首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms for species-specific growth responses to changes in atmospheric CO2 concentration within narrow ecological groups of species, such as shade-tolerant, late-successional trees, have rarely been addressed and are not well understood. In this study the underlying functional traits for interspecific variation in the biomass response to elevated CO2 were explored for seedlings of five late-successional temperate forest tree species (Fagus sylvatica, Acer pseudoplatanus, Quercus robur, Taxus baccata, Abies alba). The seedlings were grown in the natural forest understorey in very low and low light microsites (an average of 1.3% and 3.4% full sun in this experiment), and were exposed to either current ambient CO2 concentrations, 500, or 660 µl CO2 l-1 in 36 open-top chambers (OTC) over two growing seasons. Even across the narrow range of successional status and shade tolerance, the study species varied greatly in photosynthesis, light compensation point, leaf dark respiration (Rd), leaf nitrogen concentration, specific leaf area (SLA), leaf area ratio (LAR), and biomass allocation among different plant parts, and showed distinct responses to CO2 in these traits. No single species combined all characteristics traditionally considered as adaptive to low light conditions. At very low light, the CO2 stimulation of seedling biomass was related to increased LAR and decreased Rd, responses that were observed only in Fagus and Taxus. At slightly higher light levels, interspecific differences in the biomass response to elevated CO2 were reversed and correlated best with leaf photosynthesis. The data provided here contribute to a mechanistic process-based understanding of distinct response patterns in co-occurring tree species to elevated CO2 in natural deep shade. I conclude that the high variation in physiological and morphological traits among late-successional species, and the consequences for their responses to slight changes in resource availability, have previously been underestimated. The commonly used broad definitions of functional groups of species may not be sufficient for the understanding of recruitment success and dynamic changes in species composition of old-growth forests in response to rising concentrations of atmospheric CO2.  相似文献   

2.
The long-term effects of elevated CO2 and CO2+O3 concentrations on the growth allocation in northern provenances of Norway spruce [Picea abies (L.) Karst.], Scots pine [Pinus sylvestris (L.)] and pubescent birch clones (Betula pubescens Ehrh.) were examined in open-top chambers after a 4-year-long experiment. The total biomass responses of the tree seedlings to increased CO2 and CO2+O3 concentrations were not statistically significant and varied between the provenances and species. The seedlings of northern origin were the least sensitive in their response to treatments. The total biomass of the Norway spruce seedlings slightly decreased in response to CO2 in three provenances. Scots pine from the local provenance had a slight biomass increase after elevated CO2+O3 treatment. The slower-growing birch clone seemed to benefit from elevated CO2, whereas in the faster-growing clone, reductions in biomass accumulation were seen. The combined CO2+O3 treatment reduced the positive effects of elevated CO2, especially in the slower-growing birches. Observations of significant effects were limited to a few parameters. Carbon dioxide treatment decreased needle dry weight of Norway spruce in one northern provenance. The needle and wood dry weight increased (CO2 + O3) in local Scots pine. Significant birch response was limited to increased fine root density (O3 + CO2) in the inland clone. The diverse effects of elevated CO2 and CO2 +O3 on seedling growth and biomass provide evidence that exposure of northern trees to the enhanced variable CO2 and O3 concentrations of the future will have varied effects on the growth of these species. The direction and magnitude of those effects will differ depending on species and origins.  相似文献   

3.
Enriched atmospheric CO2 alters the quantity and quality of plant production, but how such effects vary among plant genotypes is poorly known. We evaluated the independent and interactive effects of CO2 and nutrient availability on growth, allocation and phytochemistry of six aspen (Populus tremuloides Michx.) genotypes. One-year-old trees, propagated from root cuttings, were grown in CO2-controlled glasshouses for 64 days, then harvested. Foliage was analyzed for levels of water, nitrogen, starch, phenolic glycosides and condensed tannins. Of seven plant growth/allocation variables measured, four (biomass production, stem growth, relative growth rate and root:shoot ratio) exhibited marginally to highly significant CO2 2 genotype interactions. CO2 enrichment stimulated growth of some genotypes more than others, and this interaction was itself influenced by soil nutrient availability. In addition, enriched CO2 increased the magnitude of the among-genotype variance for four of the growth/allocation variables. Of six foliar chemical constituents analyzed, CO2-mediated responses of two (the phenolic glycoside tremulacin and condensed tannins) varied among genotypes. Moreover, enriched CO2 increased the magnitude of among-genotype variance for four of the chemical variables. Given the importance of these growth and chemical characteristics to the biological fitness of aspen, this research suggests that projected atmospheric CO2 increases are likely to alter the genetic structures and evolutionary trajectories of aspen populations.  相似文献   

4.
G. Edwards  H. Clark  P. Newton 《Oecologia》2001,127(3):383-394
Seed production and seedling recruitment were measured over 2 years under ambient (360 ppm) and elevated (475 ppm) atmospheric CO2 in a free air carbon dioxide enrichment (FACE) experiment, carried out in a sheep-grazed pasture on dry, sandy soil in New Zealand. In both years elevated CO2 led to more dispersed seeds of the grasses Anthoxanthum odoratum, Lolium perenne and Poa pratensis, the legumes Trifolium repens and T. subterraneum and the herbs Hypochaeris radicata and Leontodon saxatilis. The increased seed dispersal in A. odoratum, H. radicata, Leontodon saxatilis and T. repens reflected both more inflorescences per unit area and more seeds per inflorescence under elevated CO2. The increased seed dispersal in Lolium perenne, P. pratensis and T. subterraneum was due solely to more inflorescences per unit area. The number of seedlings that emerged and survived to at least 7 months of age was increased by elevated CO2 for H. radicata, Leontodon saxatilis, T. repens and T. subterraneum in both years and for A. odoratum and Lolium perenne in the first year. For species where increased seedling recruitment was noted, there was a significant positive correlation between seed production in summer and seedling emergence in the following autumn and winter, and sowing 200 extra seeds per species m-2 resulted in more seedlings compared to unsown controls. Elevated CO2 did not affect seedling survival in any species. There was no measurable effect of elevated CO2 on canopy and soil surface conditions or soil moisture at the time of seedling emergence. The results suggest the dominant effect of elevated CO2 on seedling recruitment in this pasture was an indirect one, reflecting effects on the number of seeds produced. The biomass of H. radicata, Leontodon saxatilis, T. repens and T. subterraneum in the above-ground vegetation was greater under elevated than ambient CO2. However, the size of individual seedlings and mature plants of these four species was unaffected by elevated CO2. The results indicate an important way elevated CO2 influenced plant species composition in this pasture was through changes in the pattern of seedling recruitment.  相似文献   

5.
To elucidate how atmospheric CO2 enrichment, enhanced nutrient supply and soil quality interact to affect regrowth of temperate forests, young Fagus sylvatica and Picea abies trees were grown together in large model ecosystems. Identical communities were established on a nutrient-poor acidic and on a more fertile calcareous soil and tree growth, leaf area index, fine root density and soil respiration monitored over four complete growing seasons. Biomass responses to CO2 enrichment and enhanced N supply at the end of the experiment reflected compound interest effects of growth stimulation during the first two to three seasons rather than persistent stimulation over the whole duration of the experiment. Whereas biomass of Picea was enhanced in elevated CO2 on both soils, Fagus responded negatively to CO2 on acidic but positively on calcareous soil. Biomass of both species profited from enhanced N supply on the poor acidic soil only. Leaf area index on both soils was greater in high N supply as a consequence of a stimulation early in the experiment, but was unaffected by CO2 enrichment. Fine root density on acidic soil was increased in high N supply, but this did not stimulate soil respiration rate. In contrast, elevated CO2 stimulated both fine root density and soil CO2 efflux on calcareous soil, especially towards the end of the experiment. Our experiment suggests that future species dominance in beech-spruce forests is likely to change in response to CO2 enrichment, but this response is subject to complex interactions with environmental factors other than CO2, particularly soil type.  相似文献   

6.
The objectives of this study were to investigate how different soil types and elevated N deposition (0.7 vs 7 g N m-2a-1) influence the effects of elevated CO2 (370 vs 570 µmol CO2 mol-1) on soil nutrients and net accumulation of N, P, K, S, Ca, Mg, Fe, Mn, and Zn in spruce (Picea abies) and beech (Fagus sylvatica). Model ecosystems were established in large open-top chambers on two different forest soils: a nutrient-poor acidic loam and a nutrient-rich calcareous sand. The response of net nutrient accumulation to elevated atmospheric CO2 depended upon soil type (interaction soil 2 CO2, P<0.05 for N, P, K, S, Ca, Mg, Zn) and differed between spruce and beech. On the acidic loam, CO2 enrichment suppressed net accumulation of all nutrients in beech (P<0.05 for P, S, Zn), but stimulated it for spruce (P<0.05 for Fe, Zn) On the nutrient-rich calcareous sand, increased atmospheric CO2 enhanced nutrient accumulation in both species significantly. Increasing the N deposition did not influence the CO2 effects on net nutrient accumulation with either soil. Under elevated atmospheric CO2, the accumulation of N declined relative to other nutrients, as indicated by decreasing ratios of N to other nutrients in tree biomass (all ratios: P<0.001, except the N to S ratio). In both the soil and soil solution, elevated CO2 did not influence concentrations of base cations and available P. Under CO2 enrichment, concentrations of exchangeable NH4+ decreased by 22% in the acidic loam and increased by 50% in the calcareous sand (soil 2 CO2, P<0.001). NO3- concentrations decreased by 10-70% at elevated CO2 in both soils (P<0.01).  相似文献   

7.
Annual and short-lived perennial plant performance during wet years is important for long-term persistence in the Mojave Desert. Additionally, the effects of elevated CO2 on desert plants may be relatively greater during years of high resource availability compared to dry years. Therefore, during an El Niño year at the Nevada Desert FACE Facility (a whole-ecosystem CO2 manipulation), we characterized photosynthetic investment (by assimilation rate-internal CO2 concentration relationships) and evaluated the seasonal pattern of net photosynthesis (Anet) and stomatal conductance (gs) for an invasive annual grass, Bromus madritensis ssp. rubens and a native herbaceous perennial, Eriogonum inflatum. Prior to and following flowering, Bromus showed consistent increases in both the maximum rate of carboxylation by Rubisco (VCmax) and the light-saturated rate of electron flow (Jmax) at elevated CO2. This resulted in greater Anet at elevated CO2 throughout most of the life cycle and a decrease in the seasonal decline of maximum midday Anet upon flowering as compared to ambient CO2. Eriogonum showed significant photosynthetic down-regulation to elevated CO2 late in the season, but the overall pattern of maximum midday Anet was not altered with respect to phenology. For Eriogonum, this resulted in similar levels of Anet on a leaf area basis as the season progressed between CO2 treatments, but greater photosynthetic activity over a typical diurnal period. While gs did not consistently vary with CO2 in Bromus, it did decrease in Eriogonum at elevated CO2 throughout much of the season. Since the biomass of both plants increased significantly at elevated CO2, these patterns of gas exchange highlight the differential mechanisms for increased plant growth. The species-specific interaction between CO2 and phenology in different growth forms suggests that important plant strategies may be altered by elevated CO2 in natural settings. These results indicate the importance of evaluating the effects of elevated CO2 at all life cycle stages to better understand the effects of elevated CO2 on whole-plant performance in natural ecosystems.  相似文献   

8.
Two aspen (Populus tremuloides Michx.) clones, differing in O3 tolerance, were grown in a free-air CO2 enrichment (FACE) facility near Rhinelander, Wisconsin, and exposed to ambient air, elevated CO2, elevated O3 and elevated CO2+O3. Leaf instantaneous light-saturated photosynthesis (PS) and leaf areas (A) were measured for all leaves of the current terminal, upper (current year) and the current-year increment of lower (1-year-old) lateral branches. An average, representative branch was chosen from each branch class. In addition, the average photosynthetic rate was estimated for the short-shoot leaves. A summing approach was used to estimate potential whole-plant C gain. The results of this method indicated that treatment differences were more pronounced at the plant- than at the leaf- or branch-level, because minor effects within modules accrued in scaling to plant level. The whole-plant response in C gain was determined by the counteracting changes in PS and A. For example, in the O3-sensitive clone (259), inhibition of PS in elevated O3 (at both ambient and elevated CO2) was partially ameliorated by an increase in total A. For the O3-tolerant clone (216), on the other hand, stimulation of photosynthetic rates in elevated CO2 was nullified by decreased total A.  相似文献   

9.
This study examined the effects of elevated CO2 on secondary metabolites for saplings of tropical trees. In the first experiment, nine species of trees were grown in the ground in open-top chambers in central Panama at ambient and elevated CO2 (about twice ambient). On average, leaf phenolic contents were 48% higher under elevated CO2. Biomass accumulation was not affected by CO2, but starch, total non-structural carbohydrates and C/N ratios all increased. In a second experiment with Ficus, an early successional species, and Virola, a late successional species, treatments were enriched for both CO2 and nutrients. For both species, nutrient fertilization increased plant growth and decreased leaf carbohydrates, C/N ratios and phenolic contents, as predicted by the carbon/nutrient balance hypothesis. Changes in leaf C/N levels were correlated with changes in phenolic contents for Virola (r=0.95, P<0.05), but not for Ficus. Thus, elevated CO2, particularly under conditions of low soil fertility, significantly increased phenolic content as well as the C/N ratio of leaves. The magnitude of the changes is sufficient to negatively affect herbivore growth, survival and fecundity, which should have impacts on plant/herbivore interactions.  相似文献   

10.
The consumption and assimilation rates of the woodlouse Armadillidium vulgare were measured on leaf litters from five herb species grown and naturally senesced at 350 and 700 µl l-1 CO2. Each type of litter was tested separately after 12, 30 and 45 days of decomposition at 18°C. The effects of elevated CO2 differed depending on the plant species. In Medicago minima (Fabaceae), the CO2 treatment had no significant effect on consumption and assimilation. In Tyrimnus leucographus (Asteraceae), the CO2 treatment had no significant effect on consumption, but the elevated CO2 litter was assimilated at a lower rate than the ambient CO2 litter after 30 days of decomposition. In the three other species, Galactites tomentosa (Asteraceae), Trifolium angustifolium (Fabaceae) and Lolium rigidum (Poaceae), the elevated CO2 litter was consumed and/or assimilated at a higher rate than the ambient CO2 litter. Examination of the nitrogen contents in these three species of litter did not support the hypothesis of compensatory feeding, i.e. an increase in woodlouse consumption to compensate for low nitrogen content of the food. Rather, the results suggest that in herbs that were unpalatable at the start of the experiment (Galactites, Trifolium and Lolium), more of the the litter produced at 700 µl l-1 CO2 was consumed than of that produced at 350 µl l-1 because inhibitory factors were eliminated faster during decomposition.  相似文献   

11.
Dynamic responses of understory plants to sunflecks have been extensively studied, but how much differences in dynamic light responses affect daily photosynthesis (Aday) is still the subject of active research. Recent models of dynamic photosynthesis have provided a quantitative tool that allows the critical assessment of the importance of these sunfleck responses on Aday. Here we used a dynamic photosynthesis model to assess differences in four species that were growing in ambient and elevated CO2. We hypothesized that Liriodendron tulipifera, a species with rapid photosynthetic induction gain and slow induction loss, would have the least limitations to sunfleck photosynthesis relative to the other three species (Acer rubrum, Cornus florida, Liquidambar styraciflua). As a consequence, L. tulipifera should have the highest Aday in an understory environment, despite being the least shade tolerant of the species tested. We further hypothesized that daily photosynthetic enhancement by elevated CO2 would differ from enhancement levels observed during light-saturated, steady-state measurements. Both hypotheses were supported by the model results under conditions of low daily photosynthetic photon flux density (PFD; <3% of the above-canopy PFD). However, under moderate PFD (10-20% of the above-canopy PFD), differences in dynamic sunfleck responses had no direct impact on Aday for any of the species, since stomatal and photosynthetic induction limitations to sunfleck photosynthesis were small. Thus, the relative species ranking in Aday under moderate PFD closely matched their rankings in steady-state measurements of light-saturated photosynthesis. Similarly, under elevated CO2, enhancement of modeled Aday over Aday at ambient CO2 matched the enhancement measured under light saturation. Thus, the effects of species-specific differences in dynamic sunfleck responses, and differences in elevated CO2 responses of daily photosynthesis, are most important in marginal light environments.  相似文献   

12.
Seedlings of perennial ryegrass (Lolium perenne L. cv. Parcour)and white clover (Trifolium repens L. cv. Karina) grown at fivedifferent plant densities were exposed to ambient (390 ppm)and elevated (690 ppm) CO2 concentrations. After 43 d the effectsof CO2 enrichment and plant density on growth of shoot and root,nitrogen concentration of tissue, and microbial biomass carbon(Cmic) in soil were determined. CO2 enrichment of Lolium perenneincreased shoot growth on average by 17% independent of plantdensity, while effects on root biomass ranged between -4% and+ 107% due to an interaction with plant density. Since tilernumber per plant was unaffected by elevated CO2, the small responseof shoot growth to CO2 enrichment was atributed to low sinkstrength. A significant correlation between nitrogen concentrationof total plant biomass and root fraction of total plant drymatter, which was not changed by CO2 enrichment, indicates thatnitrogen status of the plant controls biomass partitioning andthe effect of CO2 enrichment on root growth. Effects of elevatedCO2 and plant density on shoot and root growth of Trifoliumrepens were not significantly interacting and mean CO2-relatedincrease amounted to 29% and 66%, respectively. However, growthenhancement due to elevated CO2 was strongest when leaf areaindex was lowest. Total amounts of nitrogen in shoots and rootswere bigger at 690 ppm than at 390 ppm CO2. There was a significantincrease in Cmic in experiments with both species whereas plantdensity had no substantial effect. Key words: CO2 enrichment, intraspecific competition, biomass partitioning, Lolium perenne, Trifolium repens, grassland  相似文献   

13.
Three-year-old Scots pine (Pinus sylvestris L.) seedlings were exposed to ambient or elevated ozone (O3) (1.52ambient) and carbon dioxide (CO2) (590 µmol mol-1) concentrations during two growing seasons in open-top field chambers (OTCs). Five different treatments were applied in the chambers: filtered air, ambient air, elevated O3, elevated CO2, and elevated O3 and CO2 combined. Ambient plots outside the OTCs were also included, but the chamber ambient was used as a control in O3 and CO2 treatments due to a significant chamber effect. Increases in yellowing and chlorotic mottling of previous-year (C+1) needles and in the amount of cytoplasmic ribosomes and electron density of the chloroplast stroma in current-year (C) and C+1 needle mesophyll cells were observed in elevated O3 at both CO2 concentrations. Elevated O3 alone caused a non-significant 10.9% decrease in plant total dry mass and a significant decrease in manganese (Mn) content of C needles. CO2 enrichment caused a significant increase in needle cross-sectional width after the first year of exposure, and an accumulation of starch and slight curling and swelling of the chloroplast thylakoids in the mesophyll tissue of C needles after the second year of exposure. Calcium and Mn contents were increased and copper and nitrogen contents were decreased, significantly, in CO2-exposed needles. A non-significant 19.1% increase in plant total dry mass was measured in elevated CO2 alone, whereas a 14.8% reduction in total dry mass, together with a significant reduction in current-year main shoot length, was found in the combined treatment. Overall, in spite of decreases in O3-induced visible injuries by CO2, elevated CO2 levels were not able to counteract the impact of O3 in this experiment.  相似文献   

14.
Forest carbon balance under elevated CO2   总被引:10,自引:2,他引:8  
Free-air CO2 enrichment (FACE) technology was used to expose a loblolly pine (Pinus taeda L.) forest to elevated atmospheric CO2 (ambient + 200 µl l-1). After 4 years, basal area of pine trees was 9.2% larger in elevated than in ambient CO2 plots. During the first 3 years the growth rate of pine was stimulated by ~26%. In the fourth year this stimulation declined to 23%. The average net ecosystem production (NEP) in the ambient plots was 428 gC m-2 year-1, indicating that the forest was a net sink for atmospheric CO2. Elevated atmospheric CO2 stimulated NEP by 41%. This increase was primarily an increase in plant biomass increment (57%), and secondarily increased accumulation of carbon in the forest floor (35%) and fine root increment (8%). Net primary production (NPP) was stimulated by 27%, driven primarily by increases in the growth rate of the pines. Total heterotrophic respiration (Rh) increased by 165%, but total autotrophic respiration (Ra) was unaffected. Gross primary production was increased by 18%. The largest uncertainties in the carbon budget remain in separating belowground heterotrophic (soil microbes) and autotrophic (root) respiration. If applied to temperate forests globally, the increase in NEP that we measured would fix less than 10% of the anthropogenic CO2 projected to be released into the atmosphere in the year 2050. This may represent an upper limit because rising global temperatures, land disturbance, and heterotrophic decomposition of woody tissues will ultimately cause an increased flux of carbon back to the atmosphere.  相似文献   

15.
Biomechanical responses of stems of 6- to 7-year-old spruce [Picea abies (L.) Karst.] and beech (Fagus sylvatica L) trees were studied after 4 years of growth in elevated atmospheric CO2 in combination with a nitrogen treatment and on two different soil types. At the end of the treatment, stems were harvested and tested in fresh and air-dried status. Bending characteristics of juvenile wood (modulus of elasticity, termed rigidity) were determined by bending tests. Fracture characteristics (termed toughness) were determined by stroke-pendulum tests. From the base disk of each stem densitometric data were obtained. In spruce, wood produced under elevated CO2 was tougher on both soil types; enhanced N deposition made wood less rigid only on acidic soils. In contrast, beech wood samples showed no significant reaction to CO2 but were significantly tougher under high nitrogen depositions on acidic soil. Effects on wood density of both CO2 and N treatments were not significant, but wood density was higher on acidic soil and so were rigidity and toughness (soil effect). Different genotypes of spruce and beech reacted significantly differently to the treatments. Some genotypes reacted strongly to CO2 or N, whereas others did not react or showed interactions between CO2 and N. This underlines the importance of genetic diversity in tree communities.  相似文献   

16.
Under benign environmental conditions, plant growth is generally stimulated by elevated atmospheric CO2 concentrations. When environmental conditions become sub- or supra-optimal for growth, changes in the biomass enhancement ratio (BER; total plant biomass at elevated CO2 divided by plant biomass at the current CO2 level) may occur. We analysed literature sources that studied CO22environment interactions on the growth of herbaceous species and tree seedlings during the vegetative phase. For each experiment we calculated the difference in BER for plants that were grown under 'optimal' and 'non-optimal' conditions. Assuming that interactions would be most apparent if the environmental stress strongly diminished growth, we scaled the difference in the BER values by the growth reduction due to the stress factor. In our compilation we found a large variability in CO22environment interactions between experiments. To test the impact of experimental design, we simulated a range of analyses with a plant-to-plant variation in size common in experimental plant populations, in combination with a number of replicates generally used in CO22environment studies. A similar variation in results was found as in the compilation of real experiments, showing the strong impact of stochasticity. We therefore caution against strong inferences derived from single experiments and suggest rather a reliance on average interactions across a range of experiments. Averaged over the literature data available, low soil nutrient supply or sub-optimal temperatures were found to reduce the proportional growth stimulation of elevated CO2. In contrast, BER increased when plants were grown at low water supply, albeit relatively modestly. Reduced irradiance or high salinity caused BER to increase in some cases and decrease in others, resulting in an average interaction with elevated CO2 that was not significant. Under high ozone concentrations, the relative growth enhancement by elevated CO2 was strongly increased, to the extent that high CO2 even compensated in an absolute way for the harmful effect of ozone on growth. No systematic difference in response was found between herbaceous and woody species for any of the environmental variables considered.  相似文献   

17.
Using open-top chambers, four prominent species (Lolium perenne,Cynosurus cristatus, Holcus lanatusandAgrostis capillaris) ofIrish neutral grasslands were grown at ambient and elevated(700 µmol mol-1) atmospheric CO2for a period of 8 months.The effects of interspecific competition on plant responsesto CO2enrichment were investigated by growing the species ina four-species mixture. The results indicate that the speciesdiffer in their ability to respond to elevated CO2. CO2-enrichmenthad the largest effect on the biomass production ofH. lanatus,but substantial stimulations in biomass production were alsofound for the other three species. The CO2-stimulation of biomassproduction forH. lanatuswas accompanied by increased tillering.In addition, reductions in specific leaf area were found forall species. Exposure to elevated CO2increased the communitybiomass of the four-species mixture. This increase can be mainlyattributed to a significant increase in the biomass ofH. lanatusatelevated CO2. No statistically-significant changes in speciescomposition of community biomass were found. However,H. lanatusdidincrease its share of community biomass at each of the harvests,with the other three species, mainlyL. perenne, suffering lossesin their shares at elevated CO2. The results show that: (1)the species varied in their response to elevated CO2; and (2)species composition in natural plant communities is likely tochange at elevated CO2, but these changes may occur rather slowly.Much longer periods of exposure to elevated atmospheric CO2maybe required to permit detection of significant changes in speciescomposition.Copyright 1998 Annals of Botany Company Carbon dioxide (CO2) enrichment, competition, Lolium perenne,Cynosurus cristatus, Holcus lanatus, Agrostis capillaris, biomass, specific leaf area, tillering.  相似文献   

18.
The effect of elevated atmospheric CO2 and temperature on resource allocation and secondary chemistry of white birch (Betula pendula Roth) under a non-limiting nutrient and water supply was investigated. Birch seedlings were grown in closed-top chambers exposed to ambient CO2 and temperature, elevated atmospheric CO2 (700 ppm), elevated temperature (2°C above ambient) and a combination of elevated CO2 and temperature for one growing season. Elevated CO2 significantly increased the total biomass of the seedlings. The combined effect of the elevated CO2 and temperature treatments further increased the total biomass, but not significantly. The content of nitrogen and water decreased, while some secondary compounds (such as condensed tannins and flavonol glycosides) increased in leaves subjected to CO2 enrichment. Elevated temperature increased the concentration of total flavone aglycones and decreased that of total HPLC-phenolics in the leaves, due to the decrease in individual flavonol glycosides, cinnamoylquinic acids and (+)-catechin. There were no significant interactive effects between CO2 and temperature in the phenolic concentrations of the leaves and in the stems, while the number of resin droplets in the top part of the stems showed significant interaction. This clearly implies that carbon allocation into secondary metabolites in the leaves and stems differ under enhanced CO2 and temperature, and the combined effect of CO2 and temperature on the herbivore resistance of birches, is lower than that of CO2 and temperature alone.  相似文献   

19.
We hypothesized that changes in plant growth resulting from atmospheric CO2 and O3 enrichment would alter the flow of C through soil food webs and that this effect would vary with tree species. To test this idea, we traced the course of C through the soil microbial community using soils from the free-air CO2 and O3 enrichment site in Rhinelander, Wisconsin. We added either 13C-labeled cellobiose or 13C-labeled N-acetylglucosamine to soils collected beneath ecologically distinct temperate trees exposed for 3 years to factorial CO2 (ambient and 200 µl l-1 above ambient) and O3 (ambient and 20 µl l-1 above ambient) treatments. For both labeled substrates, recovery of 13C in microbial respiration increased beneath plants grown under elevated CO2 by 29% compared to ambient; elevated O3 eliminated this effect. Production of 13C-CO2 from soils beneath aspen (Populus tremuloides Michx.) and aspen-birch (Betula papyrifera Marsh.) was greater than that beneath aspen-maple (Acer saccharum Marsh.). Phospholipid fatty acid analyses (13C-PLFAs) indicated that the microbial community beneath plants exposed to elevated CO2 metabolized more 13C-cellobiose, compared to the microbial community beneath plants exposed to the ambient condition. Recovery of 13C in PLFAs was an order of magnitude greater for N-acetylglucosamine-amended soil compared to cellobiose-amended soil, indicating that substrate type influenced microbial metabolism and soil C cycling. We found that elevated CO2 increased fungal activity and microbial metabolism of cellobiose, and that microbial processes under early-successional aspen and birch species were more strongly affected by CO2 and O3 enrichment than those under late-successional maple.  相似文献   

20.
Nutrients such as nitrogen (N) and phosphorus (P) often limit plant growth rate and production in natural and agricultural ecosystems. Limited availability of these nutrients is also a major factor influencing long-term plant and ecosystem responses to rising atmospheric CO2 levels, i.e., the commonly observed short-term increase in plant biomass may not be sustained over the long-term. Therefore, it is critical to obtain a mechanistic understanding of whether elevated CO2 can elicit compensatory adjustments such that acquisition capacity for minerals increases in concert with carbon (C) uptake. Compensatory adjustments such as increases in (a) root mycorrhizal infection, (b) root-to-shoot ratio and changes in root morphology and architecture, (c) root nutrient absorption capacity, and (d) nutrient-use efficiency can enable plants to meet an increased nutrient demand under high CO2. Here we examine the literature to assess the extent to which these mechanisms have been shown to respond to high CO2. The literature survey reveals no consistent pattern either in direction or magnitude of responses of these mechanisms to high CO2. This apparent lack of a pattern may represent variations in experimental protocol and/or interspecific differences. We found that in addressing nutrient uptake responses to high CO2 most investigators have examined these mechanisms in isolation. Because such mechanisms can potentially counterbalance one another, a more reliable prediction of elevated CO2 responses requires experimental designs that integrate all mechanisms simultaneously. Finally, we present a functional balance (FB) model as an example of how root system adjustments and nitrogen-use efficiency can be integrated to assess growth responses to high CO2. The FB model suggests that the mechanisms of increased N uptake highlighted here have different weights in determining overall plant responses to high CO2. For example, while changes in root-to-shoot biomass allocation, r, have a small effect on growth, adjustments in uptake rate per unit root mass, [`(n)]\bar \nu , and photosynthetic N use efficiency, p*, have a significantly greater leverage on growth responses to elevated CO2 except when relative growth rate (RGR) reaches its developmental limit, maximum RGR (RGRmax).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号