首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clustering of integrin receptors during cell adhesion stimulates signal transduction across the cell membrane. Second messengers are generated, activating cytosolic proteins and causing cytoskeletal assembly and rearrangement. HeLa cell adhesion to a collagen substrate has been shown to initiate an arachidonic acid-mediated signaling pathway, leading to the activation of protein kinase C (PKC) and cell spreading. To determine the role of integrin receptors in triggering this signaling pathway, monoclonal antibodies to beta 1 integrins were used to either cluster integrins on the cell surface or to provide an integrin-dependent substrate for cell adhesion. Using this approach, we have defined a pathway required for cell spreading that can be initiated by the ligation of integrins and leads to the activation of PKC. Specifically, our results indicate that clustering beta 1 integrins results in the activation of phospholipase A2 leading to the production of arachidonic acid and the activation of PKC.  相似文献   

2.
The novel isoform of protein kinase C (PKC), PKCepsilon, is an important regulator of ciliated cell function in airway epithelial cells, including cilia motility and detachment of ciliated cells after environmental insult. However, the mechanism of PKCepsilon signaling in the airways and the potential role of the PKCepsilon-interacting protein, receptor for activated C kinase 1 (RACK1), has not been widely explored. We used immunohistochemistry and Western blot analysis to show that RACK1 is localized exclusively to basal, non-ciliated (and non-goblet) bovine and human bronchial epithelial cells. Our immunohistochemistry experiments used the basal body marker pericentrin, a marker for cilia, beta-tubulin, and an airway goblet cell marker, MUC5AC, to confirm that RACK1 was excluded from differentiated airway cell subtypes and is only expressed in the basal cells. These results suggest that PKCepsilon signaling in the basal airway cell may involve RACK1; however, PKCepsilon regulation in ciliated cells uses RACK1-independent pathways.  相似文献   

3.
Adhesion of fibroblasts to extracellular matrices via integrin receptors is accompanied by extensive cytoskeletal rearrangements and intracellular signaling events. The protein kinase C (PKC) family of serine/threonine kinases has been implicated in several integrin-mediated events including focal adhesion formation, cell spreading, cell migration, and cytoskeletal rearrangements. However, the mechanism by which PKC regulates integrin function is not known. To characterize the role of PKC family kinases in mediating integrin-induced signaling, we monitored the effects of PKC inhibition on fibronectin-induced signaling events in Cos7 cells using pharmacological and genetic approaches. We found that inhibition of classical and novel isoforms of PKC by down-regulation with 12-0-tetradeconoyl-phorbol-13-acetate or overexpression of dominant-negative mutants of PKC significantly reduced extracellular regulated kinase 2 (Erk2) activation by fibronectin receptors in Cos7 cells. Furthermore, overexpression of constitutively active PKCalpha, PKCdelta, or PKCepsilon was sufficient to rescue 12-0-tetradeconoyl-phorbol-13-acetate-mediated down-regulation of Erk2 activation, and all three of these PKC isoforms were activated following adhesion. PKC was required for maximal activation of mitogen-activated kinase kinase 1, Raf-1, and Ras, tyrosine phosphorylation of Shc, and Shc association with Grb2. PKC inhibition does not appear to have a generalized effect on integrin signaling, because it does not block integrin-induced focal adhesion kinase or paxillin tyrosine phosphorylation. These results indicate that PKC activity enhances Erk2 activation in response to fibronectin by stimulating the Erk/mitogen-activated protein kinase pathway at an early step upstream of Shc.  相似文献   

4.
Modulation of integrin activation is important in many cellular functions including adhesion, migration, and assembly of the extracellular matrix. RSK2 functions downstream of Ras/Raf and promotes tumor cell motility and metastasis. We therefore investigated whether RSK2 affects integrin function. We report that RSK2 mediates Ras/Raf inactivation of integrins. As a result, we find that RSK2 impairs cell adhesion and integrin-mediated matrix assembly and promotes cell motility. Active RSK2 appears to affect integrins by reducing actin stress fibers and disrupting focal adhesions. Moreover, RSK2 co-localizes with the integrin activator talin and is present at integrin cytoplasmic tails. It is thereby in a position to modulate integrin activation and integrin-mediated migration. Activation of RSK2 promotes filamin phosphorylation and binding to integrins. We also find that RSK2 is activated in response to integrin ligation to fibronectin. Thus, RSK2 could participate in a feedback loop controlling integrin function. These results reveal RSK2 as a key regulator of integrin activity and provide a novel mechanism by which it may promote cell migration and cancer metastasis.  相似文献   

5.
PKCepsilon controls the transport of endocytosed beta1-integrins to the plasma membrane regulating directional cell motility. Vimentin, an intermediate filament protein upregulated upon epithelial cell transformation, is shown here to be a proximal PKCepsilon target within the recycling integrin compartment. On inhibition of PKC and vimentin phosphorylation, integrins become trapped in vesicles and directional cell motility towards matrix is severely attenuated. In vitro reconstitution assays showed that PKCepsilon dissociates from integrin containing endocytic vesicles in a selectively phosphorylated vimentin containing complex. Mutagenesis of PKC (controlled) sites on vimentin and ectopic expression of the variant leads to the accumulation of intracellular PKCepsilon/integrin positive vesicles. Finally, introduction of ectopic wild-type vimentin is shown to promote cell motility in a PKCepsilon-dependent manner; alanine substitutions in PKC (controlled) sites on vimentin abolishes the ability of vimentin to induce cell migration, whereas the substitution of these sites with acidic residues enables vimentin to rescue motility of PKCepsilon null cells. Our results indicate that PKC-mediated phosphorylation of vimentin is a key process in integrin traffic through the cell.  相似文献   

6.
CD98, an early marker of T-cell activation, is an important regulator of integrin-mediated adhesion events. Previous studies suggest that CD98 is coupled to both cellular activation and transformation and is involved in the pathogenesis of viral infection, inflammatory disease, and cancer. Understanding of the molecular mechanisms underlying CD98 activity may have far-reaching practical applications in the development of novel therapeutic strategies in these disease states. Using small cell lung cancer cell lines, which are nonadherent, nonpolarized, and highly express CD98, we show that, in vitro, under physiological conditions, CD98 is constitutively associated with beta1 integrins regardless of activation status. Cross-linking CD98 with the monoclonal antibody 4F2 stimulated phosphatidylinositol (PI) 3-kinase, PI(3,4,5)P(3), and protein kinase B in the absence of integrin ligation or extracellular matrix engagement. Furthermore, cross-linking CD98 promoted anchorage-independent growth. Using fibroblasts derived from beta1 integrin null stem cells (GD25), wild-type GD25beta1, or GD25 cells expressing a mutation preventing beta1 integrin-dependent FAK phosphorylation, we demonstrate that a functional beta1 integrin is required for CD98 signaling. We propose that by cross-linking CD98, it acts as a "molecular facilitator" in the plasma membrane, clustering beta1 integrins to form high-density complexes. This results in integrin activation, integrin-like signaling, and anchorage-independent growth. Activation of PI 3-kinase may, in part, explain cellular transformation seen on overexpressing CD98. These results may provide a paradigm for events involved in such diverse processes as inflammation and viral-induced cell fusion.  相似文献   

7.
Activation of protein kinase C (PKC) epsilon by nitric oxide (NO) has been implicated in the development of cardioprotection. However, the cellular mechanisms underlying the activation of PKCepsilon by NO remain largely unknown. Nitration of protein tyrosine residues has been shown to alter functions of a variety of proteins, and NO-derived peroxynitrite is known as a strong nitrating agent. In this investigation, we demonstrate that NO donors promote translocation and activation of PKCepsilon in an NO- and peroxynitrite-dependent fashion. NO induces peroxynitrite-mediated tyrosine nitration of PKCepsilon in rabbit cardiomyocytes in vitro, and nitrotyrosine residues were also detected on PKCepsilon in vivo in the rabbit myocardium preconditioned with NO donors. Furthermore, coimmunoprecipitation of PKCepsilon and its receptor for activated C kinase, RACK2, illustrated a peroxynitrite-dependent increase in PKCepsilon-RACK2 interactions in NO donor-treated cardiomyocytes. Moreover, using an enzyme-linked immunosorbent assay-based protein-protein interaction assay, PKCepsilon proteins treated with the peroxynitrite donor SIN-1 exhibited enhanced binding to RACK2 in an acellular environment. Our data demonstrate that post-translational modification of PKCepsilon by NO donors, namely nitration of PKCepsilon, facilitates its interaction with RACK2 and promotes translocation and activation of PKCepsilon. These findings offer a plausible novel mechanism by which NO activates the PKC signaling pathway.  相似文献   

8.
Integrins are integral membrane proteins that mediate adhesive interactions of cells with the extracellular matrix and with other cells. Integrin engagement results in activation of intracellular signaling cascades that effect several different cellular responses including motility, proliferation and survival. Although integrins are known to provide cell survival signaling in various types of non-neuronal cells, the possibility that integrins modulate neuron survival has not been explored. We now report data demonstrating a neuroprotective function of integrins in embryonic hippocampal neurons. Neurons grown on laminin, an integrin ligand, exhibit increased resistance to glutamate-induced apoptosis compared with neurons grown on polylysine. Neurons expressed integrin beta1 and treatment of cultures with an antibody against integrin beta1 abolished the protective effect of laminin. Neurons maintained on laminin exhibited a sustained activation of the Akt signaling pathway demonstrated in immunoblot analyses using an antibody that selectively recognizes phosphorylated Akt. The neuroprotective effect of integrin engagement by laminin was mimicked by an IKLLI-containing integrin-binding peptide and was abolished by treatment of neurons with the PI3 kinase inhibitor wortmanin. Levels of the anti-apoptotic protein Bcl-2 were increased in neurons grown on laminin and decreased by wortmanin, suggesting a mechanism for the neuroprotective effect of integrin-mediated signaling. The ability of integrin-mediated signaling to prevent glutamate-induced apoptosis suggests a mechanism whereby neuron-substrate interactions can promote neuron survival under conditions of glutamate receptor overactivation.  相似文献   

9.
Integrin regulation by RhoA in thymocytes   总被引:4,自引:0,他引:4  
The guanine nucleotide-binding protein Rho has essential functions in T cell development and is important for the survival and proliferation of T cell progenitors in the thymus. To explore the mechanisms used by RhoA to control thymocyte biology, the role of this GTPase in the regulation of integrin-mediated cell adhesion was examined. The data show that RhoA activation is sufficient to stimulate beta(1) and beta(2) integrin-mediated adhesion in murine thymocytes. RhoA is also needed for integrin activation in vivo as loss of Rho function impaired the ability of thymocytes to adhere to the extracellular matrix protein VCAM-1 and prevented integrin activation induced by the GTPases Rac-1 and Rap1A in vivo. The regulated activity of integrins is needed for cell motility and in the present study it was seen that RhoA activity is critical for integrin-mediated thymocyte migration to chemokines in vitro. Thus, RhoA has a critical role in regulating cell adhesion and migration during T cell development.  相似文献   

10.
The extracellular signal-regulated kinase (ERK) cascade is activated in response to a multitude of extracellular signals and converts these signals into a variety of specific biological responses, including cell differentiation, cell movement, cell division, and apoptosis. The specificity of the biological response is likely to be controlled in large measure by the localization of signaling, thus enabling ERK activity to be directed towards specific targets. Here we show that the RACK1 scaffold protein functions specifically in integrin-mediated activation of the mitogen-activated protein kinase/ERK cascade and targets active ERK to focal adhesions. We found that RACK1 associated with the core kinases of the ERK pathway, Raf, MEK, and ERK, and that attenuation of RACK1 expression resulted in a decrease in ERK activity in response to adhesion but not in response to growth factors. RACK1 silencing also caused a reduction of active ERK in focal adhesions, an increase in focal adhesion length, a decreased rate of focal adhesion disassembly, and decreased motility. Our data further suggest that focal adhesion kinase is an upstream activator of the RACK1/ERK pathway. We suggest that RACK1 tethers the ERK pathway core kinases and channels signals from upstream activation by integrins to downstream targets at focal adhesions.  相似文献   

11.
Contortrostatin is a homodimeric disintegrin that inhibits platelet aggregation and cell adhesion to extracellular matrix proteins by blocking integrins. The effect of contortrostatin on integrin-mediated signaling in tumor cells was investigated by studying tyrosine phosphorylation events and activation of specific signaling molecules. We found that at concentrations as low as 1 nM, soluble contortrostatin activates integrin signals leading to increased tyrosine phosphorylation of FAK and CAS, and that these signals are abolished by inhibiting Src family kinases. Using transfected 293 cells expressing specific integrins, it was determined that contortrostatin-generated signals are mediated exclusively by the alphavbeta3 integrin. This observation was extended by showing that cells lacking alphavbeta3, but expressing alphavbeta5 and alpha5beta1, do not respond in this way to contortrostatin treatment. In cells expressing alphavbeta3, blocking contortrostatin binding with antibodies against alphavbeta3 completely abrogates contortrostatin signals. Monovalent disintegrins echistatin and flavoridin were incapable of affecting tyrosine phosphorylation alone, but when added simultaneously with contortrostatin, completely inhibited contortrostatin-initiated signals. We propose that the homodimeric nature of contortrostatin imparts the ability to crosslink alphavbeta3 integrins, causing Src activation and hyperphosphorylation of FAK and CAS. This activity may represent a novel mechanism by which tumor cell motility can be inhibited.  相似文献   

12.
Beta 1 integrins provide a costimulus for TCR/CD3-driven T cell activation and IL-2 production in human peripheral T cells. However, this beta 1 integrin-mediated costimulation is impaired in a human T lymphoblastic line, Jurkat. We studied the molecular basis of this impaired costimulation and found that Cas-L, a 105-kDa docking protein, is marginally expressed in Jurkat T cells, whereas Cas-L is well expressed in peripheral T cells. Cas-L is a binding protein and a substrate for focal adhesion kinase and is tyrosine phosphorylated by beta 1 integrin stimulation. We here show that the transfection of wild-type Cas-L in Jurkat T cells restores beta 1 integrin-mediated costimulation. However, Cas-L transfection had no effect on CD28-mediated costimulation, indicating that Cas-L is specifically involved in the beta 1 integrin-mediated signaling pathway. Furthermore, transfection of the Cas-L Delta SH3 mutant failed to restore beta 1 integrin-mediated costimulation in Jurkat cells. Cas-L Delta SH3 mutant lacks the binding site for focal adhesion kinase and is not tyrosine phosphorylated after beta 1 integrin stimulation. These findings strongly suggest that the tyrosine phosphorylation of Cas-L plays a key role in the signal transduction in the beta 1 integrin-mediated T cell costimulation.  相似文献   

13.
《The Journal of cell biology》1994,126(6):1585-1593
Integrin-mediated cell adhesion, or cross-linking of integrins using antibodies, often results in the enhanced tyrosine phosphorylation of certain intracellular proteins, suggesting that integrins may play a role in signal transduction processes. In fibroblasts, platelets, and carcinoma cells, a novel tyrosine kinase termed pp125FAK has been implicated in integrin-mediated tyrosine phosphorylation. In some cell types, integrin ligation or cell adhesion has also been shown to result in the increased expression of certain genes. Although it seems reasonable to hypothesize that integrin-mediated tyrosine phosphorylation and integrin-mediated gene induction are related, until now, there has been no direct evidence supporting this hypothesis. In the current report, we explore the relationship between integrin- mediated tyrosine phosphorylation and gene induction in human monocytes. We demonstrate that monocyte adherence to tissue culture dishes or to extracellular matrix proteins is followed by a rapid and profound increase in tyrosine phosphorylation, with the predominant phosphorylated component being a protein of 76 kD (pp76). Tyrosine phosphorylation of pp76 and other monocyte proteins can also be triggered by incubation of monocytes with antibodies to the integrin beta 1 subunit, or by F(ab')2 fragments of such antibodies, but not by F(ab) fragments. The ligation of beta 1 integrins with antibodies or F(ab')2 fragments also induces the expression of immediate-early (IE) genes such as IL-1 beta. When adhering monocytes are treated with the tyrosine kinase inhibitors genistein or herbimycin, both phosphorylation of pp76 and induction of IL-1 beta message are blocked in a dose-dependent fashion. Similarly, treatment with genistein or herbimycin can block tyrosine phosphorylation of pp76 and IL-1 beta message induction mediated by ligation of beta 1 integrin with antibodies. These observations suggest that protein tyrosine phosphorylation is an important aspect of integrin-mediated IE gene induction in monocytes. The cytoplasmic tyrosine kinase pp125FAK, although important in integrin signaling in other cell types, seems not to play a role in monocytes because this protein could not be detected in these cells.  相似文献   

14.
The beta1 family of integrins has been primarily studied as a set of receptors for the extracellular matrix. In this paper, we define a novel role for alpha3beta1 integrin in association with the tetraspanin CD151 as a component of a cell-cell adhesion complex in epithelial cells that directly stimulates cadherin-mediated adhesion. The integrin-tetraspanin complex affects epithelial cell-cell adhesion at the level of gene expression both by regulating expression of PTPmu and by organizing a multimolecular complex containing PKCbetaII, RACK1, PTPmu, beta-catenin, and E-cadherin. These findings demonstrate how integrin-based signaling can regulate complex biological responses at multiple levels to determine cell morphology and behavior.  相似文献   

15.
Integrin transmembrane receptors generate multiple signals, but how they mediate specific signaling is not clear. Here we test the hypothesis that particular sequences along the beta(1) integrin cytoplasmic domain may exist that are intimately related to specific integrin-mediated signaling pathways. Using systematic alanine mutagenesis of amino acids conserved between different beta integrin cytoplasmic domains, we identified the tryptophan residue at position 775 of human beta(1) integrin as specific and necessary for integrin-mediated protein kinase B/Akt survival signaling. Stable expression of a beta(1) integrin mutated at this amino acid in GD25 beta(1)-null cells resulted in reduction of Akt phosphorylation at both Ser(473) and Thr(308) activation sites. As a consequence, the cells were substantially more sensitive to serum starvation-induced apoptosis when compared with cells expressing wild type beta(1) integrin. This inactivation of Akt resulted from increased dephosphorylation by a localized active population of protein phosphatase 2A. Both Akt and protein phosphatase 2A were present in beta(1) integrin-organized cytoplasmic complexes, but the activity of this phosphatase was 2.5 times higher in the complexes organized by the mutant integrin. The mutation of Trp(775) specifically affected Akt signaling, without effects on other integrin-activated pathways including phosphoinositide 3-kinase, MAPK, JNK, and p38 nor did it influence activation of the integrin-responsive kinases focal adhesion kinase and Src. The identification of Trp(775) as a specific site for integrin-mediated Akt signaling supports the concept of specificity of signaling along the integrin cytoplasmic domain.  相似文献   

16.
Adhesive receptors of the integrin family are primarily involved in cell-extracellular matrix adhesion. Additionally, integrins trigger multiple signaling pathways that are involved in cell migration, proliferation, survival, and differentiation. We previously demonstrated that the activation of integrins containing the beta(1) subunit leads to a selective increase in potassium currents carried by the human ether-a-go-go-related gene (hERG) channels in neuroblastoma and leukemia cells; this current activation modulates adhesion-dependent differentiation in these cells. We hypothesized that the cross-talk between integrins and hERG channels could be traced back to the assembly of a macromolecular signaling complex comprising the two proteins. We tested this hypothesis in both SH-SY5Y neuroblastoma cells and in human embryonic kidney 293 cells stably transfected with hERG1 and, therefore, expressing only the full-length hERG1 protein on the plasma membrane. The beta(1) integrin and hERG1 coprecipitate in these cells and colocalize in both intracellular and surface membrane compartments. The two proteins also coprecipitate with caveolin-1, suggesting the localization of the complex in lipid rafts/caveolae. hERG1-transfected cells undergo an activation of hERG currents after beta(1) integrin-mediated adhesion to fibronectin; concomitant with this activation, the focal adhesion kinase associates with the hERG1 protein and becomes tyrosine phosphorylated. Using hERG1-specific inhibitors, we show that the tyrosine phosphorylation of focal adhesion kinase is strictly dependent on hERG channel activity. Similarly, the activity of the small GTPase Rac1 turned out to be dependent on hERG currents. On the whole, these data indicate that the hERG1 protein associates with beta(1) integrins and modulates adhesion receptor signaling.  相似文献   

17.
The WD repeat scaffolding protein RACK1 can mediate integration of the insulin-like growth factor I receptor (IGF-IR) and integrin signaling in transformed cells. To address the mechanism of RACK1 function, we searched for regulatory proteins that associate with RACK1 in an IGF-I-dependent manner. The serine threonine phosphatase protein phosphatase 2A (PP2A) was found associated with RACK1 in serum-starved cells, and it dissociated immediately upon stimulation with IGF-I. This dissociation of PP2A from RACK1 and an IGF-I-mediated decrease in cellular PP2A activity did not occur in cells expressing either the serine 1248 or tyrosine 1250/1251 mutants of the IGF-IR that do not interact with RACK1. Recombinant RACK1 could bind to PP2A in vitro and restore phosphatase activity to PP2A from IGF-I-stimulated cells. Ligation of integrins with fibronectin or Matrigel was sufficient to facilitate IGF-I-mediated dissociation of PP2A from RACK1 and also to recruit beta1 integrin as PP2A dissociated. By using TAT-fused N-terminal and C-terminal deletion mutants of RACK1, we determined that both PP2A and beta1 integrin interact in the C terminus of RACK1 within WD repeats 4 to 7. This suggests that integrin ligation displaces PP2A from RACK1. MCF-7 cells overexpressing RACK1 exhibited enhanced motility, which could be reversed by the PP2A inhibitor okadaic acid. Small interfering RNA-mediated suppression of RACK1 also decreased the migratory capacity of DU145 cells. Taken together, our findings indicate that RACK1 enhances IGF-I-mediated cell migration through its ability to exclusively associate with either beta1 integrin or PP2A in a complex at the IGF-IR.  相似文献   

18.
Neutrophil beta(2) integrins are activated by inside-out signaling regulating integrin affinity and valency; following ligand binding, beta(2) integrins trigger outside-in signals regulating cell functions. Addressing inside-out and outside-in signaling in hck(-/-)fgr(-/-) neutrophils, we found that Hck and Fgr do not regulate chemoattractant-induced activation of beta(2) integrin affinity. In fact, beta(2) integrin-mediated rapid adhesion, in static condition assays, and neutrophil adhesion to glass capillary tubes cocoated with ICAM-1, P-selectin, and a chemoattractant, under flow, were unaffected in hck(-/-)fgr(-/-) neutrophils. Additionally, examination of integrin affinity by soluble ICAM-1 binding assays and of beta(2) integrin clustering on the cell surface, showed that integrin activation did not require Hck and Fgr expression. However, after binding, hck(-/-)fgr(-/-) neutrophil spreading over beta(2) integrin ligands was reduced and they rapidly detached from the adhesive surface. Whether alterations in outside-in signaling affect sustained adhesion to the vascular endothelium in vivo was addressed by examining neutrophil adhesiveness to inflamed muscle venules. Intravital microscopy analysis allowed us to conclude that Hck and Fgr regulate neither the number of rolling cells nor rolling velocity in neutrophils. However, arrest of hck(-/-)fgr(-/-) neutrophils to >60 microm in diameter venules was reduced. Thus, Hck and Fgr play no role in chemoattractant-induced inside-out beta(2) integrin activation but regulate outside-in signaling-dependent sustained adhesion.  相似文献   

19.
The signaling events downstream of integrins that regulate cell attachment and motility are only partially understood. Using osteoclasts and transfected 293 cells, we find that a molecular complex comprising Src, Pyk2, and Cbl functions to regulate cell adhesion and motility. The activation of integrin alpha(v)beta(3) induces the [Ca(2+)](i)-dependent phosphorylation of Pyk2 Y402, its association with Src SH2, Src activation, and the Src SH3-dependent recruitment and phosphorylation of c-Cbl. Furthermore, the PTB domain of Cbl is shown to bind to phosphorylated Tyr-416 in the activation loop of Src, the autophosphorylation site of Src, inhibiting Src kinase activity and integrin-mediated adhesion. Finally, we show that deletion of c Src or c-Cbl leads to a decrease in osteoclast migration. Thus, binding of alpha(v)beta(3) integrin induces the formation of a Pyk2/Src/Cbl complex in which Cbl is a key regulator of Src kinase activity and of cell adhesion and migration. These findings may explain the osteopetrotic phenotype in the Src(-/-) mice.  相似文献   

20.
Many integrins mediate cell attachment to the extracellular matrix by recognizing short tripeptide sequences such as arginine-glycine-aspartic acid and leucine-aspartate-valine. Using phage display, we have now found that the leukocyte-specific beta(2) integrins bind sequences containing a leucine-leucine-glycine (LLG) tripeptide motif. An LLG motif is present on intercellular adhesion molecule (ICAM)-1, the major beta(2) integrin ligand, but also on several matrix proteins, including von Willebrand factor. We developed a novel beta(2) integrin antagonist peptide CPCFLLGCC (called LLG-C4), the structure of which was determined by nuclear magnetic resonance. The LLG-C4 peptide inhibited leukocyte adhesion to ICAM-1, and, interestingly, also to von Willebrand factor. When immobilized on plastic, the LLG-C4 sequence supported the beta(2) integrin-mediated leukocyte adhesion, but not beta(1) or beta(3) integrin-mediated cell adhesion. These results suggest that LLG sequences exposed on ICAM-1 and on von Willebrand factor at sites of vascular injury play a role in the binding of leukocytes, and LLG-C4 and peptidomimetics derived from it could provide a therapeutic approach to inflammatory reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号