首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Ligand occupancy of the alphaVbeta3 integrin is required for IGF-I receptor (IGF-IR) phosphorylation of an appropriate duration and for stimulation of IGF-I actions. In vascular smooth muscle cells (SMCs), the tyrosine phosphatase SHP-2 regulates the duration of IGF-IR phosphorylation and biological actions. We determined the role of ligand occupancy of the alphaVbeta3 integrin on beta3 phosphorylation and studied the role of beta3 phosphorylation in regulating both SHP-2 recruitment to the cell membrane and IGF-I-dependent biological responses. Vitronectin binding to alphaVbeta3 induced tyrosine phosphorylation of the beta3-subunit in subconfluent SMCs and was accompanied by increased association of SHP-2 with beta3. In confluent SMCs, the beta3-subunit was constitutively phosphorylated leading to basal binding of SHP-2. The Src kinase inhibitor PP2 caused a concentration-dependent decrease in beta3 phosphorylation and resulted in decreased SHP-2 association with beta3 and with the cell membrane. In contrast to control cells, SMCs expressing a mutant beta3 that had two tyrosines changed to phenylalanines showed a 89.9 +/- 1.2% decrease in beta3 phosphorylation. This decrease was associated with reduced SHP-2 binding to nonphosphorylated beta3 and a corresponding decrease in the membrane association of SHP-2. When IGF-I was added to cells expressing mutant beta3, SHP-2 was not recruited to the Src homology 2 domain-containing tyrosine phosphatase substrate-1 or to IGF-IR. This was associated with prolonged IGF-IR phosphorylation and an impaired cellular DNA synthesis response to IGF-I. These results define a mechanism by which ligand occupancy of alphaVbeta3 regulates the SMC response to IGF-I.  相似文献   

2.
Growth factor signaling is usually analyzed in isolation without considering the effect of ligand occupancy of transmembrane proteins other than the growth factor receptors themselves. In smooth muscle cells, the transmembrane protein Src homology 2 domain containing protein tyrosine phosphatase substrate-1 (SHPS-1) has been shown to be an important regulator of insulin-like growth factor-I (IGF-I) signaling. SHPS-1 is phosphorylated in response to IGF-I, leading to recruitment of Src homology 2 domain tyrosine phosphatase (SHP-2). Subsequently, SHP-2 is transferred to IGF-I receptor and regulates the duration of IGF-I receptor phosphorylation. Whether ligand occupancy of SHPS-1 influences SHPS-1 phosphorylation or SHP-2 recruitment, thereby altering growth factor signaling, is unknown. Previous studies have shown that integrin associated protein (IAP) associates with SHPS-1. We undertook these studies to determine whether this interaction controlled SHPS-1 phosphorylation and/or SHP-2 recruitment and thereby regulated IGF-I signaling. Disruption of IAP-SHPS-1 binding, by using an IAP monoclonal antibody or cells expressing mutant forms of IAP that did not bind to SHPS-1, inhibited IGF-I-stimulated SHPS-1 phosphorylation and SHP-2 recruitment. This was associated with a lack of SHP-2 transfer to IGF-I receptor and sustained receptor phosphorylation. This resulted in an inability of IGF-I to stimulate sustained mitogen-activated protein kinase activation, cell proliferation, and cell migration. The effect was specific for IGF-I because disruption of the IAP-SHPS-1 interaction had no effect on platelet-derived growth factor-stimulated SHPS-1 phosphorylation or cell migration. In summary, our results show that 1) ligand occupancy of SHPS-1 is a key determinant of its ability to be phosphorylated after IGF-I stimulation, and 2) the interaction between IAP and SHPS-1 is an important regulator of IGF-I signaling because disruption of the results in impaired SHP-2 recruitment and subsequent inhibition of IGF-I-stimulated cell proliferation and migration.  相似文献   

3.
Insulin-like growth factor I (IGF-I) stimulates smooth muscle cell (SMC) proliferation, and the mitogen-activated protein kinase (MAPK) pathway plays an important role in mediating IGF-I-induced mitogenic signaling. Our prior studies have shown that recruitment of Src homology 2 domain tyrosine phosphatase (SHP-2) to the membrane scaffolding protein Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 (SHPS-1) is required for IGF-I-dependent MAPK activation. The current studies were undertaken to define the upstream signaling components that are required for IGF-I-stimulated MAPK activation and the role of SHPS-1 in regulating this process. The results show that IGF-I-induced Shc phosphorylation and its subsequent binding to Grb2 is required for sustained phosphorylation of MAPK and increased cell proliferation in SMCs. Furthermore, for Shc to be phosphorylated in response to IGF-I requires that Shc must associate with SHPS-1 and this association is mediated in part by SHP-2. Preincubation of cells with a peptide that contains a phospho-tyrosine binding motif sequence derived from SHPS-1 inhibited IGF-I-stimulated SHP-2 transfer to SHPS-1, the association of Shc with SHPS-1, and IGF-I-dependent Shc phosphorylation. Expression of an SHPS-1 mutant that did not bind to Shc or SHP-2 resulted in decreased Shc and MAPK phosphorylation in response to IGF-I. In addition, SMCs expressing a mutant form of the beta3 subunit of the alphaVbeta3, which results in impairment of SHP-2 transfer to SHPS-1, also showed attenuated IGF-I-dependent Shc and MAPK phosphorylation. Further analysis showed that Shc and SHP-2 can be coimmunoprecipitated after IGF-I stimulation. A cell-permeable peptide that contained a polyproline sequence from Shc selectively inhibited Shc/SHP-2 association and impaired Shc but not SHP-2 binding to SHPS-1. Exposure to this peptide also inhibited IGF-I-stimulated Shc and MAPK phosphorylation. Cells expressing a mutant form of Shc with the four prolines substituted with alanines showed no Shc/SHPS-1 association in response to IGF-I. We conclude that SHPS-1 functions as an anchor protein that recruits both Shc and SHP-2 and that their recruitment is necessary for IGF-I-dependent Shc phosphorylation, which is required for an optimal mitogenic response in SMCs.  相似文献   

4.
Integrins are heterodimeric transmembrane proteins that mediate cell attachment to extracellular matrix, migration, division, and inhibition of apoptosis. Because growth factors are also important for these processes, there has been interest in cooperative signaling between growth factor receptors and integrins. IGF-I is an important growth factor for vascular cells. One integrin, alphaVbeta3, that is expressed in smooth muscle cells modulates IGF-I actions. Ligand occupancy of alphaVbeta3 is required for IGF-I to stimulate cell migration and division. Src homology 2 containing tyrosine phosphatase (SHP-2) is a tyrosine phosphatase whose recruitment to signaling molecules is stimulated by growth factors including IGF-I. If alphaVbeta3 ligand occupancy is inhibited, there is no recruitment of SHP-2 to alphaVbeta3 and its transfer to downstream signaling molecules is blocked. Ligand occupancy of alphaVbeta3 stimulates tyrosine phosphorylation of the beta3-subunit, resulting in recruitment of SHP-2. This transfer is mediated by an insulin receptor substrate-1-related protein termed DOK-1. Subsequently, SHP-2 is transferred to another transmembrane protein, SHPS-1. This transfer requires IGF-I receptor-mediated tyrosine phosphorylation of SHPS-1, which contains two YXXL motifs that mediate SHP-2 binding. The transfer of SHP-2 to SHPS-1 is also required for recruitment of Shc to SHPS-1. Ligand occupancy of alphaVbeta3 results in sustained Shc phosphorylation and enhanced Shc recruitment. Shc activation results in induction of MAPK. Inhibition of the Shc/SHPS-1 complex formation results in failure to achieve sustained MAPK activation and an attenuated mitogenic response. Thus, within the vessel wall, a mechanism exists whereby ligand occupancy of the alphaVbeta3 integrin is required for assembly of a multicomponent membrane signaling complex that is necessary for cells to respond optimally to IGF-I.  相似文献   

5.
The response of smooth muscle cells to IGF-I requires ligand occupancy of the alphaVbeta3 integrin. We have shown that vitronectin (Vn) is required for IGF-I-stimulated migration or proliferation, whereas the anti-alphaVbeta3 monoclonal antibody, LM609, which inhibits ligand binding, blocks responsiveness of these cells to IGF-I. The amino acids 177-184 ((177)CYDMKTTC(184)) within the extracellular domain of beta3 have been proposed to confer the ligand specificity of alphaVbeta3; therefore, we hypothesized that ligand binding to the 177-184 cysteine loop of beta3 may be an important regulator of the cross talk between alphaVbeta3 and IGF-I in SMCs. Here we demonstrate that blocking ligand binding to a specific amino acid sequence within the beta3 subunit of alphaVbeta3 (i.e. amino acids 177-184) blocked Vn binding to the beta3 subunit of alphaVbeta3 and correspondingly beta3 phosphorylation was decreased. In the presence of this antibody, IGF-I-stimulated Shc phosphorylation and ERK 1/2 activation were impaired, and this was associated with an inhibition in the ability of IGF-I to stimulate an increase in migration or proliferation. Furthermore, in cells expressing a mutated form of beta3 in which three critical residues within the 177-184 sequence were altered beta3 phosphorylation was decreased. This was associated with a loss of IGF-I-stimulated Shc phosphorylation and impaired smooth muscle cell proliferation in response to IGF-I. In conclusion, we have demonstrated that the 177-184 sequence of beta3 is necessary for Vn binding to alphaVbeta3 and that ligand occupancy of this site is necessary for an optimal response of smooth muscle cells to IGF-I.  相似文献   

6.
We have previously shown that endogenous IGF-I regulates growth of human intestinal smooth muscle cells by stimulating proliferation and inhibiting apoptosis. In active Crohn's disease, expression of IGF-I and the alpha(v)beta(3)-integrin receptor ligands fibronectin and vitronectin is increased. The aim of the present study was to determine whether occupation of the alpha(v)beta(3)-receptor influences IGF-I receptor tyrosine kinase activation and function in human intestinal smooth muscle cells. In untreated cells, IGF-I elicited time-dependent tyrosine phosphorylation of its cognate receptor that was maximal within 2 min and sustained for 30 min. In the presence of the alpha(v)beta(3)-ligand fibronectin, IGF-I-stimulated IGF-I receptor activation was augmented. Conversely, in the presence of the alpha(v)beta(3)-specific disintegrin echistatin, IGF-I-stimulated IGF-I receptor tyrosine kinase phosphorylation was inhibited. IGF-I-stimulated IGF-I receptor activation was accompanied by recruitment of the adapter protein IRS-1, activation of Erk1/2, p70S6 kinase, and proliferation. These effects were augmented by fibronectin and attenuated by echistatin. IGF-I also elicited time-dependent recruitment of protein tyrosine phosphatase SHP-2 that coincided with dephosphorylation of the tyrosine phosphorylated IGF-I receptor tyrosine kinase. The alpha(v)beta(3)-disintegrin echistatin accelerated the rate of SHP-2 recruitment and deactivation of the IGF-I receptor tyrosine kinase. The results show that occupancy of the alpha(v)beta(3)-integrin receptor modulates IGF-I-induced IGF-I receptor activation and function in human intestinal muscle cells. We hypothesize that the concomitant increases in the expression of alpha(v)beta(3)-ligands and of IGF-I in active Crohn's disease may contribute to muscle hyperplasia and stricture formation by acting in concert to augment IGF-I-stimulated IGF-I receptor tyrosine kinase activity and IGF-I-mediated muscle cell growth.  相似文献   

7.
Activation of the MAPK pathway mediates insulin-like growth factor-I (IGF-I)-dependent proliferation in vascular smooth muscle cells (SMC). Our previous studies have shown that IGF-I-induced Shc phosphorylation is necessary for sustained activation of MAPK and increased cell proliferation of SMCs, and both Shc and the tyrosine phosphatase SHP-2 must be recruited to the membrane protein SHPS-1 in order for Shc to be phosphorylated. These studies were undertaken to determine whether Src kinase activity is required to phosphorylate Shc in response to IGF-I in SMC and because SHP-2 binds to Src whether their interaction was also required for IGF-I-stimulated mitogenesis. Our results show that IGF-I induces activation of Src kinase and that is required for Shc phosphorylation and for optimal MAPK activation. We tested whether Shc is a substrate of c-Src in SMC by disrupting Src/Shc association using a peptide containing a YXXL (Tyr328) motif sequence derived from Src. The peptide blocked the binding of Src and Shc in vitro and in vivo. Cells expressing a mutant Src (Src-FF) that had Tyr328/Tyr358 substituted with phenylalanines (Src-FF) showed defective Src/Shc binding, impaired IGF-I-dependent Shc phorylation, and impaired mitogenesis. This supports the conclusion that Src phosphorylates Shc. IGF-I induced both Src/SHP-2 and Src/SHPS-1 association. SMCs expressing an SHP-2 mutant that had the polyproline-rich region of SH2 deleted (SHP-2Delta10) had disrupted SHP-2/Src association, impaired IGF-I-dependent Shc phosphorylation, and an attenuated mitogenic response. IGF-I-induced association of Src and SHPS-1 was also impaired in SHP-2Delata10-expressing cells, although SHP-2/SHPS-1 association was unaffected. Upon IGF-I stimulation, a complex assembles on SHPS-1 that contains SHP-2, c-Src, and Shc wherein Src phosphorylates Shc, a signaling step that is necessary for an optimal mitogenic response.  相似文献   

8.
Our previous studies have indicated an essential role of p52shc in mediating IGF-I activation of MAPK in smooth muscle cells (SMC). However, the role of the p66 isoform of shc in IGF-I signal transduction is unclear. In the current study, two approaches were employed to investigate the role of p66shc in mediating IGF-I signaling. Knockdown p66shc by small interfering RNA enhanced IGF-I-stimulated p52shc tyrosine phosphorylation and growth factor receptor-bound protein-2 (Grb2) association, resulting in increased IGF-I-dependent MAPK activation. This was associated with enhanced IGF-I-stimulated cell proliferation. In contrast, knockdown of p66shc did not affect IGF-I-stimulated IGF-I receptor tyrosine phosphorylation. Overexpression of p66shc impaired IGF-I-stimulated p52shc tyrosine phosphorylation and p52shc-Grb2 association. In addition, IGF-I-dependent MAPK activation was also impaired, and SMC proliferation in response to IGF-I was inhibited. IGF-I-dependent cell migration was enhanced by p66shc knockdown and attenuated by p66shc overexpression. Mechanistic studies indicated that p66shc inhibited IGF-I signal transduction via competitively inhibiting the binding of Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) to SHP substrate-1 (SHPS-1), leading to the disruption of SHPS-1/SHP-2/Src/p52shc complex formation, an event that has been shown previously to be essential for p52shc phosphorylation and Grb2 recruitment. These findings indicate that p66shc functions to negatively regulate the formation of a signaling complex that is required for p52shc activation in response to IGF-I, thus leading to attenuation of IGF-I-stimulated cell proliferation and migration.  相似文献   

9.
Insulin-like growth factor (IGF)-I regulates a mutually exclusive interaction of PP2A and beta1 integrin with the WD repeat scaffolding protein RACK1. This interaction is required for the integration of IGF-I receptor (IGF-IR) and adhesion signaling. Here we investigated the nature of the binding site for PP2A and beta1 integrin in RACK1. A WD7 deletion mutant of RACK1 did not associate with PP2A but retained some interaction with beta1 integrin, whereas a WD6/WD7 mutant lost the ability to bind to both PP2A and beta1 integrin. Using immobilized peptide arrays representing the entire RACK1 protein, we identified a common cluster of amino acids (FAGY) at positions 299-302 within WD7 of RACK1 which were essential for binding of both PP2A and beta1 integrin to RACK1. PP2A showed a higher level of association with a peptide in which Tyr-302 was phosphorylated compared with an unphosphorylated peptide, whereas beta1 integrin binding was not affected by phosphorylation. RACK1 mutants in which either the FAGY cluster or Tyr-302 were mutated to AAAF, or Phe, respectively, did not interact with either PP2A or beta1 integrin. These mutants were unable to rescue the decrease in PP2A activity caused by suppression of RACK1 in MCF-7 cells with small interfering RNA. MCF-7 cells and R+ (IGF-IR-overexpressing fibroblasts) expressing these mutants exhibited decreased proliferation and migration, whereas R- cells (IGF-IR null fibroblasts) were unaffected. Taken together, the data demonstrate that Tyr-302 in RACK1 is required for interaction with PP2A and beta1 integrin, for regulation of PP2A activity, and for IGF-I-mediated cell migration and proliferation.  相似文献   

10.
Optimal stimulation of signal transduction and biological functions by IGF-I in porcine smooth muscle cells (pSMC) requires ligand occupancy of the alphaVbeta3 integrin. Binding of heparin-binding domain (HBD) of vitronectin (VN) to the cysteine loop (C-loop) region of beta3 is required for pSMC to respond optimally to IGF-I stimulation. Mouse smooth muscle cells (mSMC), which express a form of beta3 whose sequence within the C-loop region is different than porcine or human beta3, do not respond optimally to IGF-I, and IGF-I stimulated beta3 and SHPS-1 phosphorylation which are necessary for optimal IGF-I signaling were undetectable. VN also had no effect on IGF-I stimulated the cell proliferation. In contrast, when human beta3 (hbeta3) was introduced into mSMC, there was an enhanced VN binding in spite of an equivalent amount of total beta3 expression, and IGF-I-dependent beta3, and SHPS-1 phosphorylation were detected. In addition, there was enhanced IGF-I-stimulated Shc association with SHPS-1, Shc tyrosine phosphorylation, Shc and Grb2 association, and MAP kinase activation leading to increased cell proliferation. These enhancements could be further augmented by adding a peptide containing the HBD of VN. To determine if these changes were mediated by the C-loop region of beta3, an antibody that reacts with that region of beta3 was utilized. The addition of the hbeta3 C-loop antibody abolished VN-induced enhancement of IGF-I signaling and IGF-I-stimulated cell proliferation. These results strongly support the conclusion that optimal SMC responsiveness to IGF-I requires ligand interaction with the C-loop domain of hbeta3.  相似文献   

11.
Insulin-like growth factor-I (IGF-I) stimulates vascular smooth muscle cell proliferation and migration by activating both MAPK and phosphatidylinositol 3-kinase (PI3K). Vascular smooth muscle cells (VSMCs) maintained in 25 mm glucose sustain MAPK activation via increased Shc phosphorylation and Grb2 association resulting in an enhanced mitogenic response compared with cells grown in 5 mm glucose. PI3K plays a major role in IGF-I-stimulated VSMC migration, and hyperglycemia augments this response. In contrast to MAPK activation the role of Shc in modulating PI3K in response to IGF-I has not been determined. In this study we show that impaired Shc association with Grb2 results in decreased Grb2-p85 association, SHPS-1-p85 recruitment, and PI3K activation in response to IGF-I. Exposure of VSMCs to cell-permeable peptides, which contained polyproline sequences from p85 proposed to mediate Grb2 association, resulted in inhibition of Grb2-p85 binding and AKT phosphorylation. Transfected cells that expressed p85 mutant that had specific prolines mutated to alanines resulted in less Grb2-p85 association, and a Grb2 mutant (W36A/W193A) that attenuated p85 binding showed decreased association of p85 with SHPS-1, PI3K activation, AKT phosphorylation, cell proliferation, and migration in response to IGF-I. Cellular exposure to 25 mm glucose, which is required for Shc phosphorylation in response to IGF-I, resulted in enhanced Grb2 binding to p85, activation of PI3K activity, and increased AKT phosphorylation as compared with cells exposed to 5 mm glucose. We conclude that in VSMCs exposed to hyperglycemia, IGF-I stimulation of Shc facilitates the transfer of Grb2 to p85 resulting in enhanced PI3K activation and AKT phosphorylation leading to enhanced cell proliferation and migration.  相似文献   

12.
The coordinated interplay of substrate adhesion and deadhesion is necessary for cell motility. Using MCF-7 cells, we found that insulin-like growth factor I (IGF-I) induces the adhesion of MCF-7 to vitronectin and collagen in a dose- and time-dependent manner, suggesting that IGF-I triggers the activation of different integrins. On the other hand, IGF-I promotes the association of insulin receptor substrate 1 with the focal adhesion kinase (FAK), paxillin, and the tyrosine phosphatase SHP-2, resulting in FAK and paxillin dephosphorylation. Abrogation of SHP-2 catalytic activity with a dominant-negative mutant (SHP2-C>S) abolishes IGF-I-induced FAK dephosphorylation, and cells expressing SHP2-C>S show reduced IGF-I-stimulated chemotaxis compared with either mock- or SHP-2 wild-type-transfected cells. This impairment of cell migration is recovered by reintroduction of a catalytically active SHP-2. Interestingly, SHP-2-C>S cells show a larger number of focal adhesion contacts than wild-type cells, suggesting that SHP-2 activity participates in the integrin deactivation process. Although SHP-2 regulates mitogen-activated protein kinase activity, the mitogen-activated protein kinase kinase inhibitor PD-98059 has only a marginal effect on MCF-7 cell migration. The role of SHP-2 as a general regulator of cell chemotaxis induced by other chemotactic agents and integrins is discussed.  相似文献   

13.
Activation of insulin-like growth factor I receptor (IGF-IR) kinase is an important site of control of IGF-I-linked intracellular signaling pathways. One potentially important regulatory variable is IGF-IR dephosphorylation. It has been shown that SHP-2, a tyrosine phosphatase, can bind to the activated IGF-IR in vitro; however, its role in IGF-IR dephosphorylation in whole cells is unknown. These studies were undertaken to determine whether SHP-2 was a candidate for mediating IGF-IR dephosphorylation. The IGF-IR in smooth muscle cells was dephosphorylated rapidly beginning 10 min after ligand addition, and this was temporally associated with SHP-2 binding to the receptor. IGF-I stimulated SHPS-1 phosphorylation and the subsequent recruitment of SHP-2. In cells expressing a SHPS-1 mutant that did not bind SHP-2 there was no recruitment of SHP-2 to the IGF-IR. Cells expressing a catalytically inactive form of SHP-2 showed SHP-2 recruitment to SHPS-1, but this did not result in SHPS-1 dephosphorylation, and there was a prolonged IGF-IR phosphorylation response after IGF-I stimulation. These studies indicate that IGF-IR stimulates phosphorylation of SHPS-1 which is critical for SHP-2 recruitment to the plasma membrane and for its recruitment to the IGF-IR. Recruitment of SHP-2 to the receptor then results in receptor dephosphorylation. The regulation of this process may be an important determinant of IGF-IR-mediated signaling.  相似文献   

14.
Insulin-like growth factor-I (IGF-I) plays a role in mutually exclusive processes such as proliferation and differentiation in a variety of cell types. IGF-I is a potent mitogen and motogen for dedifferentiated vascular smooth muscle cells (VSMCs) in vivo and in vitro. However, in differentiated VSMCs, IGF-I is only required for maintaining the differentiated phenotype. Here we investigated the VSMC phenotype-dependent signaling and biological processes triggered by IGF-I. In differentiated VSMCs, IGF-I activated a protein-tyrosine phosphatase, SHP-2, recruited by insulin receptor substrate-1 (IRS-1). The activated SHP-2 then dephosphorylated IRS-1 Tyr(P)-895, resulting in blockade of the pathways from IRS-1/Grb2/Sos to the ERK and p38 MAPK. Conversely, such negative regulation was silent in dedifferentiated VSMCs, where IGF-I activated both MAPKs via IRS-1/Grb2/Sos interaction-linked Ras activation, leading to proliferation and migration. Thus, our present results demonstrate that the IRS-1/SHP-2 interaction acts as a switch controlling VSMC phenotype-dependent IGF-I-induced signaling pathways and biological processes, and this mechanism is likely to be applicable to other cells.  相似文献   

15.
SHP-1 plays key roles in the modulation of hematopoietic cell signaling. To ascertain the impact of SHP-1 on colony-stimulating factor-1 (CSF-1)-mediated survival and proliferative signaling, we compared the CSF-1 responses of primary bone marrow macrophages (BMM) from wild-type and SHP-1-deficient motheaten (me/me) mice. CSF-1-induced protein tyrosine phosphorylation levels were similar in wild-type and me/me BMM, except for the constitutive hyperphosphorylation of a 62-kDa phosphoprotein (pp62) in me/me macrophages. pp62 was identified as the RASGAP-associated p62(DOK) and was shown to be the major CSF-1R-associated tyrosine-phosphorylated protein in CSF-1-treated BMM. p62(DOK) was found to be constitutively associated with SHP-1 in BMM and in 293T cells, co-expressing p62(dok) and either wild-type or catalytically inert SHP-1 (SHP-1 C453S). In both cell types, the interaction of SHP-1 with p62(DOK) occurred independently of p62(DOK) tyrosine phosphorylation, but only the tyrosine-phosphorylated p62(DOK) was bound by SHP-1 C453S in a far Western analysis. These findings suggest a constitutive association of SHP-1 and p62(DOK) that is either conformation-dependent or indirect as well as a direct, inducible association of the SHP-1 catalytic domain with tyrosine-phosphorylated p62(DOK). p62(DOK) hyperphosphorylation is not associated with altered CSF-1-induced RAS signaling or proliferation. However, whereas wild-type macrophages undergo cell death following CSF-1 removal, me/me macrophages exhibit prolonged survival in the absence of growth factor. Thus, p62(DOK) is a major SHP-1 substrate whose tyrosine phosphorylation correlates with growth factor-independent survival in macrophages.  相似文献   

16.
We show here that beta1 integrins selectively modulate insulin-like growth factor type I receptor (IGF-IR) signaling in response to IGF stimulation. The beta1A integrin forms a complex with the IGF-IR and insulin receptor substrate-1 (IRS-1); this complex does not promote IGF-I mediated cell adhesion to laminin (LN), although it does support IGF-mediated cell proliferation. In contrast, beta1C, an integrin cytoplasmic variant, increases cell adhesion to LN in response to IGF-I and its down-regulation by a ribozyme prevents IGF-mediated adhesion to LN. Moreover, beta1C completely prevents IGF-mediated cell proliferation and tumor growth by inhibiting IGF-IR auto-phosphorylation in response to IGF-I stimulation. Evidence is provided that the beta1 cytodomain plays an important role in mediating beta1 integrin association with either IRS-1 or Grb2-associated binder1 (Gab1)/SH2-containing protein-tyrosine phosphate 2 (Shp2), downstream effectors of IGF-IR: specifically, beta1A associates with IRS-1 and beta1C with Gab1/Shp2. This study unravels a novel mechanism mediated by the integrin cytoplasmic domain that differentially regulates cell adhesion to LN and cell proliferation in response to IGF.  相似文献   

17.
Insulin-like growth factor binding protein-5 (IGFBP-5) and thrombospondin-1 (TS-1) are both present in extracellular matrix (ECM). Both proteins have been shown to bind to one another with high affinity. The purpose of these studies was to determine how the interaction between IGFBP-5 and TS-1 modulates IGF-I actions in porcine aortic smooth muscle cells (pSMC) in culture. The addition of increasing concentrations of TS-1 to pSMC cultures enhanced the protein synthesis and cell migration responses to IGF-I; whereas the addition of IGFBP-5 alone resulted in minimal changes. In contrast, the addition of IGFBP-5 to cultures that were also exposed to IGF-I and TS-1 resulted in inhibition of protein synthesis. When the cell migration response was assessed, the response to IGF-I plus TS-1 was also significantly inhibited by the addition of IGFBP-5, whereas 1.0 microg/ml of IGFBP-5 alone had no effect on the response to IGF-I.To determine the molecular mechanism by which this inhibition occurred, a mutant form of IGFBP-5 that does not bind to IGF-I was tested. This mutant was equipotent compared to native IGFBP-5 in its ability to inhibit both protein synthesis and cell migration responses to IGF-I plus TS-1 thus excluding the possibility that IGFBP-5 was inhibiting the response to TS-1 and IGF-I by inhibiting IGF-I binding to the IGF-I receptor. To determine if an interaction between TS-1 and IGFBP-5 was the primary determinant of the inhibitory effect of IGFBP-5, an IGFBP-5 mutant that bound poorly to TS-1 was utilized. The addition of 1.0 microg/ml of this mutant did not inhibit the protein synthesis or cell migration responses to IGF-I plus TS-1. To determine the mechanism by which IGFBP-5 binding to TS-1 inhibited cellular responses to TS-1 plus IGF-I, TS-1 binding to integrin associated protein (IAP) was assessed. The addition of IGFBP-5 (1.0 microg/ml) inhibited TS-1-IAP association. In contrast, a mutant form of IGFBP-5 that bound poorly to TS-1 had a minimal effect on TS-1 binding to IAP. Further analysis showed that IGFBP-5 addition altered the ability of TS-1 to modulate the SHPS-1/IAP interaction. When the IGFBP-5 mutant that did not bind to IGF-I was incubated with TS-1 and IGF-I, it inhibited the capacity of TS-1 to enhance the IGF-I receptor phosphorylation and MAP kinase activation in response to IGF-I. In contrast, the IGFBP-5 mutant that did not bind to TS-1 had no effect on IGF-I stimulated IGF-I receptor phosphorylation or MAP kinase activation. These results indicate that IGFBP-5 inhibits the binding of TS-1 to IAP, and this results in an alteration of the ability of TS-1 to modulate the disruption of the IAP/SHPS-1 interaction which leads to attenuation of the ability of TS-1 to enhance cellular responsiveness to IGF-I.  相似文献   

18.
Insulin-like growth factor I (IGF-I) stimulates an increase in alpha(V)beta(3) ligand binding. Stimulation of smooth muscle cells by IGF-I requires alpha(V)beta(3) ligand occupancy, and enhanced alpha(V)beta(3) ligand occupancy augments IGF-I actions. Therefore, IGF-I-induced changes in alpha(V)beta(3) ligand binding may act to further enhance IGF-I actions. Integrin-associated protein (IAP) has been shown to be associated with alpha(V)beta(3) and is required for the binding of alpha(V)beta(3) to vitronectin-coated beads. We therefore investigated whether IGF-I could stimulate IAP-alpha(V)beta(3) association resulting in enhanced ligand binding. IGF-I stimulated an increase in IAP-alpha(V)beta(3) association. This was due, at least in part, to an IGF-I-stimulated redistribution of IAP from the Triton-insoluble fraction of the cell to the Triton-soluble fraction of the cell, where most of the alpha(V)beta(3) was located. Inhibition of the phosphatidylinositol 3-kinase pathway blocked both the redistribution of IAP and the increase in IAP-alpha(V)beta(3) association, providing further evidence that the redistribution of IAP is essential for the increase in association. An anti-IAP monoclonal antibody, blocked both the IGF-I-stimulated increase in IAP-alpha(V)beta(3) complex formation and cell migration. IGF-I-stimulated translocation of IAP and increase in IAP-alpha(V)beta(3) association represent an important process by which IGF-I modulates alpha(V)beta(3) ligand binding and cellular responses.  相似文献   

19.
IGF-I plays an important role in smooth muscle cell proliferation and migration. In vascular smooth muscle cells cultured in 25 mm glucose, IGF-I stimulated a significant increase in Src homology 2 domain containing protein tyrosine phosphatase substrate-1 (SHPS-1) phosphorylation compared with 5 mm glucose and this increase was required for smooth muscle cell proliferation. A proteome-wide screen revealed that carboxyl-terminal SRC kinase homologous kinase (CTK) bound directly to phosphotyrosines in the SHPS-1 cytoplasmic domain. Because the kinase(s) that phosphorylates these tyrosines in response to IGF-I is unknown, we determined the roles of IGF-I receptor (IGF-IR) and CTK in mediating SHPS-1 phosphorylation. After IGF-I stimulation, CTK was recruited to IGF-IR and subsequently to phospho-SHPS-1. Expression of an IGF-IR mutant that eliminated CTK binding reduced CTK transfer to SHPS-1, SHPS-1 phosphorylation, and cell proliferation. IGF-IR phosphorylated SHPS-1, which provided a binding site for CTK. CTK recruitment to SHPS-1 resulted in a further enhancement of SHPS-1 phosphorylation. CTK knockdown also impaired IGF-I-stimulated SHPS-1 phosphorylation and downstream signaling. Analysis of specific tyrosines showed that mutation of tyrosines 428/452 in SHPS-1 to phenylalanine reduced SHPS-1 phosphorylation but allowed CTK binding. In contrast, the mutation of tyrosines 469/495 inhibited IGF-IR-mediated the phosphorylation of SHPS-1 and CTK binding, suggesting that IGF-IR phosphorylated Y469/495, allowing CTK binding, and that CTK subsequently phosphorylated Y428/452. Based on the above findings, we conclude that after IGF-I stimulation, CTK is recruited to IGF-IR and its recruitment facilitates CTK's subsequent association with phospho-SHPS-1. This results in the enhanced CTK transfer to SHPS-1, and the two kinases then fully phosphorylate SHPS-1, which is necessary for IGF-I stimulated cellular proliferation.  相似文献   

20.
We have shown that vitronectin (Vn) binding to a cysteine loop sequence within the extracellular domain of the beta3-subunit (amino acids 177-184) of alphaVbeta3 is required for the positive effects of Vn on IGF-I signaling. When Vn binding to this sequence is blocked, IGF-I signaling in smooth muscle cells is impaired. Because this binding site is distinct from the site on beta3 to which the Arg-Gly-Asp sequence of extracellular matrix ligands bind (amino acids 107-171), we hypothesized that the region of Vn that binds to the cysteine loop on beta3 is distinct from the region that contains the Arg-Gly-Asp sequence. The results presented in this study demonstrate that this heparin binding domain (HBD) is the region of Vn that binds to the cysteine loop region of beta3 and that this region is sufficient to mediate the positive effects of Vn on IGF-I signaling. We provide evidence that binding of the HBD of Vn to alphaVbeta3 has direct effects on the activation state of beta3 as measured by beta3 phosphorylation. The increase in beta3 phosphorylation associated with exposure of cells to this HBD is associated with enhanced phosphorylation of the adaptor protein Src homology 2 domain-containing transforming protein C and enhanced activation MAPK, a downstream mediator of IGF-I signaling. We conclude that the interaction of the HBD of Vn binding to the cysteine loop sequence of beta3 is necessary and sufficient for the positive effects of Vn on IGF-I-mediated effects in smooth muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号