首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the past year, research on helical membrane proteins has brought insights into the use of deviations from canonical alpha-helical conformation to support function and the further investigation of the sequestration of protein regions from the lipid bilayer to enhance these structural alternatives. Also, the structural roles of polar sidechains, the identification of motifs in helix interactions and the significance of certain topologies on a genome-wide scale have been further explored.  相似文献   

2.

Background  

The hydrogen bond patterns between mainchain atoms in protein structures not only give rise to regular secondary structures but also satisfy mainchain hydrogen bond potential. However, not all mainchain atoms can be satisfied through hydrogen bond interactions that arise in regular secondary structures; in some locations sidechain-to-mainchain hydrogen bonds are required to provide polar group satisfaction. Buried polar residues that are hydrogen-bonded to mainchain amide atoms tend to be highly conserved within protein families, confirming that mainchain architecture is a critical restraint on the evolution of proteins. We have investigated the stabilizing roles of buried polar sidechains on the backbones of protein structures by performing an analysis of solvent inaccessible residues that are entirely conserved within protein families and superfamilies and hydrogen bonded to an equivalent mainchain atom in each family member.  相似文献   

3.
Worth CL  Blundell TL 《Proteins》2009,75(2):413-429
Although polar amino acids tend to be found on the surface of proteins due to their hydrophilic nature, their important roles within the core of proteins are now becoming better recognized. It has long been understood that a significant number of mainchain functions will not achieve hydrogen bond satisfaction through the formation of secondary structures; in these circumstances, it is generally buried polar residues that provide hydrogen bond satisfaction. Here, we describe an analysis of the hydrogen-bonding of polar amino acids in a set of structurally aligned protein families. This allows us not only to calculate the conservation of each polar residue but also to assess whether conservation is correlated with the hydrogen-bonding potential of polar sidechains. We show that those polar sidechains whose hydrogen-bonding potential is satisfied tend to be more conserved than their unsatisfied or nonhydrogen-bonded counterparts, particularly when buried. Interestingly, these buried and satisfied polar residues are significantly more conserved than buried hydrophobic residues. Forming hydrogen bonds to mainchain amide atoms also influences conservation, with those satisfied buried polar residues that form two hydrogen bonds to mainchain amides being significantly more conserved than those that form only one or none. These results indicate that buried polar residues whose hydrogen-bonding potential is satisfied are likely to have important roles in maintaining protein structure.  相似文献   

4.
BACKGROUND: Both backbone hydrogen bonding and interactions between sidechains stabilize beta sheets. Cross-strand interactions are the closest contacts between the sidechains of a beta sheet. Here we investigate the energetics of cross-strand interactions using a variant of the B1 domain of immunoglobulin G (IgG) binding protein G (beta1) as our model system. RESULTS: Pairwise mutations of polar and nonpolar residues were made at a solvent-exposed site between the two central parallel beta strands of beta1. Both stabilizing and destabilizing interactions were measured. The greatest stabilizations were observed for charge-charge interactions. Our experimental study of sidechain interactions correlates with statistical preferences: residue pairs for which we measure stabilizing interaction energies occur together frequently, whereas destabilizing pairs are rarely observed together. CONCLUSIONS: Sidechain interactions modulate the stability of beta sheets. We propose that cross-strand sidechain interactions specify correct strand register and ordering through the energetic benefit of optimally arranged pairings.  相似文献   

5.
NMR spin relaxation measurements of picosecond to nanosecond timescale backbone and sidechain fluctuations of protein molecules, and subsequent entropic interpretation yield interesting, but sometimes counterintuitive, insights into proteins. The stabilities of proteins and protein interactions are achieved through enthalpy-entropy compensation, which is partitioned between the backbone and sidechains depending on the nature of the system.  相似文献   

6.
Thermophiles, mesophiles, and psychrophiles have different amino acid frequencies in their proteins, probably because of the way the species adapt to very different temperatures in their environment. In this paper, we analyse how contacts between sidechains vary between homologous proteins from species that are adapted to different temperatures, but displaying relatively high sequence similarity. We investigate whether specific contacts between amino acids sidechains is a key factor in thermostabilisation in proteins. The dataset was divided into two subsets with optimal growth temperatures from 0–40 and 35–102°C. Comparison of homologues was made between low-temperature species and high-temperature species within each subset. We found that unspecific interactions like hydrophobic interactions in the core and solvent interactions and entropic effects at the surface, appear to be more important factors than specific contact types like salt bridges and aromatic clusters. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.

Cross-β amyloid fibrils and membrane-bound β-barrels are two important classes of β-sheet proteins. To investigate whether there are systematic differences in the backbone and sidechain conformations of these two families of proteins, here we analyze the 13C chemical shifts of 17 amyloid proteins and 7 β-barrel membrane proteins whose high-resolution structures have been determined by NMR. These 24 proteins contain 373 β-sheet residues in amyloid fibrils and 521 β-sheet residues in β-barrel membrane proteins. The 13C chemical shifts are shown in 2D 13C–13C correlation maps, and the amino acid residues are categorized by two criteria: (1) whether they occur in β-strand segments or in loops and turns; (2) whether they are water-exposed or dry, facing other residues or lipids. We also examine the abundance of each amino acid in amyloid proteins and β-barrels and compare the sidechain rotameric populations. The 13C chemical shifts indicate that hydrophobic methyl-rich residues and aromatic residues exhibit larger static sidechain conformational disorder in amyloid fibrils than in β-barrels. In comparison, hydroxyl- and amide-containing polar residues have more ordered sidechains and more ordered backbones in amyloid fibrils than in β-barrels. These trends can be explained by steric zipper interactions between β-sheet planes in cross-β fibrils, and by the interactions of β-barrel residues with lipid and water in the membrane. These conformational trends should be useful for structural analysis of amyloid fibrils and β-barrels based principally on NMR chemical shifts.

  相似文献   

8.
Proteins that bind protons at cell membrane interfaces often expose to the bulk clusters of carboxylate and histidine sidechains that capture protons transiently and, in proton transporters, deliver protons to an internal site. The protonation-coupled dynamics of bulk-exposed carboxylate clusters, also known as proton antennas, is poorly described. An essential open question is how water-mediated bridges between sidechains of the cluster respond to protonation change and facilitate transient proton storage. To address this question, here I studied the protonation-coupled dynamics at the proton-binding antenna of PsbO, a small extrinsinc subunit of the photosystem II complex, with atomistic molecular dynamics simulations and systematic graph-based analyses of dynamic protein and protein-water hydrogen-bond networks. The protonation of specific carboxylate groups is found to impact the dynamics of their local protein-water hydrogen-bond clusters. Regardless of the protonation state considered for PsbO, carboxylate pairs that can sample direct hydrogen bonding, or bridge via short hydrogen-bonded water chains, anchor to nearby basic or polar protein sidechains. As a result, carboxylic sidechains of the hypothesized antenna cluster are part of dynamic hydrogen bond networks that may rearrange rapidly when the protonation changes.  相似文献   

9.
It was shown in qualitative and quantitative analyses of polar side chains inaccessible for water molecules as well as their interactions in 100 globular beta-structural proteins that completely buried polar side chains are widespread in beta-proteins, their vast majority being involved in "side chain-side chain" or "side chain-main chain" interactions. The analysis of the occurrence of different "side chain-partner" pairs permitted us to demonstrate that such interactions are selective. The results were compared with similar data obtained previously for alpha-helical proteins.  相似文献   

10.
Qualitative and quantitative analysis of polar side chains inaccessible to water molecules, as well as their interactions in 100 globular β-sheet proteins, was performed. It was shown that completely buried polar side chains are widespread in β-proteins, with their vast majority being involved in side chain-side chain or side chain-main chain interactions. An analysis of frequency of occurrence of different side chain-partner pairs demonstrated that these interactions are selective. The results were compared with similar data obtained earlier for α-helical proteins.  相似文献   

11.
We present a simulated annealing-based method for the prediction of the tertiary structures of proteins given knowledge of the secondary structure associated with each amino acid in the sequence. The backbone is represented in a detailed fashion whereas the sidechains and pairwise interactions are modeled in a simplified way, following the LINUS model of Srinivasan and Rose. A perceptron-based technique is used to optimize the interaction potentials for a training set of three proteins. For these proteins, the procedure is able to reproduce the tertiary structures to below 3 A in root mean square deviation (rmsd) from the PDB targets. We present the results of tests on twelve other proteins. For half of these, the lowest energy decoy has a rmsd from the native state below 6 A and, in 9 out of 12 cases, we obtain decoys whose rmsd from the native states are also well below 5 A.  相似文献   

12.
13.
Riemen AJ  Waters ML 《Biopolymers》2008,90(3):394-398
Study of model beta-hairpin peptides allows for better understanding of the factors involved in the formation of beta-sheet secondary structure in proteins. It is known that turn sequence, sidechain-sidechain interactions, interstrand hydrogen bonding, and beta-sheet propensity of residues are all important for beta-hairpin stability in aqueous solution. However, interactions of the sidechains of the terminal residues of hairpins are thought to contribute little to overall hairpin stability since these residues are typically frayed. Here, the authors report a stabilizing hydrophobic cluster of residues at the termini of the naturally occurring excised N-terminal beta-hairpin of Ubiquitin that folds autonomously in aqueous solution. Our data show that deletion of Met1 and Val17 from this hairpin destabilized the folded state in both aqueous solution and in aqueous-methanol solutions. These results suggest that interactions of terminal residues which are usually frayed can nonetheless contribute significantly to overall stability of beta-hairpin.  相似文献   

14.
This paper describes a rapid, automated procedure which can be used for model building sidechains using (i) spatial information from sidechains in topologically equivalent positions as far as such a correlation is observed, and then (ii) most probable conformations of the sidechains in the respective secondary structure type. Analysis of topologically equivalent residues in the structurally conserved regions of a family of proteins implies that the spatial positions of the atoms in the sidechains rather than conformations should be considered when model building. Rules for the modelling of all 20 side-chains from each other in alpha-helical, beta-sheet and loop regions--a total of 1200--are established. Cluster analysis is used on positional data from the sidechain atoms of structurally equivalent residues in an homologous family to guide modelling. The most probable conformation for the sidechain is used for modelling atoms where no useful guidance is obtainable from equivalent sidechains of the homologous proteins. In order to test the procedure we have modelled the sidechains of the residues in the structurally conserved regions of myoglobin from four other globins. The automated procedure described here has been incorporated into the program COMPOSER.  相似文献   

15.
16.
Alzheimer's disease (AD) pathogenesis is associated with formation of amyloid fibrils caused by polymerization of the amyloid β-peptide (Aβ), which is a process that requires unfolding of the native helical structure of Aβ. According to recent experimental studies, stabilization of the Aβ central helix is effective in preventing Aβ polymerization into toxic assemblies. To uncover the fundamental mechanism of unfolding of the Aβ central helix, we performed molecular dynamics simulations for wild-type (WT), V18A/F19A/F20A mutant (MA), and V18L/F19L/F20L mutant (ML) models of the Aβ central helix. It was quantitatively demonstrated that the stability of the α-helical conformation of both MA and ML is higher than that of WT, indicating that the α-helical propensity of the three nonpolar residues (18, 19, and 20) is the main factor for the stability of the whole Aβ central helix and that their hydrophobicity plays a secondary role. WT was found to completely unfold by a three-step mechanism: 1) loss of α-helical backbone hydrogen bonds, 2) strong interactions between nonpolar sidechains, and 3) strong interactions between polar sidechains. WT did not completely unfold in cases when any of the three steps was omitted. MA and ML did not completely unfold mainly due to the lack of the first step. This suggests that disturbances in any of the three steps would be effective in inhibiting the unfolding of the Aβ central helix. Our findings would pave the way for design of new drugs to prevent or retard AD.  相似文献   

17.
There is a growing recognition for the importance of proteins with large intrinsically disordered (ID) segments in cell signaling and regulation. ID segments in these proteins often harbor regions that mediate molecular recognition. Coupled folding and binding of the recognition regions has been proposed to confer high specificity to interactions involving ID segments. However, researchers recently questioned the origin of the interaction specificity of ID proteins because of the overrepresentation of hydrophobic residues in their interaction interfaces. Here, we focused on the role of polar and charged residues in interactions mediated by ID segments. Making use of the extended nature of most ID segments when in complex with globular proteins, we first identified large numbers of complexes between globular proteins and ID segments by using radius-of-gyration-based selection criteria. Consistent with previous studies, we found the interfaces of these complexes to be enriched in hydrophobic residues, and that these residues contribute significantly to the stability of the interaction interface. However, our analyses also show that polar interactions play a larger role in these complexes than in structured protein complexes. Computational alanine scanning and salt-bridge analysis indicate that interfaces in ID complexes are highly complementary with respect to electrostatics, more so than interfaces of globular proteins. Follow-up calculations of the electrostatic contributions to the free energy of binding uncovered significantly stronger Coulombic interactions in complexes harbouring ID segments than in structured protein complexes. However, they are counter-balanced by even higher polar-desolvation penalties. We propose that polar interactions are a key contributing factor to the observed high specificity of ID segment-mediated interactions.  相似文献   

18.
19.
F Avbelj 《Biochemistry》1992,31(27):6290-6297
A method for calculation of the free energy of residues as a function of residue burial is proposed. The method is based on the potential of mean force, with a reaction coordinate expressed by residue burial. Residue burials are calculated from high-resolution protein structures. The largest individual contributions to the free energy of a residue are found to be due to the hydrophobic interactions of the nonpolar atoms, interactions of the main chain polar atoms, and interactions of the charged groups of residues Arg and Lys. The contribution to the free energy of folding due to the uncharged side chain polar atoms is small. The contribution to the free energy of folding due to the main chain polar atoms is favorable for partially buried residues and less favorable or unfavorable for fully buried residues. Comparison of the accessible surface areas of proteins and model spheres shows that proteins deviate considerably from a spherical shape and that the deviations increase with the size of a protein. The implications of these results for protein folding are also discussed.  相似文献   

20.
Many integral membrane enzymes require for their activity interactions with the polar headgroups of phospholipids, in addition to the hydrophobic interactions within the lipid bilayer. The interactions with the polar headgroups may have preferential or absolute specificity. To study such interactions, phospholipids have been synthesized which carry photoactivable moieties in their headgroups. Three types of phospholipids, PL-I, PL-II and PL-III, were synthesized. The synthetic phospholipids, PL-I and PL-II were able to reconstitute enzymatic activity of the membrane proteins which were studied. Covalent crosslinking between these phospholipids and the membrane proteins was demonstrated after photolysis of the reconstituted phospholipid-protein complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号