首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A fine physical map of Arabidopsis thaliana chromosome 5 wasconstructed by ordering the clones from YAC, P1, TAC and BAClibraries of the genome using the sequences of a variety ofgenetic and EST markers and terminal sequences of clones. Themarkers used were 88 genetic markers, 13 EST markers, 87 YACend probes, 100 YAC subclone end probes, and 390 end probesof P1, TAC and BAC clones. The entire genome of chromosome 5,except for the centromeric and telomeric regions, was coveredby two large contigs 11.6 Mb and 14.2 Mb long separated by thecentromeric region. The minimum tiling path of the chromosomewas constituted by a total of 430 P1, TAC and BAC clones. Themap information is available at the Web site http://www.kazusa.or.jp/arabi/.  相似文献   

2.
A fine physical map of the top arm of Arabidopsis thaliana chromosome 3 has been constructed by ordering P1, TAC and BAC clones using the sequences of a variety of DNA markers and end-sequences of clones. The marker sequences used in this study were derived from 58 DNA markers, 93 YAC end-sequences, and 807 end-sequences of P1, TAC and BAC clones. The entire top arm of chromosome 3, except for the centromeric and telomeric regions, was covered by a single contig 13.3 Mb long. This fine physical map will facilitate gene isolation by map-based cloning experiments as well as genome sequencing of the top arm of chromosome 3. The map and end-sequence information are available on the web site KAOS (Kazusa Arabidopsis data Opening Site) at [http://www.kazusa.or.jp/arabi/].  相似文献   

3.
Yeast artificial chromosome (YAC) clones were arranged on thepositions of restriction fragment length polymorphism (RFLP)and sequence-tagged site (STS) markers already mapped on thehigh-resolution genetic maps of rice chromosomes 3 and 11. Froma total of 416 and 242 YAC clones selected by colony/Southernhybridization and polymerase chain reaction (PCR) analysis,238 and 135 YAC clones were located on chromosomes 3 and 11,respectively. For chromosomes 3 and 11, 24 YAC contigs and islandswith total coverage of about 46% and 12 contigs and islandswith coverage of about 40%, respectively, were assigned. Althoughmany DNA fragments of multiple copy marker sequences could notbe mapped to their original locations on the genetic map bySouthern hybridization because of a lack of RFLP, the physicalmapping of YAC clones could often assign specific locationsof such multiple copy sequences on the genome. The informationprovided here on contig formation and similar sequence distributionrevealed by ordering YAC clones will help to unravel the genomeorganization of rice as well as being useful in isolation ofgenes by map-based cloning.  相似文献   

4.
A physical map of rice chromosome 5 was constructed with yeastartificial chromosome (YAC) clones along a high-resolution molecularlinkage map carrying 118 DNA markers distributed over 123.7cM of genomic DNA. YAC clones have been identified by colonyand Southern hybridization for 105 restriction fragment lengthpolymorphism (RFLP) markers and by polymerase chain reaction(PCR) screening for 8 sequence-tagged site (STS) markers and5 randomly amplified polymorphic DNA (RAPD) markers. Of 458YACs, 235 individual YACs with an average insert length of 350kb were selected and ordered on chromosome 5 from the YAC library.Forty-eight contigs covering nearly 21 Mb were formed on thechromosome 5; the longest one was 6 cM and covered 1.5 Mb. Thelength covered with YAC clones corresponded to 62% of the totallength of chromosome 5. There were many multicopy sequencesof expressed genes on chromosome 5. The distribution of manycopies of these expressed gene sequences was determined by YACSouthern hybridization and is discussed. A physical map withthese characteristics provides a powerful tool for elucidationof genome structure and extraction of useful genetic informationin rice.  相似文献   

5.
Physical Mapping of Rice Chromosomes 4 and 7 Using YAC Clones   总被引:1,自引:0,他引:1  
Physical maps of rice chromosomes 4 and 7 were constructed bylanding yeast artificial chromosomes (YACs) along our high-densitymolecular linkage map. Using 114 DNA markers, 258 individualYACs were located on chromosome 4. Sixty-two out of 258 YACscarried two or more DNA marker positions and formed 16 contigswhich covered a total length of 17.1 cM. The other YACs werearranged to 23 positions. On chromosome 7, 203 individual YACswere landed on 109 DNA markers. Sixty-four out of 203 YACs formed15 contigs which covered a total length of 21.8 cM and 139 YACswere localized to 26 positions. Chromosomes 4 and 7 were coveredwith minimum tiling paths of 45 and 48 YACs, respectively. Takingthe average size of YAC insert DNA to be 350 kb and the entiregenome size to be 430 Mb, about 16–18 Mb of each chromosomeor an estimated 50% of their total lengths have been coveredwith YACs. Physical maps of these 2 chromosomes should be ofgreat help in identifying useful trait genes and unravelinggenetic and biological characteristics in rice.  相似文献   

6.
Previously, we have reported a fine physical map of Arabidopsis thaliana chromosome 5, except for the centromeric and telomeric regions, by ordering clones from YAC, P1, TAC, and BAC libraries of the genome consisting of the two contigs of upper arm and lower arm, 11.6 M bases and 14.2 M bases, respectively. Here, the remaining centromeric and telomeric regions of chromosome 5 are completely characterized by the ordering of clones and PCR amplifications. Chromosome 5 of Arabidopsis thaliana ecotype Columbia is about 28.4 M bases long. The centromeric region is estimated at about 2 M bases long between two 5S-rDNA clusters. The 180-bp repeat region mainly consists of blocks of 180-bp tandem family and various type retroelements dispersed over a 500-kb region. The telomeric regions of chromosome 5 are characterized by PCR cloning, sequencing and hybridization. The telomere repeats at both ends are about 2.5-kb long and interestingly, telomere-associated repeats (approximately 700 bp) are found near both ends of chromosome 5.  相似文献   

7.
To deduce the entire sequence of the top arm of the Arabidopsis thaliana chromosome 3, the sequence determination was performed on a total of 90 P1, TAC and BAC clones chosen according to our sequencing strategy. Sequence features of the resulting 4,251,695 bp regions were analyzed with various computer programs for similarity search and gene modeling. As a result, a total of 941 potential protein-coding genes were identified. The average density of the genes identified was 1 gene per 4210 bp. Introns were observed in 73% of the genes, and the average number per gene and the average length of the introns were 3.6 and 159 bp, respectively. These sequence features are essentially identical to those of chromosomes 3 and 5 in our previous reports. The regions also contained 14 tRNA genes when searched by similarity to reported tRNA genes and the tRNA scan-SE program. The sequence data and information on the potential genes are available through the World Wide Web database KAOS (Kazusa Arabidopsis data Opening Site) at http://www.kazusa.or.jp/kaos/.  相似文献   

8.
Sixteen Pl and TAC clones assigned to Arabidopsis thaliana chromosome5 were sequenced, and their sequence features were analyzedusing various computer programs. The total length of the sequencesdetermined was 1,013,767 bp. Together with the nucleotide sequencesof 109 clones previously reported, the regions of chromosome5 sequenced so far now total 9,072,622 bp, which presumablycovers approximately one-third of the chromosome. A similaritysearch against the reported gene sequences predicted the presenceof a total of 225 protein-coding genes and/or gene segmentsin the newly sequenced regions, indicating an average gene densityof one gene per 4.5 kb. Introns were identified in 72.4% ofthe potential protein genes for which the entire gene structurewas predicted, and the average number per gene and the averagelength of the introns were 3.3 and 163 bp, respectively. Thesesequence features are essentially identical to those in thepreviously reported sequences. The sequence data and gene informationare available on the World Wide Web database KAOS (Kazusa Arabidopsisdata Opening Site) at http://www.kazusa.or.jp/arabi/.  相似文献   

9.
10.
11.
徐婉约  王应祥 《植物学报》2019,54(5):620-624
减数分裂指DNA复制1次, 细胞核分裂2次, 产生染色体数目减半的单倍体配子, 是真核生物有性生殖所必需的环节。拟南芥(Arabidopsis thaliana)是分子遗传学研究的传统模式生物。近年来, 随着显微镜技术的快速发展, 利用细胞学方法观察拟南芥减数分裂过程中的染色体形态和同源染色体互作事件, 将有助于深入认识减数分裂的分子遗传机制。该文详细描述了染色体展片法观察拟南芥雄性减数分裂细胞中的染色体形态。  相似文献   

12.
徐婉约  王应祥 《植物学报》1983,54(5):620-624
减数分裂指DNA复制1次, 细胞核分裂2次, 产生染色体数目减半的单倍体配子, 是真核生物有性生殖所必需的环节。拟南芥(Arabidopsis thaliana)是分子遗传学研究的传统模式生物。近年来, 随着显微镜技术的快速发展, 利用细胞学方法观察拟南芥减数分裂过程中的染色体形态和同源染色体互作事件, 将有助于深入认识减数分裂的分子遗传机制。该文详细描述了染色体展片法观察拟南芥雄性减数分裂细胞中的染色体形态。  相似文献   

13.
14.
Nineteen Pl and TAC clones, which have been mapped on the finephysical map of the Arabidopsis thaliana chromosome 5, weresequenced according to the shotgun-based strategy, and theirstructural features were analysed. The total length of the regionssequenced in this study was 1,367,185 bp. Combining this withthe regions covered by 90 P1 and TAC clones proviously reported,the total length of chromosome 5 sequenced to date becomes 8,058,855bp. On the basis of similarity search against protein and ESTdatabases and gene modeling with computer programs, a totalof 330 potential protein-coding regions were identified, bringingan average density of the genes to approximately one gene per4.1 kb. Introns were identified in 81.0% of the potential proteingenes for which the entire gene structure was predicted, withan average number per gene of 4.2 and an average length of theintrons of 180 bp. The RNA-coding genes identified were 9 tRNAgenes corresponding to 8 amino acid species and 2 genes forU2 nuclear RNA. These sequence features are essentially identicalto those in the previously reported sequences. The sequencedata and gene information are available on the World Wide Webdatabase KAOS (Kazusa Arabidopsis data Opening Site) at http://www.kazusa.or.jp/arabi/.  相似文献   

15.
16.
Based on the physical map of Arabidopsis thaliana chromosome 3 previously constructed with CIC YAC, TAC, P1 and BAC clones (Sato, S. et al., DNA Res., 5, 163-168, 1998), a total of 60 P1 and TAC clones were sequenced, and the sequence features of the resulting 4,504,864 bp regions were analyzed by applying various computer programs for similarity search and gene modeling. As a result, a total of 1054 potential protein-coding genes were identified. The average density of the genes identified was 1 gene per 4066 bp. Introns were observed in 77% of the genes, and the average number per gene and the average length of the introns were 3.9 and 156 bp, respectively. These sequence features are essentially identical to those of chromosome 5 in our previous reports, but the gene density was slightly higher than that observed for chromosomes 2 and 4. The regions also contained 10 tRNA genes when searched by similarity to reported tRNA genes and the tRNA scan-SE program. The sequence data and information on the potential genes are available through the World Wide Web database KAOS (Kazusa Arabidopsis data Opening Site) at http://www.kazusa.or.jp/kaos/.  相似文献   

17.
First efforts for physical mapping of rice chromosomes 8 and9 were carried out by ordering YAC clones of a rice genomicDNA library covering six genome equivalents with mapped DNAmarkers. A total of 79 and 74 markers from chromosomes 8 and9, respectively, were analyzed by YAC colony and Southern hybridizationusing RFLP markers of cDNA and genomic clones, and by polymerasechain reaction (PCR) screening using PCR-derived and sequence-taggedsite (STS) markers. As a result, 252 YAC clones were confirmedto contain the mapped DNA fragments on both chromosomes. A contigmap was constructed by ordering these YAC clones and about 53%and 43% genome coverage was obtained for chromosomes 8 and 9,respectively, assuming a YAC clone size of 350 kb and overlapbetween neighboring YACs of 50%. A continuous array of YAC cloneswith minimum overlap gave a total size of 18.9 Mb for chromosome8 and 15.6 Mb for chromosome 9, which are close to previousestimates. These contig maps may provide valuable informationthat can be useful in understanding chromosome structure andisolating specific genes by map-based cloning.  相似文献   

18.
19.
We have determined the genome structure of the centromeric region of Arabidopsis thaliana chromosome 4 by sequence analysis of BAC clones obtained by genome walking, followed by construction of a physical map using DNA of a hypomethylated strain. The total size of the centromeric region, corresponding to the recombinant inbred (RI) markers between mi87 and mi167, was approximately 5.3 megabases (Mb). This value is over 3 Mb longer than that previously estimated by the Arabidopsis Genome Initiative (Nature, 408, 796-815, 2000). Although we could not cover the entire centromeric region by BAC clones because of the presence of highly repetitive sequences in the middle (2.7 Mb), the cloned regions spanning approximately 1 Mb at both sides of the gap were newly sequenced. These results together with the reported sequences in the adjacent regions suggest that the centromeric region is principally composed of a central domain of 2.7 Mb, consisting of mainly 180-bp repeats and Athila elements, and upper and lower flanking regions of 1.55 Mb and 1 Mb, respectively. The flanking regions were predominantly composed of various types of transposable elements, except for the upper end moiety in which a large 5S rDNA array (0.65 Mb) and central domain-like sequence are present. Such an organization is essentially identical to the centromeric region of chromosome 5 reported previously.  相似文献   

20.
We previously reported a cDNA selection method using DNA latex particles to identify expressed genes in specific regions of genomes and named this cDNA scanning method (Hayashida et al., 1995 Gene 155 161). We applied the cDNA scanning method to the YAC CIC3B1-S DNA on Arabidopsis thaliana chromosome 5, and constructed a region-specific sublibrary in which cDNAs for genes on the YAC CIC3B1-S DNA were concentrated. We isolated 545 cDNA clones from the sublibrary, and determined partial sequence of them to produce expressed sequence tags (ESTs) derived from the YAC region. In total, 74 nonredundant groups of cDNAs were obtained from 545 cDNA clones. Forty-seven percent of these EST clones had significant homology to functional proteins such as protein kinases, LON protease, nucleic acid binding protein and chloride channel protein. We compared the cDNA sequences isolated by the cDNA scanning method to the Arabidopsis genomic sequence corresponding to the YAC CIC3B1-S region, and found that 69% of the selected cDNAs are located in the region. We discuss the fidelity and efficiency of the cDNA scanning method for cloning region-specific cDNAs and its useful application in positional cloning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号