首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quinone toxicity in hepatocytes without oxidative stress   总被引:6,自引:0,他引:6  
The toxicity of quinones is believed to be mediated via redox cycling involving formation of semiquinone radicals which autoxidize to form active oxygen species. However, when the cytotoxicity of benzoquinones was compared using freshly isolated rat hepatocytes, benzoquinones which did not mediate oxidative stress were highly toxic. Thus, the benzoquinone analogs in decreasing order of cytotoxicity were 2-CH3-, 2-Br-, unsubstituted, 2,6-(CH3)2-, 2,5-(CH3)2-, and 2,3,5-(CH3)3-benzoquinone. Cellular thiols were rapidly depleted and glutathione (GSH) was converted to a quinone conjugate without oxidation to glutathione disulfide. No increase in cyanide-resistant respiration was observed and benzoquinone-induced cytotoxicity was not enhanced by inactivation of catalase or glutathione reductase. In contrast, duroquinone [2,3,5,6-(CH3)4-benzoquinone], which stimulated cyanide-resistant respiration and GSH oxidation, was only cytotoxic when catalase or glutathione reductase was inactivated. These results suggest that alkylation and/or oxidative stress may be important mechanisms in the cytotoxicity of benzoquinone derivatives.  相似文献   

2.
Molecular mechanisms of quinone cytotoxicity   总被引:9,自引:0,他引:9  
Quinones are probably found in all respiring animal and plant cells. They are widely used as anticancer, antibacterial or antimalarial drugs and as fungicides. Toxicity can arise as a result of their use as well as by the metabolism of other drugs and various environmental toxins or dietary constituents. In rapidly dividing cells such as tumor cells, cytotoxicity has been attributed to DNA modification. However the molecular basis for the initiation of quinone cytotoxicity in resting or non-dividing cells has been attributed to the alkylation of essential protein thiol or amine groups and/or the oxidation of essential protein thiols by activated oxygen species and/or GSSG. Oxidative stress arises when the quinone is reduced by reductases to a semiquinone radical which reduces oxygen to superoxide radicals and reforms the quinone. This futile redox cycling and oxygen activation forms cytotoxic levels of hydrogen peroxide and GSSG is retained by the cell and causes cytotoxic mixed protein disulfide formation. Most quinones form GSH conjugates which also undergo futile redox cycling and oxygen activation. Prior depletion of cell GSH markedly increases the cell's susceptibility to alkylating quinones but can protect the cell against certain redox cycling quinones. Cytotoxicity induced by hydroquinones in isolated hepatocytes can be attributed to quinones formed by autoxidation. The higher redox potential benzoquinones and naphthoquinones are the most cytotoxic presumably because of their higher electrophilicty and thiol reactivity and/or because the quinones or GSH conjugates are more readily reduced to semiquinones which activate oxygen.  相似文献   

3.
Studies have shown that the quinone group can produce tumor cell kill by a mechanism involving active oxygen species. This cytotoxic activity can be correlated with the induction of DNA double strand breaks and is enhanced by the ability of the quinone compound to bind to DNA by alkylation. The cytotoxic activity and the production of DNA damage by model quinone antitumor agents were compared in L5178Y cells, sensitive and resistant to alkylating agents, to assess the contribution of alkylation to the activity of these agents. The resistant L5178Y/HN2 cells were found to be two fold and six fold more resistant to the alkylating quinones, benzoquinone mustard and benzoquinone dimustard, respectively, than parent L5178Y cells. In contrast, the L5178Y/HN2 cells showed no resistance to the nonalkylating quinones, hydrolyzed benzoquinone mustard and bis(dimethylamino)benzoquinone. The alkylating quinones produced approximately two fold less cross-linking in L5178Y/HN2 cells compared with L5178Y sensitive cells. DNA double strand break formation by hydrolyzed benzoquinone mustard and bis(dimethylamino)benzoquinone was not significantly different in sensitive and resistant cells. However, the induction of double strand breaks by the alkylating quinones benzoquinone mustard and benzoquinone dimustard was reduced by 5-fold and 15-fold, respectively, in L5178Y/HN2 cells. These results show that the alkylating activity of the alkylating quinones cannot directly explain all of the enhanced cytotoxic activity of these agents. Furthermore, they provide strong evidence that the enhanced formation of DNA double strand breaks by alkylating quinone agents is directly related to the ability of these agents to bind to DNA. This increased formation of strand breaks may account for the enhanced cytotoxic activity of the alkylating quinones.  相似文献   

4.
Hydrogen peroxide reacts with two-electron reduced glutathione reductase (GR EH2 species) to give the native oxidized enzyme (E) without detectable intermediates. Prior alkylation of the EH2 interchange thiol with iodoacetamide, however, dramatically changes both the course and overall rate of the peroxide reaction. This oxidation, monitored spectrally, is characterized by an intermediate (EHRint) with enhanced long wavelength absorbance extending to 800 nm. This species decays in a second peroxide-dependent phase to an enzyme form (EHRox) easily distinguished from E. Quenching experiments with catalase allow the isolation of a stable mixture consisting of 36% monoalkylated GR (EHR), 60% EHRint, and 4% EHRox; NADPH titration and anaerobic dithiothreitol addition lead to quantitative reduction of EHRint to EHR, and there is an increase in thiol titer of 0.8-SH/FAD on NADPH reduction. Of the four titratable thiols present in EHR, 2.7 are lost on oxidation to EHRox and 0.7-0.8 mol of cysteic acid/FAD is formed. On the basis of these and other observations, we conclude that alkylation of the EH2 interchange thiol, which blocks disulfide formation, allows peroxide reaction at the remaining charge-transfer thiol to proceed via a stabilized cysteine-sulfenic acid intermediate (EHRint), which undergoes further oxidation to the corresponding cysteic acid (EHRox).  相似文献   

5.
Quinones may induce toxicity by a number of mechanisms, including alkylation and oxidative stress following redox cycling. The metabolism of quinones by isolated rat hepatocytes is associated with cytoskeletal alterations, plasma membrane blebbing, and subsequent cytotoxicity. The different mechanisms underlying the effects of alkylating (p-benzoquinone), redox cycling (2,3-dimethoxy-1,4-naphthoquinone), and mixed redox cycling/alkylating (2-methyl-1,4-naphthoquinone) quinones on hepatocyte cytoskeleton have been investigated in detail in this study. Analysis of the cytoskeletal fraction extracted from quinone-treated cells revealed a concentration-dependent increase in the amount of cytoskeletal protein and a concomitant loss of protein thiols, irrespective of the quinone employed. In the case of redox cycling quinones, these alterations were associated with an oxidation-dependent actin crosslinking (sensitive to the thiol reductant dithiothreitol). In contrast, with alkylating quinones an oxidation-independent cytoskeletal protein crosslinking (insensitive to thiol reductants) was observed. In addition to these changes, a dose-dependent increase in the relative abundance of F-actin was detected as a consequence of the metabolism of oxidizing quinones in hepatocytes. Addition of dithiothreitol solubilized a considerable amount of polypeptides from the cytoskeletal fraction isolated from hepatocytes exposed to redox cycling but not alkylating quinones. Our findings indicate that the hepatocyte cytoskeleton is an important target for the toxic effects of different quinones. However, the mechanisms underlying cytoskeletal damage differ depending on whether the quinone acts primarily by oxidative stress or alkylation.  相似文献   

6.
In order to clarify the role of oxidative processes in cytotoxicity we have studied the metabolism and toxicity of 2-methyl-1,4-naphthoquinone (menadione) and its 2,3 dimethyl (DMNQ) and 2,3 diethyl (DENQ) analogs in isolated rat hepatocytes. The two analogs, unlike menadione, cannot alkylate nucleophiles directly and were considerably less toxic than menadione. This decreased toxicity was consistent with the inability of DMNQ and DENQ to alkylate but we also found them to undergo lower rates of redox cycling in hepatocytes and a higher ratio of two electron as opposed to one electron reduction relative to menadione. Thus, facile analysis of the respective roles of alkylation and oxidation in cytotoxicity was not possible using these compounds. In hepatocytes pretreated with bischloroethyl-nitrosourea (BCNU) to inhibit glutathione reductase, all three naphthoquinones caused a potentiation of reduced glutathione (GSH) removal/oxidized glutathione (GSSG) generation and cytotoxicity relative to that observed in control cells. These data show that inhibition of hepatocyte glutathione reductase by BCNU results in enhanced naphthoquinone-induced oxidative challenge and subsequent cellular toxicity. That DMNQ and DENQ are cytotoxic, albeit at high concentrations, and that this cytotoxicity is potentiated by BCNU pretreatment suggest that oxidative processes alone can be a determinant of cytotoxicity.  相似文献   

7.
The mechanism of cocaine-induced cytotoxicity was investigated in hepatocytes isolated from both male C3H mice and male Sprague-Dawley rats. Cocaine was more cytotoxic to mouse hepatocytes than rat and induced reduced glutathione (GSH) depletion prior to marked increases in cytotoxicity in both systems. In both mouse and rat cells, GSH depletion was accompanied by GSSG production, but in rat cells, quantitative measures suggested that other mechanisms contributed to GSH depletion. No cocaine-induced depletion of protein-thiol groups or generation of protein-glutathione mixed disulfides could be detected in rat cells. Cocaine induced lipid peroxidation, using malondialdehyde (MDA) production as an index of the peroxidation process, in both mouse and rat hepatocytes. Inhibition of MDA production to below control levels using the antioxidant N,N'-diphenyl-phenylene diamine (DPPD) however, had no inhibitory effect on cocaine-induced cytotoxicity in either mouse or rat cells. These data suggest that neither generalized protein thiol depletion nor lipid peroxidation are critical determinants of cocaine-induced cytotoxicity in cellular systems.  相似文献   

8.
The cytotoxic effects of many quinones are thought to be mediated through their one-electron reduction to semiquinone radicals, which subsequently enter redox cycles with molecular oxygen to produce active oxygen species and oxidative stress. The two-electron reduction of quinones to diols, mediated by DT-diaphorase (NAD(P)H: (quinone-acceptor) oxidoreductase), may therefore represent a detoxifying pathway which protects the cell from the formation of these reactive intermediates. By using menadione (2-methyl-1,4-naphthoquinone) and isolated hepatocytes, the relative contribution of the two pathways to quinone metabolism has been studied and a protective role for DT-diaphorase demonstrated. Moreover, in the presence of cytotoxic concentrations of menadione rapid changes in intracellular thiol and Ca2+ homeostasis were observed. These were associated with alterations in the surface structure of the hepatocytes which may be an early indication of cytotoxicity.  相似文献   

9.
Purified rat liver phenylalanine hydroxylase is inactivated in vitro by ascorbate and thiol compounds, dithiothreitol being the most effective inhibitor, with a second order rate constant for the inactivation of 0.066 +/- 0.002 mM-1.min-1 at 20 degrees C and pH 7.2. Anaerobic conditions and catalase protected the enzyme from inactivation by dithiothreitol. This suggests that hydrogen peroxide, produced by oxidation of the thiol, is involved in the inactivation. The substrate, L-phenylalanine, also partially protected the enzyme from this inactivation. It is shown that incubation of the enzyme with dithiothreitol at aerobic conditions, followed by gel filtration, causes the release of iron from the active site. The inactivation by dithiothreitol was reversed by incubation of the iron-depleted enzyme with Fe(II).  相似文献   

10.
The effect of rifamycin SV on metabolic performance and cell viability was studied using isolated hepatocytes from fed, starved and glutathione (GSH) depleted rats. The relationships between GSH depletion, nutritional status of the cells, glucose metabolism, lactate dehydrogenase (LDH) leakage and malondialdehyde (MDA) production in the presence of rifamycin SV and transition metal ions was investigated. Glucose metabolism was impaired in isolated hepatocytes from both fed and starved animals, the effect is dependent on the rifamycin SV concentration and is enhanced by copper (II). Oxygen consumption by isolated hepatocytes from starved rats was also increased by copper (II) and a partial inhibition due to catalase was observed. Cellular GSH levels which decrease with increasing the rifamycin SV concentration were almost depleted in the presence of copper (II). A correlation between GSH depletion and LDH leakage was observed in fed and starved cells. Catalase induced a slight inhibition of the impairment of gluconeogenesis, GSH depletion and LDH leakage in starved hepatocytes incubated with rifamycin SV, iron (II) and copper (II) salts. Lipid peroxidation measured as MDA production by isolated hepatocytes was also augmented by rifamycin SV and copper (II), especially in hepatic cells isolated from starved and GSH depleted rats. Higher cytotoxicity was observed in isolated hepatocytes from fasted animals when compared with fed or GSH depleted animals. It seems likely that in addition to GSH level, there are other factors which may have an influence on the susceptibility of hepatic cells towards xenobiotic induced cytotoxicity.  相似文献   

11.
The rat hepatocyte catalyzed oxidation of 2',7'-dichlorofluorescin to form the fluorescent 2,7'-dichlorofluorescein was used to measure endogenous and xenobiotic-induced reactive oxygen species (ROS) formation by intact isolated rat hepatocytes. Various oxidase substrates and inhibitors were then used to identify the intracellular oxidases responsible. Endogenous ROS formation was markedly increased in catalase-inhibited or GSH-depleted hepatocytes, and was inhibited by ROS scavengers or desferoxamine. Endogenous ROS formation was also inhibited by cytochrome P450 inhibitors, but was not affected by oxypurinol, a xanthine oxidase inhibitor, or phenelzine, a monoamine oxidase inhibitor. Mitochondrial respiratory chain inhibitors or hypoxia, on the other hand, markedly increased ROS formation before cytotoxicity ensued. Furthermore, uncouplers of oxidative phosphorylation inhibited endogenous ROS formation. This suggests endogenous ROS formation can largely be attributed to oxygen reduction by reduced mitochondrial electron transport components and reduced cytochrome P450 isozymes. Addition of monoamine oxidase substrates increased antimycin A-resistant respiration and ROS formation before cytotoxicity ensued. Addition of peroxisomal substrates also increased antimycin A-resistant respiration but they were less effective at inducing ROS formation and were not cytotoxic. However, peroxisomal substrates readily induced ROS formation and were cytotoxic towards catalase-inhibited hepatocytes, which suggests that peroxisomal catalase removes endogenous H(2)O(2) formed in the peroxisomes. Hepatocyte catalyzed dichlorofluorescin oxidation induced by oxidase substrates, e.g., benzylamine, was correlated with the cytotoxicity induced in catalase-inhibited hepatocytes.  相似文献   

12.
It has already been reported that in vivo muscle necrosis induced by various phenylenediamine derivatives correlated with their in vitro autoxidation rate [9]. Now in a more detailed investigation of the cytotoxic mechanism of a ring-methylated phenylenediamine known as tetramethylphenylenediamine or durenediamine (DD) towards isolated rat hepatocytes has been carried out. Cytotoxicity was preceded by ROS formation which was markedly increased by inactivating DT-diaphorase or catalase but were prevented by a subtoxic concentration of the mitochondrial respiratory inhibitor cyanide. This suggests that ROS generation could be attributed to a futile two-electron redox cycle involving oxidation of phenylenediamine to the corresponding diimine by the mitochondrial electron transfer chain and re-reduction by the DT-diaphorase. Endocytosis inhibitors, lysosomotropic agents or lysosomal protease inhibitors also prevented DD-induced cytotoxicity suggesting that DD-induced ROS caused lysosomal damage and protease activation in hepatocytes. Furthermore preincubation with deferoxamine (a ferric iron chelator) or addition of antioxidants, catalase or ROS scavengers (mannitol, tempol or dimethylsulfoxide) prevented DD cytotoxicity. These results suggest that H(2)O(2) reacts with lysosomal Fe(2+) to form "ROS" which causes lysosomal lipid peroxidation, membrane disruption, protease release and cell death.  相似文献   

13.
Incubation of isolated rat hepatocytes with tert-butylhydroperoxide resulted in marked cytotoxicity preceded by intracellular glutathione depletion and extensive lipid peroxidation. Addition of antioxidants delayed, but did not prevent, this toxicity. A significant decrease in protein-free sulfhydryl groups also occurred in the presence of tert-butylhydroperoxide; direct oxidation of protein thiols and mixed disulfide formation with glutathione were responsible for this decrease. The involvement of protein thiol depletion in tert-butylhydroperoxide-induced cytotoxicity is suggested by our observation that administration of dithiothreitol, which caused re-reduction of the oxidized sulfhydryl groups and mixed disulfides, efficiently protected the cells from toxicity. Moreover, depletion of intracellular glutathione by pretreatment of the hepatocytes with diethyl maleate accelerated and enhanced the depletion of protein thiols induced by tert-butylhydroperoxide and potentiated cell toxicity even in the absence of lipid peroxidation.  相似文献   

14.
Diquat is a hepatotoxin whose toxicity in vivo and in vitro is mediated by redox cycling and greatly enhanced by pretreatment with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), an inhibitor of glutathione reductase. The mechanism by which redox cycling mediates diquat cytotoxicity is unclear, however. Here, we have attempted to examine the roles of three potential products of redox cycling, namely superoxide anion radical (O2-.), hydrogen peroxide (H2O2), and hydroxyl radical (.OH), in the toxicity of diquat to BCNU-treated isolated hepatocytes. Addition of high concentrations of catalase, but not superoxide dismutase, to the incubations provided some protection against the toxic effect of diquat, but much better protection was observed when catalase was added in combination with the iron chelator desferrioxamine. Addition of desferrioxamine alone also provided considerable protection, whereas the addition of copper ions enhanced diquat cytotoxicity. Taken together, these results indicate that both H2O2 and the transition metals iron and copper could play major roles in the cytotoxicity of diquat. The role of O2-. remains less clear, however, but studies with diethylenetriaminepentaacetic acid indicate that O2-. is unlikely to significantly contribute to the reduction of Fe3+ to Fe2+. The hydroxyl radical or a related species seems the most likely ultimate toxic product of the H2O2/Fe2+ interaction, but hydroxyl radical scavengers afforded only minimal protection.  相似文献   

15.
The cytoprotective features of catalase-antibody conjugate prepared by covalent conjugation of catalase to rabbit antibody against mouse IgG is described. The bifunctional cross-linking agent m-maleimidobenzoic acid N-hydroxysuccinimide ester (MBS) was used for conjugation. Functionally active conjugate binds specifically to the plastic-adsorbed mouse IgG and to the surface of live human endothelial cells treated with mouse antiserum against human endothelial cells. Up to 4 units of catalase activity can bind to 1 cm2 of the endothelial monolayer. The targeted catalase protects endothelial cells from cytotoxic action of hydrogen peroxide: the minimal cytotoxic concentration of H2O2 for protected cells is 80-times higher than for intact cells. This effect is attributed partly to local reduction of H2O2 concentration in the cell microenvironment. Targeted catalase was estimated to reduce H2O2 concentration 8-fold near the cell surface with respect to average total concentration.  相似文献   

16.
A tyrosinase-directed therapeutic approach for malignant melanoma therapy uses the depigmenting phenolic agents such as 4-hydroxyanisole (4-HA) to form cytotoxic o-quinones. However, renal and hepatic toxicity was reported as side effects in a recent 4-HA clinical trial. In search of novel therapeutics, the cytotoxicity of the isomers 4-HA, 3-HA and 2-HA were investigated. In the following, the order of the HAs induced hepatotoxicity in mice, as measured by increased in vivo plasma transaminase activity, or in isolated rat hepatocytes, as measured by trypan blue exclusion, was 3-HA > 2-HA > 4-HA. Hepatocyte GSH depletion preceded HA induced cytotoxicity and a 4-MC-SG conjugate was identified by LC/MS/MS mass spectrometry analysis when 3-HA was incubated with NADPH/microsomes/GSH. 3-HA induced hepatocyte GSH depletion or GSH depletion when 3-HA was incubated with NADPH/microsomes was prevented by CYP 2E1 inhibitors. Dicumarol (an NAD(P)H: quinone oxidoreductase inhibitor) potentiated 3-HA- or 4-methoxycatechol (4-MC) induced toxicity whereas sorbitol (an NADH generating nutrient) greatly prevented cytotoxicity indicating a quinone-mediated cytotoxic mechanism. Ethylendiamine (an o-quinone trap) largely prevented 3-HA and 4-MC-induced cytotoxicity indicating that o-quinone was involved in cytotoxicity. Dithiothreitol (DTT) greatly reduced 3-HA and 4-MC induced toxicity. The ferric chelator deferoxamine slightly decreased 3-HA and 4-MC induced cytotoxicity whereas the antioxidants pyrogallol or TEMPOL greatly prevented the toxicity suggesting that oxidative stress contributed to 3-HA induced cytotoxicity. In summary, ring hydroxylation but not O-demethylation/epoxidation seems to be the bioactivation pathway for 3-HA in rat liver. The cytotoxic mechanism for 3-HA and its metabolite 4-MC likely consists cellular protein alkylation and oxidative stress. These results suggest that 3-HA is not suitable for treatment of melanoma.  相似文献   

17.
The biotransformation and cytotoxic effects of hydroxychavicol (HC; 1-allyl-3,4-dihydroxybenzene), which is a catecholic component in piper betel leaf and a major intermediary metabolite of safrole in rats and humans, was studied in freshly isolated rat hepatocytes. The exposure of hepatocytes to HC caused not only concentration (0.25-1.0 mM)- and time (0-3 h)-dependent cell death accompanied by the loss of cellular ATP, adenine nucleotide pools, reduced glutathione, and protein thiols, but also the accumulation of glutathione disulfide and malondialdehyde, indicating lipid peroxidation. At a concentration of 1 mM, the cytotoxic effects of safrole were less than those of HC. The loss of mitochondrial membrane potential and generation of oxygen radical species assayed using 2′,7′-dichlorodihydrofluoresein diacetate (DCFH-DA) in hepatocytes treated with HC were greater than those with safrole. HC at a weakly toxic level (0.25 and/or 0.50 mM) was metabolized to monoglucuronide, monosulfate, and monoglutathione conjugates, which were identified by mass spectra and/or 1H nuclear magnetic resonance spectra. The amounts of sulfate rather than glucuronide or glutathione conjugate predominantly increased, accompanied by a loss of the parent compound, with time. In hepatocytes pretreated with either diethyl maleate or salicylamide, HC-induced cytotoxicity was enhanced, accompanied by a decrease in the formation of these conjugates and by the inhibition of HC loss. Taken collectively, our results indicate that (a) mitochondria are target organelles for HC, which elicits cytotoxicity through mitochondrial failure related to mitochondrial membrane potential at an early stage and subsequently lipid peroxidation through oxidative stress at a later stage; (b) the onset of cytotoxicity depends on the initial and residual concentrations of HC rather than those of its metabolites; (c) the toxicity of HC is greater than that of safrole, suggesting the participation of a catecholic intermediate in safrole cytotoxicity in rat hepatocytes.  相似文献   

18.
1. The cytotoxicity of N-nitrosomethylaniline (NMA) towards hepatocytes isolated from rats was prevented by acetone or ethanol (inhibitors for cytochrome P-450IIE1) but not by metyrapone or SKF525A (inhibitors for cytochrome P-450IIB1/2). Various alcohols, secondary ketones and isothiocyanates that induced cytochrome P-450IIE1 were also found to be protective. Various aromatic and chlorinated hydrocarbon solvents that are substrates or inducers of cytochrome P-450IIE1 also prevented NMA cytotoxicity. Nitrogen-containing heterocycles that induced cytochrome P-450IIE1 were less effective. Further evidence that cytochrome P-450IIE1 was responsible for the activation of NMA was the marked increase in hepatocyte susceptibility if hepatocytes from pyrazole-induced rats were used. 2. NMA was more cytotoxic to hepatocytes isolated from phenobarbital-pretreated rats than uninduced rats. However, metyrapone now prevented and SKF525A delayed the cytotoxicity whereas ethanol, acetone, allyl isocyanate, isoniazid or trichloroethylene had no effect on the susceptibility of phenobarbital-induced hepatocytes. Furthermore, microsomes isolated from phenobarbital-pretreated rats had higher NMA-N-demethylase activity which was more inhibited by metyrapone and SKF525A than that of uninduced microsomal activity. By contrast the N-demethylase activity of phenobarbital induced microsomes was more resistant to acetone, ethanol, hexanal, trichloroethylene and toluene than uninduced microsome. 3. The above results suggest that cytochrome P-450IIE1 catalyses the cytotoxic activation of NMA in normal or pyrazole-induced hepatocytes whereas cytochrome P-450IIB1/2 is responsible for cytotoxicity in phenobarbital-induced hepatocytes.  相似文献   

19.
To clarify the relationship of aziridine biotransformation to their cytotoxic activities, the metabolism of optical isomers of typical cytotoxic and non-cytotoxic aziridines was studied in isolated hepatocytes, rat liver microsomes, mitochondria and L-1210 mouse leukemia cells. Cytotoxic 1-methyl-2-beta-naphthylaziridine (NAZ) gave nitrosomethane as one of the bioactivation products in isolated hepatocytes and simultaneously induced a marked decrease in cellular ATP followed by cell lethality. NAZ itself did not directly affect the respiratory function of mitochondria in isolated hepatocytes or in buffer solution, however, it inhibited the mitochondrial activity in the presence of microsomes in the buffer solution. Nitroso-t-butane or nitrosomethane dimer, used as a substitute for extremely labile nitrosomethane, strongly inhibited the respiration of mitochondria. On the other hand, optical isomers of 2-aziridinecarboxylic acid (AZC) which did not give nitrosomethane in isolated hepatocytes or microsomes also did not show cytotoxicity. Thus, the cytotoxicity of NAZ seems to be induced by bioactivation via cellular oxidases with the nitrosomethane generated being a major toxic component. This may occur with most of the cytotoxic aziridine derivatives.  相似文献   

20.
Since tumor promoter benzoyl peroxide (BPO) mimics phorbol esters in some aspects, its effects on protein kinase C (PKC) were previously studied. However, in those studies due to the presence of thiol agents in the PKC preparations, the sensitive reaction of BPO with redox-active cysteine residues in PKC was not observed. In this study, by excluding thiol agents present in the purified PKC preparation, low concentrations of BPO modified PKC, resulting in the loss of both kinase activity and phorbol ester binding (IC50 = 0. 2 to 0.5 microM). This modification, which was not dependent on transition metals, was totally blocked by a variety of thiol agents including GSH, which directly reacted with BPO. Substoichiometric amounts of BPO (0.4 mol/mol of PKC) oxidized two sulfhydryls in PKC and inactivated the enzyme which was readily reversed by dithiothreitol. The regulatory domain having zinc thiolate structures supporting the membrane-inserting region provided the specificity for PKC reaction with BPO, which partitioned into the membrane. Unlike H2O2, BPO did not induce the generation of the Ca2+/lipid-independent activated form of PKC. Other redox-sensitive enzymes such as protein kinase A, phosphorylase kinase, and protein phosphatase 2A required nearly 25- to 100-fold higher concentrations of BPO for inactivation. BPO also inactivated PKC in a variety of cell types. In the JB6 (30 P-) nonpromotable cell line and other normal cell lines, where BPO was more cytotoxic, it readily inactivated PKC due to a slow reversibility of this inactivation by the cell. However, in the JB6 (41 P+) promotable cell line, C3H10T1/2 and B16 melanoma cells, where BPO was less cytotoxic, it did not readily inactivate PKC due to a rapid reversibility of this inactivation by an endogenous mechanism. Nevertheless, BPO inactivated PKC at an equal rate in the homogenates prepared from all these cell types. Inclusion of NADPH reversed this inactivation in the homogenates to a different extent, presumably due to a difference in distribution of a protein disulfide reductase, which reverses this oxidative modification. BPO-induced modification of PKC occurred independent of the cellular status of GSH. However, externally added GSH and cell-impermeable thiol agents prevented the BPO-induced modification of PKC. Since BPO readily partitions into membranes, its reaction with redox-cycling thiols of membrane proteins such as PKC may trigger epigenetic events to prevent cytotoxicity, but favor tumor promotion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号