finally, we show that both the protein level and tyrosine phosphorylation of paxillin, a key signaling molecule involved in the cellular control of myogenic differentiation, are increased by MIBP. These results suggest that MIBP functions in the control of myogenic differentiation by regulating alpha7beta1 integrin-mediated cell interactions with laminin matrix and intracellular signaling through paxillin.  相似文献   

17.
The WD repeat scaffolding protein RACK1 can mediate integration of the insulin-like growth factor I receptor (IGF-IR) and integrin signaling in transformed cells. To address the mechanism of RACK1 function, we searched for regulatory proteins that associate with RACK1 in an IGF-I-dependent manner. The serine threonine phosphatase protein phosphatase 2A (PP2A) was found associated with RACK1 in serum-starved cells, and it dissociated immediately upon stimulation with IGF-I. This dissociation of PP2A from RACK1 and an IGF-I-mediated decrease in cellular PP2A activity did not occur in cells expressing either the serine 1248 or tyrosine 1250/1251 mutants of the IGF-IR that do not interact with RACK1. Recombinant RACK1 could bind to PP2A in vitro and restore phosphatase activity to PP2A from IGF-I-stimulated cells. Ligation of integrins with fibronectin or Matrigel was sufficient to facilitate IGF-I-mediated dissociation of PP2A from RACK1 and also to recruit beta1 integrin as PP2A dissociated. By using TAT-fused N-terminal and C-terminal deletion mutants of RACK1, we determined that both PP2A and beta1 integrin interact in the C terminus of RACK1 within WD repeats 4 to 7. This suggests that integrin ligation displaces PP2A from RACK1. MCF-7 cells overexpressing RACK1 exhibited enhanced motility, which could be reversed by the PP2A inhibitor okadaic acid. Small interfering RNA-mediated suppression of RACK1 also decreased the migratory capacity of DU145 cells. Taken together, our findings indicate that RACK1 enhances IGF-I-mediated cell migration through its ability to exclusively associate with either beta1 integrin or PP2A in a complex at the IGF-IR.  相似文献   

18.
RACK1 is an intracellular receptor for the serine/ threonine protein kinase C. Previously, we demonstrated that RACK1 also interacts with the Src protein-tyrosine kinase. RACK1, via its association with these protein kinases, may play a key role in signal transduction. To further characterize the Src-RACK1 interaction and to analyze mechanisms by which cross-talk occurs between the two RACK1-linked signaling kinases, we identified sites on Src and RACK1 that mediate their binding, and factors that regulate their interaction. We found that the interaction of Src and RACK1 is mediated, in part, by the SH2 domain of Src and by phosphotyrosines in the sixth WD repeat of RACK1, and is enhanced by serum or platelet-derived growth factor stimulation, protein kinase C activation, and tyrosine phosphorylation of RACK1. To the best of our knowledge, this is the first report of tyrosine phosphorylation of a member of the WD repeat family of proteins. We think that tyrosine phosphorylation of these proteins is an important mechanism of signal transduction in cells.  相似文献   

19.
UV-induced signal transduction may be involved in tumor promotion and induction of apoptosis. The role of protein kinase C (PKC) in UVB-induced signal transduction is not well understood. This study showed that UVB markedly induced translocation of membrane-associated PKCepsilon and PKCdelta, but not PKCalpha, from cytosol to membrane. Dominant negative mutant (DNM) PKCepsilon or PKCdelta inhibited UVB-induced translocation of PKCepsilon and PKCdelta, respectively. UVB-induced activation of extracellular signal-regulated protein kinases (Erks) and c-Jun NH2-terminal kinases (JNKs) was strongly inhibited by DNM PKCepsilon and PKCdelta, whereas the DNM of PKCalpha was less effective on the UVB-induced phosphorylation of Erks and JNKs. Among the PKC inhibitors used only rottlerin, a selective inhibitor of PKCdelta, markedly inhibited the UVB-induced activation of Erks and JNKs, but not p38 kinases. Safingol, a selective inhibitor for PKCalpha, did not show any inhibitory effect on UVB-induced mitogen-activated protein kinase activation. GF109203X is a stronger inhibitor of classical PKC than novel PKC. Lower concentrations of GF109203X (<10 microM) had no effect on UVB-induced activation of Erks or JNKs. However, at higher concentrations (over 20 microM), GF109203X inhibited UVB-induced activation of JNKs, Erks, and even p38 kinases. Meanwhile, rottlerin and GF109203X markedly inhibited UVB-induced apoptosis of JB6 cells, whereas safingol had little inhibitory effect. DNM-Erk2 cells and PD98059, a selective inhibitor for mitogen-activated protein kinase/extracellular signal-regulated kinase 1 that directly activates Erks, inhibited UVB-induced apoptosis. DNM-JNK1 cells also blocked UVB-induced apoptosis, whereas SB202190, a specific inhibitor for p38 kinases, did not produce the inhibitory effect. These data demonstrate that PKCdelta and PKCepsilon, but not PKCalpha, mediate UVB-induced signal transduction and apoptosis in JB6 cells through activation of Erks and JNKs.  相似文献   

20.
Galectins are a taxonomically widespread family of galactose-binding proteins of which galectin-3 is known to modulate cell adhesion. Using single cell force spectroscopy, the contribution of galectin-3 to the adhesion of Madin-Darby canine kidney (MDCK) cells to different extracellular matrix proteins was investigated. When adhering to collagen-I or -IV, some cells rapidly entered an enhanced adhesion state, marked by a significant increase in the force required for cell detachment. Galectin-3-depleted cells had an increased probability of entering the enhanced adhesion state. Adhesion enhancement was specific to integrin alpha(2)beta(1), as it was not observed when cells adhered to extracellular matrix substrates by other integrins. The adhesion phenotype of galectin-3-depleted cells was mimicked in a galactoside-deficient MDCK cell line and could be complemented by the addition of recombinant galectin-3. We propose that galectin-3 influences integrin alpha(2)beta(1)-mediated adhesion complex formation by altering receptor clustering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号