首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new computerised technique has been devised for measuring the distribution of chiasmata along diplotene bivalents. The method involves the introduction into the field of view of the microscope, of a fine light spot which can be accurately manipulated along the chromosomes of each bivalent. The data recorded include (a) the positions of the chiasmata along the bivalent in terms of their relative distances from the centromere and (b) the individual bivalent and cellular chiasma frequencies. — The method has been applied to the analysis of chiasma distribution patterns in the two known species of the genus Caledia, C. species nova 1 and C. captiva and in two chromosomal races of the latter. Statistical tests indicate that within bivalents at least 40% of the comparative distribution patterns of chiasmata between races and species are significantly different. Similar comparisons between populations within races reveal only 18% significant differences. — The observed distribution patterns of chiasmata in this genus suggest that chiasma formation is sequential from centromere to telomere. — The variation in the frequency and distribution of chiasmata between races and species suggests that the interference distances between successive chiasmata are, at least partially, independent of chiasma frequency and position. — The interracial and interspecific differences in chromosome structure are correlated with changes in chiasma pattern.  相似文献   

2.
Recombination establishes the chiasmata that physically link pairs of homologous chromosomes in meiosis, ensuring their balanced segregation at the first meiotic division and generating genetic variation. The visible manifestation of genetic crossing-overs, chiasmata are the result of an intricate and tightly regulated process involving induction of DNA double-strand breaks and their repair through invasion of a homologous template DNA duplex, catalysed by RAD51 and DMC1 in most eukaryotes. We describe here a RAD51-GFP fusion protein that retains the ability to assemble at DNA breaks but has lost its DNA break repair capacity. This protein fully complements the meiotic chromosomal fragmentation and sterility of Arabidopsis rad51, but not rad51 dmc1 mutants. Even though DMC1 is the only active meiotic strand transfer protein in the absence of RAD51 catalytic activity, no effect on genetic map distance was observed in complemented rad51 plants. The presence of inactive RAD51 nucleofilaments is thus able to fully support meiotic DSB repair and normal levels of crossing-over by DMC1. Our data demonstrate that RAD51 plays a supporting role for DMC1 in meiotic recombination in the flowering plant, Arabidopsis.  相似文献   

3.
The problem of extreme localisation of chiasmata in the grasshopper species Bryodema tuberculata has been reinvestigated, using C-banding, Q-banding and benzimidazol techniques. These techniques reveal the precise localisation of heterochromatin in different chromosomes. Single or double heterochromatic blocks are present near the centromeric regions, except in chromosomes 5 and 11, which have larger blocks. These two chromosomes possess a distal chiasma while the other autosomes have a proximal chiasma. The results with regard to the distribution of chiasmata, in relation to the localisation of heterochromatin, as well as the existence of a short arm, are compared with the earlier observations of White, and discussed briefly.  相似文献   

4.
The periodic occurrence of chiasmata was studied in lampbrush chromosomes of the chicken (Gallus gallus domesticus). It was shown that the most probable interference distance in chicken macrobivalents 1–3 corresponded to 24.48 Mb. The distance at which absolute interference is observed in chicken macrochromosomes varies from 5.75 to 9.02 Mb.  相似文献   

5.
In many cereal crops, meiotic crossovers predominantly occur toward the ends of chromosomes and 30 to 50% of genes rarely recombine. This limits the exploitation of genetic variation by plant breeding. Previous reports demonstrate that chiasma frequency can be manipulated in plants by depletion of the synaptonemal complex protein ZIPPER1 (ZYP1) but conflict as to the direction of change, with fewer chiasmata reported in Arabidopsis thaliana and more crossovers reported for rice (Oryza sativa). Here, we use RNA interference (RNAi) to reduce the amount of ZYP1 in barley (Hordeum vulgare) to only 2 to 17% of normal zygotene levels. In the ZYP1RNAi lines, fewer than half of the chromosome pairs formed bivalents at metaphase and many univalents were observed, leading to chromosome nondisjunction and semisterility. The number of chiasmata per cell was reduced from 14 in control plants to three to four in the ZYP1-depleted lines, although the localization of residual chiasmata was not affected. DNA double-strand break formation appeared normal, but the recombination pathway was defective at later stages. A meiotic time course revealed a 12-h delay in prophase I progression to the first labeled tetrads. Barley ZYP1 appears to function similarly to ZIP1/ZYP1 in yeast and Arabidopsis, with an opposite effect on crossover number to ZEP1 in rice, another member of the Poaceae.  相似文献   

6.
It is possible to determine chromosomal position of the genes having definite genetic localization, using chiasmata distribution along the chromosome. This approach was used for subchromosomal mapping of the house mouse genes. It was shown that the chiasmata distributions are different for different chromosomes. The positions of some gene on chromosomes 1, 2, 17 and 19 were determined. The results coincide with those on subchromosomal gene mapping using chromosome translocations and in situ hybridization.  相似文献   

7.
WHEN chromosomes pair at meiosis the bivalents so formed do not normally interlock. Heat-treatments can, however, induce bivalent interlocking in the locust Locusta migratoria. Only the longest bivalents interlock and usually only two are found per cell; two “rod” bivalents, with single chiasmata, two “ring” bivalents, each with two or three chiasmata, or one “rod” and one “ring” bivalent (Fig. 1a, b and c). The nature of this interlocking and the metaphase orientational and congressional properties of interlocked bivalents are analysed in detail elsewhere1.  相似文献   

8.
The synaptonemal complex (SC), a tripartite proteinaceous structure that forms between homologous chromosomes during meiosis, is crucial for faithful chromosome segregation. Here we identify CRA-1, a novel and conserved protein that is required for the assembly of the central region of the SC during C. elegans meiosis. In the absence of CRA-1, central region components fail to extensively localize onto chromosomes at early prophase and instead mostly surround the chromatin at this stage. Later in prophase, central region proteins polymerize along chromosome axes, but for the most part fail to connect the axes of paired homologous chromosomes. This defect results in an inability to stabilize homologous pairing interactions, altered double-strand break (DSB) repair progression, and a lack of chiasmata. Surprisingly, DSB formation and repair are required to promote the polymerization of the central region components along meiotic chromosome axes in cra-1 mutants. In the absence of both CRA-1 and any one of the C. elegans homologs of SPO11, MRE11, RAD51, or MSH5, the polymerization observed along chromosome axes is perturbed, resulting in the formation of aggregates of the SC central region proteins. While radiation-induced DSBs rescue this polymerization in cra-1; spo-11 mutants, they fail to do so in cra-1; mre-11, cra-1; rad-51, and cra-1; msh-5 mutants. Taken together, our studies place CRA-1 as a key component in promoting the assembly of a tripartite SC structure. Moreover, they reveal a scenario in which DSB formation and repair can drive the polymerization of SC components along chromosome axes in C. elegans.  相似文献   

9.
A study of homoeologous recombination along almost the complete genetic length of two homoeologous chromosomes in the Triticeae was conducted. Sears' phlb mutant was used to induce homoeologous pairing between chromosomes 7A of common wheat and 7Ai–l of Agropyron intermedium. 390 ph1b ph1b homozygous F3 progeny were screened using six co-dominant DNA markers (RFLP loci). 63 of the progeny (16%) were putative recombinants, showing dissociation of RFLP markers within the arm(s). Progeny tests of self-fertile putative recombinants confirmed the dissociation phenotypes observed in the F3 progeny. No recombination could be confirmed in 117 F3 progeny plants having the Ph1– allele (control population). Frequencies and distribution of chiasmata along the chromosome arm 7AS were analysed using additional RFLP markers. The patterns of recombination between the two homoeologous chromosomes were found similar to those reported for homologous recombination between the same markers on short arms of group 7 chromosomes of Triticeae.  相似文献   

10.
I P Gorlov 《Genetika》1988,24(4):641-647
The distribution of chiasmata in 2 and 6 chromosomes in males homozygous for Rb(2.6)4Iem and Rb(8.17)1Iem was studied. Chiasmata were shown to distribute along chromosomes non-randomly, exchanges occurring in telomeric regions. Chiasmata distribution is substantially different for the cases of one and two chiasmata per bivalent. The main cause for these differences is supposed to be strong positive chiasmata interference (the position of the first chiasma may determine the position of the second one). The centromere blocks this effect, so chiasma in one arm does not interfere with that in the second arm. It has been shown that the frequency of double exchanges depended on not only the distance between markers under study, but also on marker position in the chromosome.  相似文献   

11.
The karyotype and male meiosis, with a particular focus on the presence or absence of chiasmata between the homologs, were studied in the water boatman species Cymatia rogenhoferi (Fieber) and Cymatia coleoptrata (Fabricius) (Corixidae, Cymatiainae). It is shown that the species have 2n = 33 (28A+2m+X1X2Y) and 2n = 24 (20A+2m+XY) respectively, post-reduction of sex chromosomes, and achiasmate meiosis of an alignment type in males. Cytogenetic and some morphological diagnostic characters separating Cymatia Flor from the rest of Corixidae are discussed.  相似文献   

12.
Meiotic Exchange without the Synaptinemal Complex   总被引:1,自引:0,他引:1  
THE synaptinemal complex is a ribbonlike tripartite structure, normally restricted to the nucleus of meiocytes and located along the longitudinal axis of bivalent chromosomes1. It consists of two dense lateral elements (about 400 Å in width) separated from the central element (about 250 Å in width) by spaces of about 400 Å (Fig. 1). Various functions have been proposed for it, primarily that it is intimately involved in meiotic exchange, either directly by promoting effective pairing between complementary nucleotide strands of homologous chromosomes1–3 or indirectly by providing for the rough alignment of homologues before their more intimate association4,5. In this view, the complex is an essential feature of the regular and extensive exchange process typical of meiosis. The firmest evidence in support of its role in exchange has been its concomitant presence in primary meiocytes whenever genetic or cytological evidence indicates that crossing-over is occurring1. The presence of the complex in meiocytes which lack exchange and/or chiasmata, for example, the female of Bombyx mori6, intergeneric hybrids, haploid genomes and certain achiasmate male insects, as well as its presence in univalent X chromosomes of primary spermatocytes and in postmeiotic spermatids, has been interpreted as “the exceptions that prove, or at least refine, the rule1.” Here, for the first time, we describe the converse situation, one in which high frequencies of meiotic exchange, as determined by genetic tests, are not accompanied by a detectable synaptinemal complex. This means that both pairing of homologues, which must precede exchange and the exchange process itself can occur in the meiocyte without the aid of the synaptinemal complex.  相似文献   

13.
The proper assembly of the synaptonemal complex (SC) between homologs is critical to ensure accurate meiotic chromosome segregation. The SC is a meiotic tripartite structure present from yeast to humans, comprised of proteins assembled along the axes of the chromosomes and central region (CR) proteins that bridge the two chromosome axes. Here we identify SYP-4 as a novel structural component of the SC in Caenorhabditis elegans. SYP-4 interacts in a yeast two-hybrid assay with SYP-3, one of components of the CR of the SC, and is localized at the interface between homologs during meiosis. SYP-4 is essential for the localization of SYP-1, SYP-2, and SYP-3 CR proteins onto chromosomes, thereby playing a crucial role in the stabilization of pairing interactions between homologous chromosomes. In the absence of SYP-4, the levels of recombination intermediates, as indicated by RAD-51 foci, are elevated in mid-prophase nuclei, and crossover recombination events are significantly reduced. The lack of chiasmata observed in syp-4 mutants supports the elevated levels of chromosome nondisjunction manifested in high embryonic lethality. Altogether our findings place SYP-4 as a central player in SC formation and broaden our understanding of the structure of the SC and its assembly.  相似文献   

14.
Meiosis involves reciprocal exchange of genetic information between homologous chromosomes to generate new allelic combinations. In cereals, the distribution of genetic crossovers, cytologically visible as chiasmata, is skewed toward the distal regions of the chromosomes. However, many genes are known to lie within interstitial/proximal regions of low recombination, creating a limitation for breeders. We investigated the factors underlying the pattern of chiasma formation in barley (Hordeum vulgare) and show that chiasma distribution reflects polarization in the spatiotemporal initiation of recombination, chromosome pairing, and synapsis. Consequently, meiotic progression in distal chromosomal regions occurs in coordination with the chromatin cycles that are a conserved feature of the meiotic program. Recombination initiation in interstitial and proximal regions occurs later than distal events, is not coordinated with the cycles, and rarely progresses to form chiasmata. Early recombination initiation is spatially associated with early replicating, euchromatic DNA, which is predominately found in distal regions. We demonstrate that a modest temperature shift is sufficient to alter meiotic progression in relation to the chromosome cycles. The polarization of the meiotic processes is reduced and is accompanied by a shift in chiasma distribution with an increase in interstitial and proximal chiasmata, suggesting a potential route to modify recombination in cereals.  相似文献   

15.
The somatic chromosomes and karyotypes of two Argentine populations of Capsicum chacoënse A. T. Hunz. have been studied, both of which have 2n=24. The karyotypes are symmetrical, being composed of 11 m paris + one st pair; two pairs of chromosomes are satellied: pairs 1 and 12 in one population and pairs 11 and 12 in the other one. A heteromorphic pair of satellited chromosomes in one individual suggests a spontaneous reciprocal translocation. Results are compared with previous reports for the species and genus. Data show an intraspecific karyotype variation.  相似文献   

16.
The evidence supporting universal significance of physical links between pericentromeric regions of homologous chromosomes for their bipolar orientation during the first meiotic division is discussed. The pericentromeric chiasmata between homologs or (in the absence of the latter) chromocentric links between nonhomologs, which are preserved until prometaphase, compensate for the disturbed binding between homologous pericentromeric regions in both structural or locus mutants. When the links between nonhomologs are involved, interchromosomal effects on chromosome disjunction and nonhomologous pairing were revealed by the genetic methods. An explanation suggested for genetic events observed during Drosophilameiosis conforms with the original, cytogenetically proved model of the orderly two-ring chromocenter formation and reorganization.  相似文献   

17.
Polytene giant chromosomes of the Phlebotomine sandfly Lutzomyia longipalpis from two localities in Brazil were examined. They are preliminarily described and illustrated from larval salivary gland preparations. Polytenes in other tissues of larvae, pupae and adult flies were found to be unsuitable for detailed study. Salivary chromosome arms were long but thin (‘oligotene’) and given to much ectopic pairing. Despite their fragility and cross-linkage, patterning on these chromosomes was sufficiently well differentiated to be cytotaxonomically useful. The normal mitotic complement comprised 3 pairs of metacentrics and 1 pair of subacrocentrics. None of the chromosome pairs was sexually dimorphic. Meiotic chiasmata were seen in males and females. Characteristics of giant chromosomes in Phlebotominae and Psychodinae are compared and discussed in relation to other Diptera. Cytogenetic evidence supports inclusion of the Psychodidae with the Simuliidae, Ceratopogonidae, Culicidae and Chironomidae in the superfamily Culicoidea.  相似文献   

18.
Two eukaryotic pathways for processing double-strand breaks (DSBs) as crossovers have been described, one dependent on the MutL homologs Mlh1 and Mlh3, and the other on the structure-specific endonuclease Mus81. Mammalian MUS81 has been implicated in maintenance of genomic stability in somatic cells; however, little is known about its role during meiosis. Mus81-deficient mice were originally reported as being viable and fertile, with normal meiotic progression; however, a more detailed examination of meiotic progression in Mus81-null animals and WT controls reveals significant meiotic defects in the mutants. These include smaller testis size, a depletion of mature epididymal sperm, significantly upregulated accumulation of MLH1 on chromosomes from pachytene meiocytes in an interference-independent fashion, and a subset of meiotic DSBs that fail to be repaired. Interestingly, chiasmata numbers in spermatocytes from Mus81−/− animals are normal, suggesting additional integrated mechanisms controlling the two distinct crossover pathways. This study is the first in-depth analysis of meiotic progression in Mus81-nullizygous mice, and our results implicate the MUS81 pathway as a regulator of crossover frequency and placement in mammals.  相似文献   

19.
During sexual reproduction the parental homologous chromosomes find each other (pair) and align along their lengths by integrating local sequence homology with large-scale contiguity, thereby allowing for precise exchange of genetic information. The Synaptonemal Complex (SC) is a conserved zipper-like structure that assembles between the homologous chromosomes, bringing them together and regulating exchanges between them. However, the molecular mechanisms by which the SC carries out these functions remain poorly understood. Here we isolated and characterized two mutations in the dimerization interface in the middle of the SC zipper in C. elegans. The mutations perturb both chromosome alignment and the regulation of genetic exchanges. Underlying the chromosome-scale phenotypes are distinct alterations to the way SC subunits interact with one another. We propose a model whereby the SC brings homologous chromosomes together through two activities: obligate zipping that prevents assembly on unpaired chromosomes; and a tendency to extend pairing interactions along the entire length of the chromosomes.  相似文献   

20.
Mitotic chiasmata and other quadriradials (QRs) were studied by Q-banding in mitomycin C-treated and untreated lymphocytes from two sibs with Bloom's syndrome. The frequency of chiasmata was very significantly increased by the mitomycin treatment in cells from both sibs. Chiasmata occurred throughout the chromosomes, but were favored in Q-dark regions, particularly at borders between dark and light regions (Kuhn, 1976). No significant difference was found in the distribution of chiasmata among chromosome regions in treated and untreated material. This differs from the reported action of mitomycin C on cultured lymphocytes of normal persons, where chiasmata are concentrated at secondary constrictions and centromeres. Adjacent counterparts to mitotic chiasmata, and chromatid translocations between non-homologous chromosomes, also occurred in the treated material, but with a much lower frequency than mitotic chiasmata. This again differs from the effects of mitomycin C on lymphocytes of normal persons, where chiasmata account for 20% or less of total QRs.This is paper No. 2054 from the Genetics Laboratory, University of Wisconsin, Madison  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号