首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Eubacterial leucyl/phenylalanyl-tRNA protein transferase (L/F-transferase), encoded by the aat gene, conjugates leucine or phenylalanine to the N-terminal Arg or Lys residue of proteins, using Leu-tRNA(Leu) or Phe-tRNA(Phe) as a substrate. The resulting N-terminal Leu or Phe acts as a degradation signal for the ClpS-ClpAP-mediated N-end rule protein degradation pathway. Here, we present the crystal structures of Escherichia coli L/F-transferase and its complex with an aminoacyl-tRNA analog, puromycin. The C-terminal domain of L/F-transferase consists of the GCN5-related N-acetyltransferase fold, commonly observed in the acetyltransferase superfamily. The p-methoxybenzyl group of puromycin, corresponding to the side chain of Leu or Phe of Leu-tRNA(Leu) or Phe-tRNA(Phe), is accommodated in a highly hydrophobic pocket, with a shape and size suitable for hydrophobic amino-acid residues lacking a branched beta-carbon, such as leucine and phenylalanine. Structure-based mutagenesis of L/F-transferase revealed its substrate specificity. Furthermore, we present a model of the L/F-transferase complex with tRNA and substrate proteins bearing an N-terminal Arg or Lys.  相似文献   

2.
The N-end rule degradation pathway states that the half-life of a protein is determined by the nature of its N-terminal residue. In Escherichia coli the adaptor protein ClpS directly interacts with destabilizing N-terminal residues and transfers them to the ClpA/ClpP proteolytic complex for degradation. The crucial role of ClpS in N-end rule degradation is currently under debate, since ClpA/ClpP was shown to process selected N-terminal degrons harbouring destabilizing residues in the absence of ClpS. Here, we investigated the contribution of ClpS to N-end rule degradation by two approaches. First, we performed a systematic mutagenesis of selected N-degron model substrates, demonstrating that ClpS but not ClpA specifically senses the nature of N-terminal residues. Second, we identified two natural N-end rule substrates of E. coli : Dps and PATase (YgjG). The in vivo degradation of both proteins strictly relied on ClpS, thereby establishing the function of ClpS as the essential discriminator of the E. coli N-end rule pathway.  相似文献   

3.
Leucyl/phenylalanyl-tRNA-protein transferase (L/F-transferase) is an N-end rule pathway enzyme, which catalyzes the transfer of Leu and Phe from aminoacyl-tRNAs to exposed N-terminal Arg or Lys residues of acceptor proteins. Here, we report the 1.6 A resolution crystal structure of L/F-transferase (JW0868) from Escherichia coli, the first three-dimensional structure of an L/F-transferase. The L/F-transferase adopts a monomeric structure consisting of two domains that form a bilobate molecule. The N-terminal domain forms a small lobe with a novel fold. The large C-terminal domain has a highly conserved fold, which is observed in the GCN5-related N-acetyltransferase (GNAT) family. Most of the conserved residues of L/F-transferase reside in the central cavity, which exists at the interface between the N-terminal and C-terminal domains. A comparison of the structures of L/F-transferase and the bacterial peptidoglycan synthase FemX, indicated a structural homology in the C-terminal domain, and a similar domain interface region. Although the peptidyltransferase function is shared between the two proteins, the enzymatic mechanism would differ. The conserved residues in the central cavity of L/F-transferase suggest that this region is important for the enzyme catalysis.  相似文献   

4.
5.
The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. N-terminal asparagine and glutamine are tertiary destabilizing residues, in that they are enzymatically deamidated to yield secondary destabilizing residues aspartate and glutamate, which are conjugated to arginine, a primary destabilizing residue. N-terminal arginine of a substrate protein is bound by the Ubr1-encoded E3alpha, the E3 component of the ubiquitin-proteasome-dependent N-end rule pathway. We describe the construction and analysis of mouse strains lacking the asparagine-specific N-terminal amidase (Nt(N)-amidase), encoded by the Ntan1 gene. In wild-type embryos, Ntan1 was strongly expressed in the branchial arches and in the tail and limb buds. The Ntan1(-/-) mouse strains lacked the Nt(N)-amidase activity but retained glutamine-specific Nt(Q)-amidase, indicating that the two enzymes are encoded by different genes. Among the normally short-lived N-end rule substrates, only those bearing N-terminal asparagine became long-lived in Ntan1(-/-) fibroblasts. The Ntan1(-/-) mice were fertile and outwardly normal but differed from their congenic wild-type counterparts in spontaneous activity, spatial memory, and a socially conditioned exploratory phenotype that has not been previously described with other mouse strains.  相似文献   

6.
The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. We used an expression-cloning screen to search for mouse proteins that are degraded by the ubiquitin/proteasome-dependent N-end rule pathway in a reticulocyte lysate. One substrate thus identified was RGS4, a member of the RGS family of GTPase-activating proteins that down-regulate specific G proteins. A determinant of the RGS4 degradation signal (degron) was located at the N terminus of RGS4, because converting cysteine 2 to either glycine, alanine, or valine completely stabilized RGS4. Radiochemical sequencing indicated that the N-terminal methionine of the lysate-produced RGS4 was replaced with arginine. Since N-terminal arginine is a destabilizing residue not encoded by RGS4 mRNA, we conclude that the degron of RGS4 is generated through the removal of N-terminal methionine and enzymatic arginylation of the resulting N-terminal cysteine. RGS16, another member of the RGS family, was also found to be an N-end rule substrate. RGS4 that was transiently expressed in mouse L cells was short-lived in these cells. However, the targeting of RGS4 for degradation in this in vivo setting involved primarily another degron, because N-terminal variants of RGS4 that were stable in reticulocyte lysate remained unstable in L cells.  相似文献   

7.
The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. Ubr1p, the recognition (E3) component of the Saccharomyces cerevisiae N-end rule pathway, contains at least two substrate-binding sites. The type 1 site is specific for N-terminal basic residues Arg, Lys, and His. The type 2 site is specific for N-terminal bulky hydrophobic residues Phe, Leu, Trp, Tyr, and Ile. Previous work has shown that dipeptides bearing either type 1 or type 2 N-terminal residues act as weak but specific inhibitors of the N-end rule pathway. We took advantage of the two-site architecture of Ubr1p to explore the feasibility of bivalent N-end rule inhibitors, whose expected higher efficacy would result from higher affinity of the cooperative (bivalent) binding to Ubr1p. The inhibitor comprised mixed tetramers of beta-galactosidase that bore both N-terminal Arg (type 1 residue) and N-terminal Leu (type 2 residue) but that were resistant to proteolysis in vivo. Expression of these constructs in S. cerevisiae inhibited the N-end rule pathway much more strongly than the expression of otherwise identical beta-galactosidase tetramers whose N-terminal residues were exclusively Arg or exclusively Leu. In addition to demonstrating spatial proximity between the type 1 and type 2 substrate-binding sites of Ubr1p, these results provide a route to high affinity inhibitors of the N-end rule pathway.  相似文献   

8.
Substrates of the N-end rule pathway include proteins with destabilizing N-terminal residues. Three of them, Asp, Glu, and (oxidized) Cys, function through their conjugation to Arg, one of destabilizing N-terminal residues that are recognized directly by the pathway's ubiquitin ligases. The conjugation of Arg is mediated by arginyltransferase, encoded by ATE1. Through its regulated degradation of specific proteins, the arginylation branch of the N-end rule pathway mediates, in particular, the cardiovascular development, the fidelity of chromosome segregation, and the control of signaling by nitric oxide. We show that mouse ATE1 specifies at least six mRNA isoforms, which are produced through alternative splicing, encode enzymatically active arginyltransferases, and are expressed at varying levels in mouse tissues. We also show that the ATE1 promoter is bidirectional, mediating the expression of both ATE1 and an oppositely oriented, previously uncharacterized gene. In addition, we identified GRP78 (glucose-regulated protein 78) and protein-disulfide isomerase as putative physiological substrates of arginyltransferase. Purified isoforms of arginyltransferase that contain the alternative first exons differentially arginylate these proteins in extract from ATE1(-/-) embryos, suggesting that specific isoforms may have distinct functions. Although the N-end rule pathway is apparently confined to the cytosol and the nucleus, and although GRP78 and protein-disulfide isomerase are located largely in the endoplasmic reticulum, recent evidence suggests that these proteins are also present in the cytosol and other compartments in vivo, where they may become N-end rule substrates.  相似文献   

9.
Aminoacyl-tRNA-protein transferases (Arg-transferases) catalyze post-translational conjugation of specific amino acids to the amino termini of acceptor proteins. A function of these enzymes in eukaryotes has been shown to involve the conjugation of destabilizing amino acids to the amino termini of short-lived proteins, these reactions being a part of the N-end rule pathway of protein degradation (Gonda, D. K., Bachmair, A., Wünning, I., Tobias, J. W., Lane, W. S., and Varshavsky, A. (1989) J. Biol. Chem. 264, 16700-16712). We have cloned the ATE1 gene of the yeast Saccharomyces cerevisiae which encodes arginyl-tRNA-protein transferase. ATE1 gives rise to a approximately 1.6-kilobase mRNA and codes for a 503-residue protein. Expression of the yeast ATE1 gene in Escherichia coli, which lacks Arg-transferases, was used to show that the ATE1 protein possesses the Arg-transferase activity. Null ate1 mutants are viable but lack the Arg-transferase activity and are unable to degrade those substrates of the N-end rule pathway that start with residues recognized by the Arg-transferase.  相似文献   

10.
In eukaryotes, two isozymes (I and II) of methionine aminopeptidase (MetAP) catalyze the removal of the initiator methionine if the penultimate residue has a small radius of gyration (glycine, alanine, serine, threonine, proline, valine, and cysteine). Using site-directed mutagenesis, recombinant yeast MetAP I derivatives that are able to cleave N-terminal methionine from substrates that have larger penultimate residues have been expressed. A Met to Ala change at 329 (Met206 in Escherichia coli enzyme) produces an average catalytic efficiency 1.5-fold higher than the native enzyme on normal substrates and cleaves substrates containing penultimate asparagine, glutamine, isoleucine, leucine, methionine, and phenylalanine. Interestingly, the native enzyme also has significant activity with the asparagine peptide not previously identified as a substrate. Mutation of Gln356 (Gln233 in E. coli MetAP) to alanine results in a catalytic efficiency about one-third that of native with normal substrates but which can cleave methionine from substrates with penultimate histidine, asparagine, glutamine, leucine, methionine, phenylalanine, and tryptophan. Mutation of Ser195 to alanine had no effect on substrate specificity. None of the altered enzymes produced cleaved substrates with a fully charged residue (lysine, arginine, aspartic acid, or glutamic acid) or tyrosine in the penultimate position.  相似文献   

11.
The recognition component of the N-end rule pathway.   总被引:42,自引:10,他引:32       下载免费PDF全文
B Bartel  I Wünning    A Varshavsky 《The EMBO journal》1990,9(10):3179-3189
The N-end rule-based degradation signal, which targets a protein for ubiquitin-dependent proteolysis, comprises a destabilizing amino-terminal residue and a specific internal lysine residue. We report the isolation and functional analysis of a gene (UBR1) for the N-end recognizing protein of the yeast Saccharomyces cerevisiae. UBR1 encodes a approximately 225 kd protein with no significant sequence similarities to other known proteins. Null ubr1 mutants are viable but are unable to degrade the substrates of the N-end rule pathway. These mutants are partially defective in sporulation and grow slightly more slowly than their wild-type counterparts. The UBR1 protein specifically binds in vitro to proteins bearing amino-terminal residues that are destabilizing according to the N-end rule, but does not bind to otherwise identical proteins bearing stabilizing amino-terminal residues.  相似文献   

12.
13.
14.
Human immunodeficiency virus type-1 (HIV-1) integrase catalyzes the irreversible insertion of the viral genome into host chromosomal DNA. We have developed a mammalian expression system for the synthesis of authentic HIV-1 integrase in the absence of other viral proteins. Integrase, which bears a N-terminal phenylalanine, was found to be a short-lived protein in human embryo kidney 293T cells. The degradation of integrase could be suppressed by proteasome inhibitors. N-terminal phenylalanine is recognized as a degradation signal by a ubiquitin-proteasome proteolytic system known as the N-end rule pathway. The replacement of N-terminal phenylalanine with methionine, valine, or glycine, which are stabilizing residues in the N-end rule, resulted in metabolically stabilized integrase proteins (half-life of N-terminal Met-integrase was at least 3 h). Conversely, the substitution of N-terminal phenylalanine with other destabilizing residues retained the metabolic instability of integrase. These findings indicate that the HIV-1 integrase is a physiological substrate of the N-end rule. We discuss a possible functional similarity to the better understood turnover of the bacteriophage Mu transposase and functions of integrase instability to the maintenance and integrity of the host cell genome.  相似文献   

15.
In Escherichia coli a subset of periplasmic proteins is exported through the Tat pathway to which substrates are directed by an NH(2)-terminal signal peptide containing a consensus SRRXFLK "twin arginine" motif. The importance of the individual amino acids of the consensus motif for in vivo Tat transport has been assessed by site-directed mutagenesis of the signal peptide of the Tat substrate pre-SufI. Although the invariant arginine residues are crucial for efficient export, we find that slow transport of SufI is still possible if a single arginine is conservatively substituted by a lysine residue. Thus, in at least one signal peptide context there is no absolute dependence of Tat transport on the arginine pair. The consensus phenylalanine residue was found to be a critical determinant for efficient export but could be functionally substituted by leucine, another amino acid with a highly hydrophobic side chain. Unexpectedly, the consensus lysine residue was found to retard Tat transport. These observations and others suggest that the sequence conservation of the Tat consensus motif is a reflection of the functional importance of the consensus residues. Tat signal peptides characteristically have positively charged carboxyl-terminal regions. However, changing the sign of this charge does not affect export of SufI.  相似文献   

16.
The ubiquitin pathway targets proteins for degradation through the post-translational covalent attachment of the 76 amino acid protein ubiquitin to -amino lysyl groups on substrate proteins. Two instability determinants recognized by the ubiquitin pathway in Saccharomyces cerevisiae have been identified. One is described by the N-end rule and requires specific destabilizing residues at the substrate protein N-termini along with a proximal lysyl residue for ubiquitin conjugation. The second is a linear uncleavable N-terminal ubiquitin moiety. The ability of these two determinants to function in higher plants was investigated in tobacco protoplast transient transfection assays using DNA encoding variants of well characterized reporter enzymes as substrates: firefly luciferase that is localized to peroxisomes (pxLUC), a cytosolic version of LUC (cLUC), and Escherichia coli -glucuronidase (GUS). cLUC with phenylalanine encoded at its mature N-terminus was 10-fold less abundant than cLUC with methionine at its mature N-terminus. GUS with phenylalanine encoded at its mature N-terminus was 3-fold less abundant than GUS with methionine at its mature N-terminus. The presence of a uncleavable N-terminal ubiquitin fusion resulted in 50-fold lower protein accumulation of cLUC, but had no effect on GUS. Both instability determinants had a much larger effect on cLUC than on pxLUC, suggesting that these degradation signals are either unrecognized or poorly recognized in the peroxisomes.  相似文献   

17.
M Ghislain  R J Dohmen  F Levy    A Varshavsky 《The EMBO journal》1996,15(18):4884-4899
A library of random 10 residue peptides fused to the N-terminus of a reporter protein was screened in the yeast Saccharomyces cerevisiae for sequences that can target the reporter for degradation by the N-end rule pathway, a ubiquitin (Ub)-dependent proteolytic system that recognizes potential substrates through binding to their destabilizing N-terminal residues. One of the N-terminal sequences identified by this screen was used in a second screen for mutants incapable of degrading the corresponding reporter fusion. A mutant thus identified had an abnormally low content of free Ub. This mutant was found to be allelic to a previously isolated mutant in a Ub-dependent proteolytic system distinct from the N-end rule pathway. We isolated the gene involved, termed UFD3, which encodes an 80 kDa protein containing tandem repeats of a motif that is present in many eukaryotic proteins and called the WD repeat. Both co-immunoprecipitation and two-hybrid assays demonstrated that Ufd3p is an in vivo ligand of Cdc48p, an essential ATPase required for the cell cycle progression and the fusion of endoplasmic reticulum membranes. Further, we showed that, similarly to Ufd3p, Cdc48p is also required for the Ub-dependent proteolysis of test substrates. The discovery of the Ufd3p--Cdc48p complex and the finding that this complex is a part of the Ub system open up a new direction for studies of the function of Ub in the cell cycle and membrane dynamics.  相似文献   

18.
The N-end rule relates the amino terminus to the rate of degradation through the ubiquitin/26 S proteasome pathway. Proteins bearing basic (type 1) or large hydrophobic (type 2) amino termini are assumed to be targeted through this pathway by their higher affinity for binding to the responsible E3 ligase compared with proteins bearing other residues (type 3). Paradoxically, a significant fraction of eukaryotic protein degradation occurs through the N-end rule pathway, although the majority of cellular proteins are type 3 substrates. We have exploited specific interactions between ubiquitin carrier proteins (E2/Ubc) and their cognate E3 ligases to purify for the first time the mammalian N-end rule ligase E3alpha/Ubr1 to near homogeneity. In vitro studies show that E3alpha forms lysine 48-linked polyubiquitin degradation signals on type 1-3 substrates and is absolutely dependent on Ubc2/Rad6 orthologs. Biochemically defined kinetic studies show that the basis of N-end rule specificity is a k(cat) rather than the K(m) effect originally proposed, since all three substrate classes show similar binding affinities (K(m) approximately 5 microm) but V(max) values that are 100- and 50-fold greater for type 1 and 2 versus type 3 model substrates, respectively. In addition, the N-end rule dipeptides lysylalanine and phenylalanylalanine are general noncompetitive inhibitors for E3alpha-catalyzed ubiquitination of type 1-3 substrates rather than type-specific competitive inhibitors as predicted. These observations are consistent with a model in which the N-end rule effect reflects substrate binding-induced transitions in E3alpha to a catalytically competent conformer, the equilibrium for which depends on the identity of the amino terminus or the presence of basic or hydrophobic surface features. The model reconciles conflicts between specific predictions and empirical observations relating N-end rule targeting in addition to explicating the efficacy of selected dipeptides as potent in vivo inhibitors of this pathway.  相似文献   

19.
Marker for real-time analysis of caspase activity in intact cells   总被引:1,自引:0,他引:1  
Lee P  Beem E  Segal MS 《BioTechniques》2002,33(6):1284-7, 1289-91
Apoptosis, or programmed cell death, is an important regulator of growth, development, defense, and homeostasis in multicellular organisms. A family of cysteine proteases known as caspases is central to many apoptotic pathways, and thus detection of their activity offers an effective means to assess apoptosis. However, currently available methods only allow the evaluation of in vivo caspase activity at a given time point or over a few hours. To assess the activity over extended periods of time, we designed a novel, real-time, in vivo marker that utilizes the N-end rule degradation pathway to allow the detection of caspase activity as reflected by increasing enhanced GFP (EGFP) stability. The marker has an N-terminal arginine in the absence of caspase activity and is rapidly degraded. In vivo caspase activity removes the marker's N-terminal arginine residue, leaving an EGFP with an N-terminal methionine that results in stable fluorescence. In our study, the marker accurately depicted an increase in caspase activity in apoptotic cells and also detected significant endogenous caspase activity in non-apoptotic cells. The downstream effects of this endogenous activity detected in intact, nonapoptotic cells must be regulated by the cell preventing apoptosis. These studies also demonstrate the feasibility of using the N-end rule to study endogenous enzymatic activities other than those associated with proteasomal degradation.  相似文献   

20.
The N-end rule is a degradation pathway conserved from bacteria to mammals that links a protein's stability in vivo to the identity of its N-terminal residue. In Escherichia coli, the components of this pathway directly responsible for protein degradation are the ClpAP protease and its adaptor ClpS. We recently demonstrated that ClpAP is able to recognize N-end motifs in the absence of ClpS although with significantly reduced substrate affinity. In this study, a systematic sequence analysis reveals new features of N-end rule degradation signals. To achieve specificity, recognition of an N-end motif by the protease-adaptor complex uses both the identity of the N-terminal residue and a free alpha-amino group. Acidic residues near the first residue decrease substrate affinity, demonstrating that the identity of adjacent residues can affect recognition although significant flexibility is tolerated. However, shortening the distance between the N-end residue and the stably folded portion of a protein prevents degradation entirely, indicating that an N-end signal alone is not always sufficient for degradation. Together, these data define in vitro the sequence and structural requirements for the function of bacterial N-end signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号