首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The entire amino acid sequence of the alpha subunit (Mr 64,000) of the eighth component of complement (C8) was determined by characterizing cDNA clones isolated from a human liver cDNA library. Two clones with overlapping inserts of net length 2.44 kilobases (kb) were isolated and found to contain the entire alpha coding region [1659 base pairs (bp)]. The 5' end consists of an untranslated region and a leader sequence of 30 amino acids. This sequence contains an apparent initiation Met, signal peptide, and propeptide which ends with an arginine-rich sequence that is characteristic of proteolytic processing sites found in the pro form of protein precursors. The 3' untranslated region contains two polyadenylation signals and a poly(A) sequence. RNA blot analysis of total cellular RNA from the human hepatoma cell line HepG2 revealed a message size of approximately 2.5 kb. Features of the 5' and 3' sequences and the message size suggest that a separate mRNA codes for alpha and argues against the occurrence of a single-chain precursor form of the disulfide-linked alpha-gamma subunit found in mature C8. Analysis of the derived amino acid sequence revealed several membrane surface seeking domains and a possible transmembrane domain. These occur in a cysteine-free region of the subunit and may constitute the structural basis for alpha interaction with target membranes. Analysis of the carbohydrate composition indicates 1 or 2 asparagine-linked but no O-linked oligosaccharide chains, a result consistent with predictions from the amino acid sequence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Human N-ras: cDNA cloning and gene structure.   总被引:31,自引:9,他引:22       下载免费PDF全文
A Hall  R Brown 《Nucleic acids research》1985,13(14):5255-5268
  相似文献   

3.
4.
5.
6.
7.
Molecular cloning of syndecan, an integral membrane proteoglycan   总被引:49,自引:18,他引:31  
We describe cDNA clones for a cell surface proteoglycan that bears both heparan sulfate and chondroitin sulfate and that links the cytoskeleton to the interstitial matrix. The cDNA encodes a unique core protein of 32,868 D that contains several structural features consistent with its role as a glycosamino-glycan-containing matrix anchor. The sequence shows discrete cytoplasmic, transmembrane, and NH2-terminal extracellular domains, indicating that the molecule is a type I integral membrane protein. The cytoplasmic domain is small and similar in size but not in sequence to that of the beta-chain of various integrins. The extracellular domain contains a single dibasic sequence adjacent to the extracellular face of the transmembrane domain, potentially serving as the protease-susceptible site involved in release of this domain from the cell surface. The extracellular domain contains two distinct types of putative glycosaminoglycan attachment sites; one type shows sequence characteristics of the sites previously described for chondroitin sulfate attachment (Bourdon, M. A., T. Krusius, S. Campbell, N. B. Schwartz, and E. Ruoslahti. 1987. Proc. Natl. Acad. Sci. USA. 84:3194-3198), but the other type has newly identified sequence characteristics that potentially correspond to heparan sulfate attachment sites. The single N-linked sugar recognition sequence is within the putative chondroitin sulfate attachment sequence, suggesting asparagine glycosylation as a mechanism for regulating chondroitin sulfate chain addition. Both 5' and 3' regions of this cDNA have sequences substantially identical to analogous regions of the human insulin receptor cDNA: a 99-bp region spanning the 5' untranslated and initial coding sequences is 67% identical and a 35-bp region in the 3' untranslated region is 81% identical in sequence. mRNA expression is tissue specific; various epithelial tissues show the same two sizes of mRNA (2.6 and 3.4 kb); in the same relative abundance (3:1), the cerebrum shows a single 4.5-kb mRNA. This core protein cDNA describes a new class of molecule, an integral membrane proteoglycan, that we propose to name syndecan (from the Greek syndein, to bind together).  相似文献   

8.
9.
N Luz  E Beck 《Journal of virology》1991,65(12):6486-6494
A cellular 57-kDa protein (p57) that binds specifically to the internal translation initiation site in the 5' untranslated region of foot-and-mouth disease virus RNA was detected in cell extracts of different mammalian species by UV cross-linking. The protein binds to two distinct sites of the translation control region which have as the only common sequence a UUUC motif. The first binding site consists of a conserved hairpin structure, whereas the second binding site contains an essential pyrimidine-rich region without obvious secondary structure. Competition experiments indicate that the complexes with the two binding sites were formed by a single p57 species. The protein binds also to the 5' untranslated region of other picornaviruses. Results from footprint analyses with foot-and-mouth disease RNA suggest the participation of additional cellular factors in the translation initiation complex.  相似文献   

10.
The nucleotide sequence of a cDNA encoding the proenzyme of mouse S-adenosylmethionine decarboxylase (AdoMetDC) including 257 nucleotides of the 5' untranslated region has been determined. Comparison of the nucleotide sequence of the mouse 5' untranslated region with those of other mammals shows it to be highly conserved. The 52 nucleotides upstream from the translation initiation codon are identical in human, rat, bovine and mouse. The polyamines, spermidine and spermine, have been shown to inhibit AdoMetDC mRNA translation. An RNA gel retardation assay demonstrated that a cytoplasmic extract from mouse brain forms an RNA-protein complex with the completely conserved 5' untranslated sequence and that the complex formation is highly dependent on the presence of spermine. Crosslinking by UV irradiation shows that the complex contains a 39-kDa protein interacting with the 5' untranslated sequence. These data demonstrate spermine-dependent specific protein binding to a highly conserved 5' untranslated region of an mRNA translationally regulated by polyamines.  相似文献   

11.
12.
13.
14.
15.
16.
17.
Golgi alpha-mannosidase II (GlcNAc transferase I-dependent alpha 1,3[alpha 1,6] mannosidase, EC 3.2.1.114) catalyzes the final hydrolytic step in the N-glycan maturation pathway acting as the committed step in the conversion of high mannose to complex type structures. We have isolated overlapping clones from a murine cDNA library encoding the full length alpha-mannosidase II open reading frame and most of the 5' and 3' untranslated region. The coding sequence predicts a type II transmembrane protein with a short cytoplasmic tail (five amino acids), a single transmembrane domain (21 amino acids), and a large COOH-terminal catalytic domain (1,124 amino acids). This domain organization which is shared with the Golgi glycosyl-transferases suggests that the common structural motifs may have a functional role in Golgi enzyme function or localization. Three sets of polyadenylated clones were isolated extending 3' beyond the open reading frame by as much as 2,543 bp. Northern blots suggest that these polyadenylated clones totaling 6.1 kb in length correspond to minor message species smaller than the full length message. The largest and predominant message on Northern blots (7.5 kb) presumably extends another approximately 1.4-kb downstream beyond the longest of the isolated clones. Transient expression of the alpha-mannosidase II cDNA in COS cells resulted in 8-12-fold overexpression of enzyme activity, and the appearance of cross-reactive material in a perinuclear membrane array consistent with a Golgi localization. A region within the catalytic domain of the alpha-mannosidase II open reading frame bears a strong similarity to a corresponding sequence in the rat liver endoplasmic reticulum alpha-mannosidase and the vacuolar alpha-mannosidase of Saccharomyces cerevisiae. Partial human alpha-mannosidase II cDNA clones were also isolated and the gene was localized to human chromosome 5.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号