首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hypoxia produces structural changes in interphasic nucleoli of Allium cepa L. root meristems. Following segregation, the fibrillar portion of nucleoli seems to be extruded in masses, accessory bodies, which stay in nucleoplasm. Such bodies apparently leave the fibrillar portion in places which seem to correspond to insertion areas of the nucleolar organizers in nucleoli. Reversal of these changes is rapidly obtained when oxygenation is restored. Accessory bodies differ from prenucleolar bodies since they are compact and homogeneous and they do not display segregation under hypoxia.  相似文献   

2.
3.
Summary The silver impregnation of nucleolar material facilitated the study of the morphological changes which take place in the nucleolus throughout the division cycle in root tip cells ofAllium cepa. The nucleolus appears to undergo no morphological changes throughout the interphase. It undergoes disorganization during the prophase, while in the telophase it appears uniformly on the chromatin as condensing into prenucleolar bodies.The appearance of the prenucleolar bodies is unaffected by puromycin, cordycepin, or ethidium bromide. This suggests that the argyrophilic material does not undergo synthesis during the telophase, nor require RNA or protein synthesis to effect the aggregation into prenucleolar bodies. However, the organization of nucleoli from prenucleolar bodies is inhibited by both cordycepin and ethidium bromide, suggesting that RNA synthesis is involved in this proccess.In aneuploid nuclei induced by treatment with colchicine we observed the appearance of prenucleolar bodies during the telophase even in the absence of the nucleolar organizer, but in this case the formation of nucleoli fails to take place. The nucleolar organizers proved to be capable of acting only in the nucleus to which they belong, but not on other nuclei within the same cytoplasm belonging to multinucleate cells.It seems logical to assume that one of the roles of the nucleolar organizer is related with the above-mentioned RNA synthesis, which is required to the aggregation of prenucleolar bodies into nucleoli.The work reported in the paper was undertaken during the tenure of a Research Training Fellowship awarded by the International Agency for Research on Cancer.  相似文献   

4.
During early embryogenesis of the nematode Parascaris univalens (2n=2) the processes of chromatin diminution and segregation of the germ and somatic cell lineages take place simultaneously. In this study we analyzed the nucleolar cycle in early embryos, both in germinal and somatic blastomeres, by means of silver staining and antibodies against the nucleolar protein fibrillarin. We observed an identical nucleolar cycle in both types of blastomeres, hence, the chromatin diminution process has no effect on the nucleolar cycle of somatic blastomeres. We report the existence of outstanding differences between this cycle and those previously reported during early embryogenesis of other species. There is a true nucleolar cycle in early embryos that shows a peculiar nucleolar disorganization at prophase, and a preferential localization of prenucleolar bodies only on the euchromatic regions during nucleologenesis. Moreover, fibrillarin does not form a perichromosomal sheath in metaphase or anaphase holocentric chromosomes, probably owing to their special centromeric organization. The number and location of nucleolus organizer regions (NORs) in the chromosomal complement have been determined using silver impregnation, chromomycin A3/distamycin A staining, and fluorescent in situ hybridization using an rDNA probe. There are only two NORs, one per chromosome, and these are lost in blastomeres after chromatin diminution. Moreover, the constant presence of two nucleoli in somatic blastomeres suggests that NORs are not affected during the fragmentation of euchromatic regions when this process occurs.  相似文献   

5.
6.
Interphase prenucleolar bodies are globular bodies which accumulate in large numbers in the nucleoplasm of cultivated cells after hypotonic treatment and subsequent return to isotonic conditions; detailed studies of the role of these structures in the recovery of the nucleolus have not yet been performed. The limited mobility of interphase pronucleoli within the nucleus has been demonstrated. Exchange of the major nucleolar protein B23 between prenucleolar bodies and the surrounding nucleoplasm, rather than stable binding of this protein to the prenucleolar bodies, has been demonstrated using fluorescence recovery after photobleaching method. Gradual accumulation of B23 in the recovering nucleolus with concomitant disappearance of prenucleolar bodies has been demonstrated.  相似文献   

7.
The formation of daughter nuclei and the reformation of nucleolar structures was studied after microinjection of antibodies to RNA polymerase I into dividing cultured cells (PtK2). The fate of several nucleolar proteins representing the three main structural subcomponents of the nucleolus was examined by immunofluorescence and electron microscopy. The results show that the RNA polymerase I antibodies do not interfere with normal mitotic progression or the early steps of nucleologenesis, i.e., the aggregation of nucleolar material into prenucleolar bodies. However, they inhibit the telophasic coalescence of the prenucleolar bodies into the chromosomal nucleolar organizer regions, thus preventing the formation of new nucleoli. These prenucleolar bodies show a fibrillar organization that also compositionally resembles the dense fibrillar component of interphase nucleoli. We conclude that during normal nucleologenesis the dense fibrillar component forms from preformed entities around nucleolar organizer regions, and that this association seems to be dependent on the presence of an active form of RNA polymerase I.  相似文献   

8.
So far, only seven and five species of Dysdercus from the Old and New Worlds, respectively, have been cytogenetically analysed. They all have holokinetic chromosomes and a pre-reductional type of meiosis. In the present study the chromosome complement, male meiosis and nucleolar meiotic cycle of Dysdercus imitator were analyzed. During male meiosis several cytogenetic features are remarkable, namely the presence of a long diffuse stage after pachytene, the finding of one or two ring bivalents per cell in almost all specimens, and the presence of several prenucleolar bodies lasting up to telophase II. The origin and function of these prenucleolar bodies could be related to a particular physiological cycle of the meiocytes.  相似文献   

9.
The nucleolus: a model for the organization of nuclear functions   总被引:9,自引:5,他引:4  
Nucleoli are the prominent contrasted structures of the cell nucleus. In the nucleolus, ribosomal RNAs (rRNAs) are synthesized, processed and assembled with ribosomal proteins. The size and organization of the nucleolus are directly related to ribosome production. The organization of the nucleolus reveals the functional compartmentation of the nucleolar machineries that depends on nucleolar activity. When this activity is blocked, disrupted or impossible, the nucleolar proteins have the capacity to interact independently of the processing activity. In addition, nucleoli are dynamic structures in which nucleolar proteins rapidly associate and dissociate with nucleolar components in continuous exchanges with the nucleoplasm. At the time of nucleolar assembly, the processing machineries are recruited in a regulated manner in time and space, controlled by different kinases and form intermediate structures, the prenucleolar bodies. The participation of stable pre-rRNAs in nucleolar assembly was demonstrated after mitosis and during development but this is an intriguing observation since the role of these pre-rRNAs is presently unknown. A brief report on the nucleolus and diseases is proposed as well as of nucleolar functions different from ribosome biogenesis.Robert Feulgen Lecture presented at the 48th Symposium of the Society for Histochemistry in Stresa, Lake Maggiore, Italy, 7–10 September 2006.  相似文献   

10.
We have previously developed a novel technique for isolation of cDNAs encoding M phase phosphoproteins (MPPs). In the work described herein, we further characterize MPP10, one of 10 novel proteins that we identified, with regard to its potential nucleolar function. We show that by cell fractionation, almost all MPP10 was found in isolated nucleoli. By immunofluorescence, MPP10 colocalized with nucleolar fibrillarin and other known nucleolar proteins in interphase cells but was not detected in the coiled bodies stained for either fibrillarin or p80 coilin, a protein found only in the coiled body. When nucleoli were separated into fibrillar and granular domains by treatment with actinomycin D, almost all the MPP10 was found in the fibrillar caps, which contain proteins involved in rRNA processing. In early to middle M phase of the cell cycle, MPP10 colocalized with fibrillarin to chromosome surfaces. At telophase, MPP10 was found in cellular structures that resembled nucleolus-derived bodies and prenucleolar bodies. Some of these bodies lacked fibrillarin, a previously described component of nucleolus-derived bodies and prenucleolar bodies, however, and the bulk of MPP10 arrived at the nucleolus later than fibrillarin. To further examine the properties of MPP10, we immunoprecipitated it from cell sonicates. The resulting precipitates contained U3 small nucleolar RNA (snoRNA) but no significant amounts of other box C/D snoRNAs. This association of MPP10 with U3 snoRNA was stable to 400 mM salt and suggested that MPP10 is a component of the human U3 small nucleolar ribonucleoprotein.  相似文献   

11.
This paper deals with the induction of cytoplasmic nucleolar bodies in meristematic Allium cepa L. cells after treatment with drugs which interfere with nucleolar functionality. The drugs which interfere with protein synthesis failed to produce these bodies. The ultrastructure origin and physiological significance of these bodies are discussed here, as well as their relation with the mitotic prenucleolar bodies (Moreno-Díaz de la Espina et al., 1976).  相似文献   

12.
Nucleologenesis: Composition and fate of prenucleolar bodies   总被引:21,自引:0,他引:21  
A time course study was conducted on nucleologenesis after release from a mitotic block in the presence and absence of actinomycin D to determine the composition and fate of prenucleolar bodies (PNBs). Prenucleolar bodies, whether naturally occurring or induced by actinomycin D treatment, stain with silver and contain phosphoproteins B23 and C23, two of the major proteins of the interphase nucleolus as determined by double label immunofluorescence with specific antibodies. The nucleolus is formed by fusion of PNBs, which subsequently reorganize and form internal fibrillar and peripheral granular regions. Actinomycin D prevents fusion of PNBs, which are then randomly dispersed throughout the nucleus but they still contain proteins B23 and C23. These results demonstrate that the nucleolus is formed by fusion of prenucleolar structures whose biochemical composition resembles the mature nucleolus, since PNBs contain at least two of the major nucleolar proteins.  相似文献   

13.
In the naturally synchronous mitosis of the syncytial plasmodium of Physarum polycephalum , the nucleolus disintegrates in prophase, releasing a large amount of ribosomal RNA. Using biotinylated rDNA probes, we studied by high-resolution in situ hybridization the behavior of this nucleolar RNA throughout mitosis. Our results demonstrate that this rRNA is stable and maintained within the mitotic nucleus mainly, but not exclusively, associated with fibrillar nucleolar remnants. The distribution of these rRNA molecules on both sides of the cleavage plane in telophase is indicative of a precise mechanism of mitotic partition of the nucleolar components, supporting our recent findings concerning the rDNA minichromosomes (Puvion-Dutilleul and Pierron, 1992, Exp. Cell Res. 203, 354-364). Taking advantage of the stability of this RNA component in mitosis, we unambiguously demonstrate that the nucleolar remnants are the precursors of the prenucleolar bodies appearing in the newly divided nuclei which, by fusion, reconstitute a single nucleolus. Our data exemplify the persistence of the nucleolar rRNA in mitosis and demonstrate that in Physarum, following its disintegration, the nucleolus is segregated and inherited.  相似文献   

14.
The reconstruction of the nucleolus after mitosis was analyzed by electron microscopy in cultured mammalian (L929) cells in which nucleolar RNA synthesis was inhibited for a 3 h period either after or before mitosis. When synchronized mitotic cells were plated into a concentration of actinomycin D sufficient to block nucleolar RNA synthesis preferentially, nucleoli were formed at telophase as usual. 3 h after mitosis, these nucleoli had fibrillar and particulate components and possessed the segregated appearance characteristic of nucleoli of actinomycin D-treated cells. Cells in which actinomycin D was present for the last 3 h preceding mitosis did not form nucleoli by 3 h after mitosis though small fibrillar prenucleolar bodies were detectable at this time. These bodies subsequently grew in size and eventually acquired a particulate component. It took about a full cell cycle before nucleoli of these cells were completely normal in appearance. Thus, nucleolar RNA synthesis after mitosis is not necessary for organization of nucleoli after mitosis. However, inhibition of nucleolar RNA synthesis before mitosis renders the cell incapable of forming nucleoli immediately after mitosis. If cells are permitted to resume RNA synthesis after mitosis, they eventually regain nucleoli of normal morphology.  相似文献   

15.
Interphase nucleoli from Vicia faba and Allium cepa meristematic cells are roughly classified into two categories: (a) those that commonly show a rather homogeneous texture (except for small light spaces of various sizes) and frequently contain dense particles 140 A in diameter; (b) those found more frequently in Vicia characterized by a very sharp boundary between a dense outer cortex and a much lighter central core. The dense particles are not found in such nucleoli. In Allium the boundary is more irregular and dense particles are sometimes observed in the outer layer. Many nucleoli show a structure intermediate between these two types. They are characterized by a gradient of increasing density from the center to the periphery and occasionally contain dense 140 A granules. During interphase, certain nucleoli are closely associated with segments of chromatin strands which undoubtedly represent nucleolar organizing regions. The dense 140 A granules are followed during the mitotic cycle. In Allium, they are first seen in loose clusters between arms of late anaphase chromosomes where they become more concentrated in early telophase. The substance within which they are scattered slowly increases in density during that time until finally, the particles are limited to small bodies of distinctive character. Evidence is presented suggesting that these small prenucleolar bodies fuse during telophase to give rise to the mature interphase nucleoli. Similar events are described in Vicia material except that a coating of dense substance appears around telophase chromosomes before the formation of prenucleolar bodies.  相似文献   

16.
The localization of a major nucleolar protein with a molecular weight of 100,000 has been followed during mitosis in Chinese hamster ovary CHO cells using specific antibodies to this protein and immunocytochemical techniques. The 100 kDa protein was visualized at discrete sites on metaphase chromosomes, corresponding to nucleolus organizer regions, and in large, immunostained nucleolar remnants that are discarded in the cytoplasm after nucleolar disintegration. After mitosis, the 100 kDa protein was shown to play an early role in nucleolar reformation. It was first detected in small deposits around the anaphase chromosomes. In telophase, the protein accumulated simultaneously in prenucleolar bodies and in the reforming nucleoli. The early presence of the 100 kDa protein in the telophase nucleus suggests that it is essential for the reestablishment of nucleolar function after mitosis. Thus this protein is present throughout the CHO cell cycle, an observation which supports the hypothesis that it plays a fundamental role in cell organization.  相似文献   

17.
Nucleolar cycle in Physarum polycephalum was studied using EDTA preferential stain for RNP. We have been able to establish the following.
1. 1. The nucleolar remnants that are observed during mitosis correspond to the fibrillar zones of the interphase nucleolus.
2. 2. In prometaphase and metaphase the nucleolar remnants lie peripherically around the chromosomal mass with which they are only superficially associated.
3. 3. Preribosomal granules appear 10–15 min after metaphase in the prenucleolar bodies.
The results shown that the interphase nucleolus is an assembly of multiple subunits. The relationship between the nucleolar remnants and chromosomes is discussed in the light of the recent understanding of the extrachromosomal nature of rDNA.Le cycle nucléolaire de Physarum polycephalum a été étudié en microscopie électronique après réaction régressive à l'EDTA qui met préférentiellement en évidence les RNP. Nous avons suivi ainsi la dispersion du nucléole en prophase, le devenir des restes nucléolaires au cours de la métaphase et de la télophase, puis l'apparition des corps prénucléolaires en début d'interphase.  相似文献   

18.
The evolution of nucleolar material was analyzed during spermatogenesis of two grasshopper species by using “in vivo” visualization and the silver staining method. Both nucleoli and nucleolar remnants are detectable during prophase I and absent from metaphase I until telophase I. During telophase I a great number of small silver positive masses which correspond to prenucleolar bodies (PBs) are observed covering the chromatin surface. At interkinesis these PBs coalesce to form nucleoli, which are dispersed at prophase II. Silver dots at NOR position were observed on metaphase II chromosomes. PBs reappear at telophase II and give rise to the nucleoli detected in early spermatids.This cycle is compared with those reported in plants and in some other animal species.  相似文献   

19.
20.
The action of 5-Fluorodeoxyuridine (FUdR) used as an inhibitor of RNA synthesis on the nucleolar evolution during mitosis, has been studied in meristematic cells. Under FUdR treatment the nucleolar dispersion appears as a continuous process, but generally it is not completed and nucleolar remnants remain throughout the whole mitosis. The nucleolar material which was dispersed is transported by the mitotic chromosomes, and in telophase contributed to the formation of the new nucleolus. The non-dispersed part persisted in the cytoplasm during telophase, coexisting with both the prenucleolar bodies and the new nucleolus which was being formed. Our results suggest the necessity of some kind of RNA synthesis, preferentially blocked by FUdR, for nucleolar dispersion to take place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号