共查询到20条相似文献,搜索用时 15 毫秒
1.
Kristen A. Bishop Pauline Lemonnier Jennifer C. Quebedeaux Christopher M. Montes Andrew D. B. Leakey Elizabeth A. Ainsworth 《Photosynthesis research》2018,137(3):453-464
Species have different strategies for loading sugars into the phloem, which vary in the route that sugars take to enter the phloem and the energetics of sugar accumulation. Species with passive phloem loading are hypothesized to have less flexibility in response to changes in some environmental conditions because sucrose export from mesophyll cells is dependent on fixed anatomical plasmodesmatal connections. Passive phloem loaders also have high mesophyll sugar content, and may be less likely to exhibit sugar-mediated down-regulation of photosynthetic capacity at elevated CO2 concentrations. To date, the effect of phloem loading strategy on the response of plant carbon metabolism to rising atmospheric CO2 concentrations is unclear, despite the widespread impacts of rising CO2 on plants. Over three field seasons, five species with apoplastic loading, passive loading, or polymer-trapping were grown at ambient and elevated CO2 concentration in free air concentration enrichment plots. Light-saturated rate of photosynthesis, photosynthetic capacity, leaf carbohydrate content, and anatomy were measured and compared among the species. All five species showed significant stimulation in midday photosynthetic CO2 uptake by elevated CO2 even though the two passive loading species showed significant down-regulation of maximum Rubisco carboxylation capacity at elevated CO2. There was a trend toward greater starch accumulation at elevated CO2 in all species, and was most pronounced in passive loaders. From this study, we cannot conclude that phloem loading strategy is a key determinant of plant response to elevated CO2, but compelling differences in response counter to our hypothesis were observed. A phylogenetically controlled experiment with more species may be needed to fully test the hypothesis. 相似文献
2.
Álvaro Sanz‐Sáez Robert P. Koester David M. Rosenthal Christopher M. Montes Donald R. Ort Elizabeth A. Ainsworth 《Global Change Biology》2017,23(9):3908-3920
The atmospheric [CO2] in which crops grow today is greater than at any point in their domestication history and represents an opportunity for positive effects on seed yield that can counteract the negative effects of greater heat and drought this century. In order to maximize yields under future atmospheric [CO2], we need to identify and study crop cultivars that respond most favorably to elevated [CO2] and understand the mechanisms contributing to their responsiveness. Soybean (Glycine max Merr.) is a widely grown oilseed crop and shows genetic variation in response to elevated [CO2]. However, few studies have studied the physiological basis for this variation. Here, we examined canopy light interception, photosynthesis, respiration and radiation use efficiency along with yield and yield parameters in two cultivars of soybean (Loda and HS93‐4118) previously reported to have similar seed yield at ambient [CO2], but contrasting responses to elevated [CO2]. Seed yield increased by 26% at elevated [CO2] (600 μmol/mol) in the responsive cultivar Loda, but only by 11% in HS93‐4118. Canopy light interception and leaf area index were greater in HS93‐4118 in ambient [CO2], but increased more in response to elevated [CO2] in Loda. Radiation use efficiency and harvest index were also greater in Loda than HS93‐4118 at both ambient and elevated [CO2]. Daily C assimilation was greater at elevated [CO2] in both cultivars, while stomatal conductance was lower. Electron transport capacity was also greater in Loda than HS93‐4118, but there was no difference in the response of photosynthetic traits to elevated [CO2] in the two cultivars. Overall, this greater understanding of leaf‐ and canopy‐level photosynthetic traits provides a strong conceptual basis for modeling genotypic variation in response to elevated [CO2]. 相似文献
3.
Aims
It is unclear how changing atmospheric conditions, including rising carbon dioxide concentration, influence interactions between above and below-ground systems and if intraspecific variation exists in this response.Methods
We assessed interactive effects of atmospheric CO2 concentration, above-ground herbivory, and plant genotype on root traits and mycorrhizal associations. Plants from five families of Asclepias syriaca, a perennial forb, were grown under ambient and elevated atmospheric CO2 concentrations. Foliar herbivory by either lepidopteran caterpillars or phloem-feeding aphids was imposed. Mycorrhizal colonization, below-ground biomass, root biomass, and secondary defensive chemistry in roots were quantified.Results
We observed substantial genetic variation among A. syriaca families in their mycorrhizal colonization levels in response to elevated CO2 and herbivory treatments. Elevated CO2 treatment increased root biomass in all genetic families, whereas foliar herbivory tended to decrease root biomass. Root cardenolide concentration and composition varied greatly among plant families, and elevated CO2 treatment increased root cardenolides in two of the five plant families. Moreover, herbivores differentially affected the composition of cardenolides expressed below ground.Conclusions
Increased atmospheric CO2 has the potential to influence interactions among plants, herbivores and mycorrhizal fungi and intraspecific variation suggests that such interactions can evolve. 相似文献4.
Growth and photosynthetic response of nine tropical species with long-term exposure to elevated carbon dioxide 总被引:17,自引:0,他引:17
Summary Seedlings of nine tropical species varying in growth and carbon metabolism were exposed to twice the current atmospheric level of CO2 for a 3 month period on Barro Colorado Island, Panama. A doubling of the CO2 concentration resulted in increases in photosynthesis and greater water use efficiency (WUE) for all species possessing C3 metabolism, when compared to the ambient condition. No desensitization of photosynthesis to increased CO2 was observed during the 3 month period. Significant increases in total plant dry weight were also noted for 4 out of the 5 C3 species tested and in one CAM species, Aechmea magdalenae at high CO2. In contrast, no significant increases in either photosynthesis or total plant dry weight were noted for the C4 grass, Paspallum conjugatum. Increases in the apparent quantum efficiency (AQE) for all C3 species suggest that elevated CO2 may increase photosynthetic rate relative to ambient CO2 over a wide range of light conditions. The response of CO2 assimilation to internal Ci suggested a reduction in either the RuBP and/or Pi regeneration limitation with long term exposure to elevated CO2. This experiment suggests that: (1) a global rise in CO2 may have significant effects on photosynthesis and productivity in a wide variety of tropical species, and (2) increases in productivity and photosynthesis may be related to physiological adaptation(s) to increased CO2. 相似文献
5.
Disease is an integral element of agricultural and natural systems, but the roles pathogens play in determining ecosystem response to elevated CO2 have rarely been examined. To investigate whether disease can alter the response of plants to CO2, we examined the effects of doubled CO2 (~700 μmol mol?1) on Avena sativa infected with barley yellow dwarf virus (BYDV), a common pathogen of cereals and grasses. Oats infected with BYDV showed a significantly greater biomass response to CO2 enrichment than did healthy plants. Root mass of diseased plants increased by 37–60% with CO2 enrichment, but was largely unaffected in healthy plants. CO2 enrichment increased midday leaf-level photosynthesis and instantaneous water use efficiency by 34 and 93% in healthy plants and by 48 and 174% in infected plants. Foliar carbohydrates increased with both CO2 enrichment and BYDV infection, but the two factors affected individual pools dissimilarly. CO2 enrichment may alter the epidemiology of BYDV by increasing the persistence of infected plants. 相似文献
6.
Increased atmospheric carbon dioxide (CO2) concentrations and nitrogen (N) deposition induced by human activities have greatly influenced the stoichiometry of N and phosphorus (P). We used model forest ecosystems in open‐top chambers to study the effects of elevated CO2 (ca. 700 μmol mol?1) alone and together with N addition (100 kg N ha?1 yr?1) on N to P (N : P) ratios in leaves, stems and roots of five tree species, including four non‐N2 fixers and one N2 fixer, in subtropical China from 2006 to 2009. Elevated CO2 decreased or had no effects on N : P ratios in plant tissues of tree species. N addition, especially under elevated CO2, lowered N : P ratios in the N2 fixer, and this effect was significant in the stems and the roots. However, only one species of the non‐N2 fixers showed significantly lower N : P ratios under N addition in 2009, and the others were not affected by N addition. The reductions of N : P ratios in response to elevated CO2 and N addition were mainly associated with the increases in P concentrations. Our results imply that elevated CO2 and N addition could facilitate tree species to mitigate P limitation by more strongly influencing P dynamics than N in the subtropical forests. 相似文献
7.
Effects of elevated carbon dioxide on three montane grass species: I. Growth and dry matter partitioning 总被引:4,自引:0,他引:4
Baxter R.; Ashenden T.W.; Sparks T.H.; Farrar J.F. 《Journal of experimental botany》1994,45(3):305-315
Upland grasslands are a major component of natural vegetationwithin the UK. Such grasslands support slow growing relativelystable plant communities. The response of native montane grassspecies to elevated atmospheric carbon dioxide concentrationshas received little attention to date. Of such studies, mosthave only focused on short-term (days to weeks) responses, oftenunder favourable controlled environment conditions. In thisstudy Agrostis caplllaris L.5, Festuca vivipara L. and Poa alpinaL. were grown under semi-natural conditions in outdoor open-topchambers at either ambient (340µmol mol1) or elevated(680µmol mol1) concentrations of atmospheric carbondioxide (CO2 for periods from 79 to 189 d, with a nutrient availabilitysimilar to that of montane Agrostis-Fescue grassland in Snowdonia,N. Wales. Whole plant dry weight was increased for A. capillarisand P. alpina, but decreased for F. vivipara, at elevated CO2.Major components of relative growth rate (RGR) contributingto this change at elevated CO2 were transient changes in specificleaf area (SLA) and leaf area ratio (LAR). Despite changes ingrowth rate at 680 µmol mol1 CO2, partitioningof dry weight between shoot and root in plants of A. capillarisand P. alpina was unaltered. There was a significant decreasein shoot relative to root growth at elevated CO2 in F. viviparawhich also showed marked discoloration of the leaves and increasedsenescence of the foliage. Key words: Allometry, growth analysis, elevated CO2, grasses 相似文献
8.
The effect of clipping frequency on the competitive interaction between two perennial grass species 总被引:2,自引:1,他引:1
Summary The effect of clipping frequency on competition between Lolium perenne and Agrostis tenuis was investigated. The yield of clippings of both species increased and then declined during the 12-week period of the experiment, but the clip yield of Lolium was always significantly greater than that of Agrostis. Lolium was clearly the better competitor in unclipped controls. The proportion of the biomass contributed to the mixture by Agrostis increased as the interval between clips decreased. Tiller production was unaffected by increased clipping frequency in Lolium but was increased in Agrostis. Total yield was much more drastically reduced by frequent clipping in Lolium than in Agrostis, where yield was practically unaffected by wide variations in clipping frequency.These results are in agreement with the field distributions of the two species. They also suggest that differences in height and response to clipping are likely to confound any attempt to monitor the progress of competition experiments by measuring the yield of clippings. 相似文献
9.
10.
Genotypic variation in response of barley to boron deficiency 总被引:2,自引:0,他引:2
Responses of a range of barley (Hordeum vulgare L.) genotypes to boron (B) deficiency were studied in two experiments carried
out in sand culture and in the field at Chiang Mai, Thailand. In experiment 1, two barley genotypes, Stirling (two-row) and
BRB 2 (six-row) and one wheat (Triticum aestivum L.) genotype, SW 41, were evaluated in sand culture with three levels of
applied B (0, 0.1 and 1.0 μM B) to the nutrient solution. It was found that B deficiency depressed flag leaf B concentration
at booting, grain number and grain yield of all genotypes. In barley Stirling, B deficiency also depressed number of spikes
plant-1, spikelets spike-1 and straw yield. However, no significant difference between genotypes in flag leaf B concentration was found under low B
treatments. Flag leaf B concentration below 4 mg kg-1 was associated with grain set reduction and could, therefore, be used as a general indicator for B status in barley. In experiment
2, nine barley and two wheat genotypes were evaluated in the field on a low B soil with three levels of B. Boron levels were
varied by applying either 2 t of lime ha-1 (BL), no B (B0) or 10 kg Borax ha-1 (B+) to the soil prior to sowing. Genotypes differed in their B response for grain spike-1, grain spikelet-1 and grain set index (GSI). The GSI of the B efficient wheat, Fang 60, exceeded 90% in all B treatments. The B inefficient
wheat SW 41 and most of the barley genotypes set grain normally (GSI >80%) only at the B+. In B0 GSI of the barley genotypes
ranged from 23% to 84%, and in BL from 19% to 65%. Three of the barley with severely depressed GSI in B0 and BL also had a
decreased number of spikelets spike-1. In experiment 3, 21 advanced barley lines from the Barley Thailand Yield Nursery 1997/98 (BTYN 1997/98) were screened for
B response in sand culture with no added B. Grain Set Index of the Fang 60 and SW 41 checks were 98 and 65%, respectively,
and GSI of barley lines ranged between 5 and 90%. One advanced line was identified as B efficient and two as moderately B
efficient. The remaining lines ranked between moderately inefficient to inefficient. These experiments have established that
there is a range of responses to B in barley genotypes. This variation in the B response was observed in vegetative as well
as reproductive growth. Boron efficiency should be considered in breeding and selection of barley in low B soils.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
11.
Leaf traits of two Mediterranean perennial tussock grass species in relation to soil nitrogen and phosphorus availability 总被引:1,自引:0,他引:1
Studying relationships of plant traits to ecosystem properties is an emerging approach aiming to understand plant's potential effect on ecosystem functioning. In the current study, we explored links between morphological and nutritional leaf traits of two Mediterranean perennial grass species Stipa tenacissima and Lygeum spartum, widely used to prevent desertification process by stabilizing sand dunes. We evaluated also relationships in terms of nitrogen (N) and phosphorus (P) availability between leaves of the investigated species and the corresponding soil. Our results showed that leaf P was very low in comparison with leaf N for the two investigated species. In fact, chlorophyll content, photosynthesis capacity and water conservation during photosynthesis are mainly linked to leaf nitrogen content. Our findings support previous studies showing that at the species levels, morphological and nutritional leaf traits were not related. On the other hand, significant relationships were obtained between soil N and leaf N for S. tenacissima (P = 0.011) and L. spartum (P = 0.033). However, leaf P was not significantly related to soil P availability for both species. We suggest that any decrease in soil N with the predicted increasing aridity may result in reduction in leaf N and thus in worst dysfunction of some biological processes levels. 相似文献
12.
Bunce JA 《Photosynthesis research》2001,68(3):237-245
Strawberry (Fragaria × ananassa) plants were grown in field plots at the current ambient [CO2], and at ambient + 300 and ambient + 600 μmol mol−1 [CO2]. Approximately weekly measurements were made of single leaf gas exchange of upper canopy leaves from early spring through
fall of two years, in order to determine the temperature dependence of the stimulation of photosynthesis by elevated [CO2], whether growth at elevated [CO2] resulted in acclimation of photosynthesis, and whether any photosynthetic acclimation was reduced when fruiting created
additional demand for the products of photosynthesis. Stimulation of photosynthetic CO2 assimilation by short-term increases in [CO2] increased strongly with measurement temperature. The stimulation exceeded that predicted from the kinetic characteristics
of ribulose-1,5-bisphosphate carboxylase at all temperatures. Acclimation of photosynthesis to growth at elevated [CO2] was evident from early spring through summer, including the fruiting period in early summer, with lower rates under standard
measurement conditions in plants grown at elevated [CO2]. The degree of acclimation increased with growth [CO2]. However, there were no significant differences between [CO2] treatments in total nitrogen per leaf area, and photosynthetic acclimation was reversed one day after switching the [CO2] treatments. Tests showed that acclimation did not result from a limitation of photosynthesis by triose phosphate utilization
rate at elevated [CO2]. Photosynthetic acclimation was not evident during dry periods in midsummer, when the elevated [CO2] treatments conserved soil water and photosynthesis declined more at ambient than at elevated [CO2]. Acclimation was also not evident during the fall, when plants were vegetative, despite wet conditions and continued higher
leaf starch content at elevated [CO2]. Stomatal conductance responded little to short-term changes in [CO2] except during drought, and changed in parallel with photosynthetic acclimation through the seasons in response to the long-term
[CO2] treatments. The data do not support the hypothesis that source-sink balance controls the seasonal occurrence of photosynthetic
acclimation to elevated [CO2] in this species.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
13.
Denis Fabre Michael Dingkuhn Xinyou Yin Anne Clément-Vidal Sandrine Roques Armelle Soutiras Delphine Luquet 《Plant, cell & environment》2020,43(3):579-593
This study aimed to understand the response of photosynthesis and growth to e-CO2 conditions (800 vs. 400 μmol mol−1) of rice genotypes differing in source–sink relationships. A proxy trait called local C source–sink ratio was defined as the ratio of flag leaf area to the number of spikelets on the corresponding panicle, and five genotypes differing in this ratio were grown in a controlled greenhouse. Differential CO2 resources were applied either during the 2 weeks following heading (EXP1) or during the whole growth cycle (EXP2). Under e-CO2, low source–sink ratio cultivars (LSS) had greater gains in photosynthesis, and they accumulated less nonstructural carbohydrate in the flag leaf than high source–sink ratio cultivars (HSS). In EXP2, grain yield and biomass gain was also greater in LSS probably caused by their strong sink. Photosynthetic capacity response to e-CO2 was negatively correlated across genotypes with local C source–sink ratio, a trait highly conserved across environments. HSS were sink-limited under e-CO2, probably associated with low triose phosphate utilization (TPU) capacity. We suggest that the local C source–sink ratio is a potential target for selecting more CO2-responsive cultivars, pending validation for a broader genotypic spectrum and for field conditions. 相似文献
14.
15.
Stomatal sensitivity to carbon dioxide and humidity: a comparison of two c(3) and two c(4) grass species 总被引:7,自引:3,他引:7 下载免费PDF全文
The sensitivity of stomatal conductance to changes of CO2 concentration and leaf-air vapor pressure difference (VPD) was compared between two C3 and two C4 grass species. There was no evidence that stomata of the C4 species were more sensitive to CO2 than stomata of the C3 species. The sensitivity of stomatal conductance to CO2 change was linearly proportional to the magnitude of stomatal conductance, as determined by the VPD, the same slope fitting the data for all four species. Similarly, the sensitivity of stomatal conductance to VPD was linearly proportional to the magnitude of stomatal conductance. At small VPD, the ratio of intercellular to ambient CO2 concentration, Ci/Ca, was similar in all species (0.8-0.9) but declined with increasing VPD, so that, at large VPD, Ci/Ca was 0.7 and 0.5 (approximately) in C3 and C4 species, respectively. Transpiration efficiency (net CO2 assimilation rate/transpiration rate) was larger in the C4 species than in the C3 species at current atmospheric CO2 concentrations, but the relative increase due to high CO2 was larger in the C3 than in the C4 species. 相似文献
16.
17.
Dynamic responses of understory plants to sunflecks have been extensively studied, but how much differences in dynamic light responses affect daily photosynthesis (Aday) is still the subject of active research. Recent models of dynamic photosynthesis have provided a quantitative tool that allows the critical assessment of the importance of these sunfleck responses on Aday. Here we used a dynamic photosynthesis model to assess differences in four species that were growing in ambient and elevated CO2. We hypothesized that Liriodendron tulipifera, a species with rapid photosynthetic induction gain and slow induction loss, would have the least limitations to sunfleck photosynthesis relative to the other three species (Acer rubrum, Cornus florida, Liquidambar styraciflua). As a consequence, L. tulipifera should have the highest Aday in an understory environment, despite being the least shade tolerant of the species tested. We further hypothesized that daily photosynthetic enhancement by elevated CO2 would differ from enhancement levels observed during light-saturated, steady-state measurements. Both hypotheses were supported by the model results under conditions of low daily photosynthetic photon flux density (PFD; <3% of the above-canopy PFD). However, under moderate PFD (10-20% of the above-canopy PFD), differences in dynamic sunfleck responses had no direct impact on Aday for any of the species, since stomatal and photosynthetic induction limitations to sunfleck photosynthesis were small. Thus, the relative species ranking in Aday under moderate PFD closely matched their rankings in steady-state measurements of light-saturated photosynthesis. Similarly, under elevated CO2, enhancement of modeled Aday over Aday at ambient CO2 matched the enhancement measured under light saturation. Thus, the effects of species-specific differences in dynamic sunfleck responses, and differences in elevated CO2 responses of daily photosynthesis, are most important in marginal light environments. 相似文献
18.
19.
以两种常见园林观赏草:白穗狼尾草(Pennisetum alopecuroides ‘White’)和拂子茅(Calamagrostis epigeios)作为试验材料,利用开顶箱(OTCs)模拟法,研究了不同高浓度臭氧(O3,EO):80 nmol/mol(EO-80)、120 nmol/mol(EO-120)和160 nmol/mol(EO-160)下两种观赏草叶片逆境生理特征的变化规律。结果表明:(1)短期(7 d)内随O3浓度增加,白穗狼尾草叶绿素和类胡萝卜素含量较对照呈下降趋势,拂子茅较对照无显著变化。(2)在EO-120、EO-160下处理7 d时,两种观赏草叶片的净光合速率(Pn)和气孔导度(gs)较对照显著下降,且白穗狼尾草下降的幅度均大于拂子茅。(3)不同高浓度O3胁迫下,两种观赏草叶片丙二醛(MDA)含量较对照均有所升高,其中在EO-160下处理21 d时白穗狼尾草和拂子茅叶片MDA含量分别增加30.2%(P<0.05)和13.5%(P>0.05),表明在EO-160浓度胁迫下白穗狼尾草受到的膜脂过氧化伤害大于拂子茅。(4)在EO-120和EO-160下处理21 d时,白穗狼尾草叶片可溶性蛋白含量较对照分别显著下降24.2%和43.1%,而拂子茅较对照分别下降19.0%和22.9%(P<0.05)。(5)与对照组相比,高浓度O3下两种观赏草叶片的过氧化物酶(POD)活性随胁迫时间延长呈下降趋势,超氧化物歧化酶(SOD)活性呈先升后降。(6)综合以上生理特征比较及主成成分分析表明,佛子茅比白穗狼尾草更耐O3,前者在O3高污染地区可能会有更高的应用价值。 相似文献
20.
The genotypic variation of 1180 progeny from 118 genitors belonging to five taxa ofPennisetum sect.Brevivalvula has been estimated by isoenzyme electrophoresis with observations on five enzymatic systems, in order to compare the type of reproduction in polyploid and diploid taxa. A total of 112 different isozyme genotypes has been found, over all taxa. Genotypic variation was found among all progeny of the diploid populations ofP. polystachion andP. subangustum, as a consequence of their sexual reproduction system. At the polyploid level the type of reproduction appears to be predominantly agamic, but genotypic variation in the progeny was not rare: five tetraploid and one hexaploidP. pedicellatum, one pentaploid and one hexaploidP. polystachion and one hexaploidP. hordeoides, in a total of 90 genitors. Genetic relationships have been observed between the diploid sexualP. polystachion andP. subangustum, and, to a lesser extent, with the tetraploids of the same taxa as well. TetraploidP. polystachion andP. pedicellatum share genotypes with most other chromosomal taxa. 相似文献